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Abstract: Altered somatosensory function is common among stroke survivors, yet is often poorly
characterized. Methods of profiling somatosensation that illustrate the variability in impairment
within and across different modalities remain limited. We aimed to characterize post-stroke so-
matosensation profiles (“fingerprints”) of the upper limb using an unsupervised machine learning
cluster analysis to capture hidden relationships between measures of touch, proprioception, and
haptic object recognition. Raw data were pooled from six studies where multiple quantitative mea-
sures of upper limb somatosensation were collected from stroke survivors (n = 207) using the Tactile
Discrimination Test (TDT), Wrist Position Sense Test (WPST) and functional Tactile Object Recognition
Test (fTORT) on the contralesional and ipsilesional upper limbs. The Growing Self Organizing Map
(GSOM) unsupervised machine learning algorithm was used to generate a topology-preserving
two-dimensional mapping of the pooled data and then separate it into clusters. Signature profiles of
somatosensory impairment across two modalities (TDT and WPST; n = 203) and three modalities
(TDT, WPST, and fTORT; n = 141) were characterized for both hands. Distinct impairment subgroups
were identified. The influence of background and clinical variables was also modelled. The study
provided evidence of the utility of unsupervised cluster analysis that can profile stroke survivor sig-
natures of somatosensory impairment, which may inform improved diagnosis and characterization
of impairment patterns.

Keywords: stroke; upper extremity; somatosensory disorders; touch; proprioception; haptic object
recognition; profiling; unsupervised machine learning

1. Introduction

Altered somatosensation is common after stroke [1–4]. In investigations specific to the
upper limb, frequency of impaired somatosensation has been shown to be 67% [5]. This can
include multiple modalities, such as touch, proprioception, and temperature, with common
impairment in texture discrimination, limb position sense, and haptic object recognition [5].
Somatosensory loss is an invisible and often poorly characterized impairment that can have
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a significant impact on how we interact with our physical environment and participate
in daily activities [6–9]. For example, it contributes to pinch grip deficit after stroke [10],
and is associated with functional arm use [11]. Furthermore, presence of somatosensory
impairment can negatively affect participation in the number and types of daily living
activities, including social and low-demand leisure activities, after stroke [6,12]. Adequate
sensation is also reported to be a prerequisite for full motor recovery of the paretic upper
limb [13].

Our ability to perceive, recognize, and correctly manipulate objects requires a complex
integration of multiple modalities of sensation, including touch, proprioception, and haptic
object recognition. However, currently, our ability to profile somatosensory function across
multiple modalities, types of information processing, and severity of impairment is limited.
When analysing the influences of somatosensation on outcome and functional abilities
after stroke, items indexing sensation are often hidden in a global measure of impairment
such as the NIH Stroke Scale [14], combined with other measures of sensation to create a
single composite score reflecting an average sensory impairment rating [15], or only one
modality of sensation is assessed (e.g., light touch). Furthermore, many clinical measures
of somatosensation like the Nottingham Sensory Assessment [16], are scored using ordinal
ratings that lack sensitivity to the variability in presentation of the assessed impairment (c.f.,
see [17,18] for examples of quantitative assessments with higher scale resolution). While
these scores can be helpful for tracking change if collected at multiple timepoints in the
same individual, they fail to illustrate the potentially meaningful variability in impairment
both within and across different modalities of sensation, which could be contributing to
patient performance on different functional tasks.

We propose the creation of somatosensory profiles that capture how impairments in
different modalities of somatosensation can co-occur within an individual and whether
the observed pattern of impairment is potentially representative of a phenotype, signature,
or “fingerprint” of somatosensory impairment within a population. Generating profiles
has relevance not only in better understanding patterns of somatosensory impairment
within and across modalities, but also their impact on function, as different signatures
of impairment could differentially impact dexterity and co-ordination of the upper limb,
arm use, and/or functional activities. To allow us to characterize the potential patterns
or relationships across multiple modalities of somatosensation in a sample of stroke sur-
vivors, we applied an unsupervised machine learning approach [19] to characterize the
relationship between three different quantitative measures of somatosensory impairment
and capacity: the Tactile Discrimination Test (touch [20]), the Wrist Position Sense Test
(proprioception [21]), and the functional Tactile Object Recognition Test (haptic object
recognition [22]). We selected these measures as they characterize different somatosensory
modalities, measures are quantitative with good scale resolution and psychometric char-
acteristics [20–22], discriminative impairment is common and persistent after stroke [2,5],
and we had access to raw data to pool across multiple data sets.

The co-existence and integration of somatosensory information is complex, involving
the simultaneous detection and weighting of relevant stimuli, as well as gating of irrele-
vant stimuli so that meaningful information can be extracted to inform different cognitive
processes, actions, and functional tasks. For example, discriminating where our limbs are
in space relative to each other via our proprioceptive senses is essential for the execution
of coordinated goal-directed movement [23,24]. Further, our ability to use our sense of
touch to discriminate textures can help us recognize objects and inform our decisions about
how to safely interact with them, which is frequently identified as an important goal of
therapy for patients with somatosensory loss [25]. Each of these senses in isolation is
important, and they also work together to support the maintenance of cognitive repre-
sentations of the body (“body schema”) and performance on more complex functional
tasks [22,26–28]. For example, our awareness of limb posture paired with information about
texture discrimination can inform how we accurately manipulate a key to open a door. A
further consideration is that one sensation modality can influence our perception of other
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somatosensory modalities. For example, using a tactile illusion paradigm, the perception of
the location of an illusory tactile stimulation can be manipulated by changing the posture
of the hand, suggesting that proprioceptive inputs can influence tactile perception [29]. The
contribution and integration of each is important and impacts function.

The relationship between touch and proprioception is made more complex in the
context of stroke, where severity of impairment can differ across modalities, and potentially
influence each other. These relationships are difficult to unpack for several reasons. First,
in clinical research, the specific nature and severity of modalities are often not detailed
on an individual level. If multiple modalities of impairment are reported, it is often
presented as group averages which fail to capture more nuanced patterns of variability
across individuals (e.g., [1,3,4]). Second, sample sizes are often small, making it difficult
to identify patterns of impairment that may exist in a given population or sample and
prevent us from being able to reveal how modality-specific impairments may interact with
each other. Third, summed or composite scores mask the relative presence and severity
of contributing impairments for each somatosensory modality that may be impacting an
individual’s function.

Machine learning-based analysis approaches provide an opportunity to explore re-
lationships between variables beyond standard statistical approaches, and to summarize
profiles of somatosensory impairment/capacity. Using unsupervised machine learning
algorithms, we can use a data-driven approach to reveal previously unseen patterns of
relationships in multivariate data sets [19,30]. The advantage of employing unsupervised
algorithms for conducting exploratory analyses is that they learn the patterns or rules from
the data set with minimal intervention, which mitigates introduction of a priori human
bias that can be introduced via labels and classifications [31]. In the context of stroke with
impairments that span multiple domains, this approach to pattern analysis lends itself
well to understanding if and how the relative severity of impairments may co-occur, or
cluster, in a population (e.g., [30]). Unavailability of prior labelled data was a further key
reason for using unsupervised learning methods in the current study. Clinically, cluster
profiling can be a valuable tool in characterizing the profile of somatosensory impairment
for an individual relative to population benchmarks. Furthermore, identifying profiles, or
a signature of impairment can motivate future work to consider the interactive nature of
impairments when tailoring rehabilitation intervention to the individual and measuring
change in somatosensory profiles over time.

Our aim was to generate profiles of somatosensory impairment across three different
modalities of upper limb sensation: touch, proprioception, and haptic object recognition.
Using unsupervised learning methods and quantitative measures of somatosensation
within individuals, we sought to systematically identify within a population of individuals
whether scores on a set of outcomes map to distinct phenotypes of somatosensory impair-
ment and capacity. This was achieved using pooled raw data from studies of individuals
with stroke with known somatosensory impairment. We included assessment scores from
both limbs to capture impairments that may also be present in the ipsilesional hand [32,33].
Hand dominance, and whether the affected hand was the dominant hand, were also in-
cluded as variables of interest as hand dominance has been associated with asymmetries in
somatosensory function in healthy controls [34,35].

2. Materials and Methods
2.1. Study Design and Pooled Samples

Data were pooled from six studies where survivors of stroke were tested using several
quantitative measures of somatosensation. Most were intervention studies where the
effectiveness of sensory discrimination training for the recovery of somatosensation in the
upper limb was investigated. The studies were: (1) Discriminative validity study [20,21];
(2) Study of the Effectiveness of Neurorehabilitation on Sensation (SENSe), [15], Australian
New Zealand Clinical Trials Registry: ACTRN012605000609651; (3) Connecting New
Networks for Everyday Contact through Touch (CoNNECT), [36]); ACTRN12613001136796;
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(4) Network of sites and “up-skilled” therapists to deliver best-practice stroke rehabilitation
of the upper limb (SENSe CONNECT: ACTRN12618001389291; (5) In Touch [37]; and
(6) additional testing linked with the National Institute of Health (NIH) Toolbox study [38].
Reporting on measures from this pooled sample has also been published elsewhere [39,40].

To assess for relationships across multiple modalities of somatosensation on an indi-
vidual subject level, only studies that included at least two of the following quantitative,
standardized assessments of upper limb somatosensation were eligible for inclusion: TDT
(Tactile Discrimination Test (TDT [20]), Wrist Position Sense Test (WPST [21]), functional
Tactile Object Recognition Test (fTORT [22]). The TDT [20] and WPST [21] were collected
for all six studies, and the fTORT [22] was collected for four of the included studies (SENSe,
CoNNECT, In Touch, and SENSe CONNECT). Testing was conducted on both the contrale-
sional (typically affected) and ipsilesional (typically less-affected or unaffected) upper limbs
by trained assessors. For studies that had multiple timepoints of assessment, only the first
assessment was included in the pooled data set. This baseline assessment was conducted
prior to any somatosensory intervention. All participants gave written voluntary informed
consent and ethical approval for all studies was granted by the Human ethics committees
of Austin Health, La Trobe University and participating institutions/hospitals. The ethical
approval for the current project involving the analysis of pooled data was granted by
Austin Health HREC/17/Austin/281 and La Trobe University Human Ethics Committees,
Melbourne, Victoria, Australia.

Sample size: In cluster analysis, the goal is typically to group similar data points into
clusters based on a similarity measure or distance metric. We used GSOM to generate a
topology-preserving mapping of the data, which was then separated into clusters using K-
means. It is an unsupervised learning technique and does not involve hypothesis testing or
the need to estimate effect sizes. Therefore, power calculation is not a standard requirement
when performing cluster analysis for recognizing patterns [41]. Nevertheless, the sample
size we used in this experiment exceeds the minimum sample size mentioned in the
literature [41,42].

2.2. Participants

Participant inclusion and exclusion criteria and testing conditions were similar across
all studies. Participants were recruited from hospitals, rehabilitation centres, and the com-
munity, and spanned subacute to chronic phases of recovery. Most were recruited from
metropolitan sites in Melbourne, Victoria, Australia. Common inclusion criteria were par-
ticipants with ischaemic or haemorrhagic stroke, all participants were medically stable,
had adequate comprehension of simple instructions, and were able to provide informed
consent. Participants presented with impaired touch discrimination, limb position sense,
and/or tactile object recognition identified clinically and by standardized tests, with the
exception of those from the Discriminative Validity [20,21] and NIH Toolbox [38] studies
where participants with and without sensory loss were recruited. Studies differed with
respect to criteria related to stroke chronicity (i.e., time since stroke). Participants were
eligible for SENSe if they were at least six weeks post-stroke, CoNNECT if they were at least
three months post-stroke, and In Touch if they were at least one month post-stroke. The
Discriminative Validity and SENSe CoNNECT studies had no restrictions on stroke chronic-
ity. Stroke chronicity data were not collected for the NIH Toolbox study. Stroke survivors
were excluded if they were medically unwell, had central nervous system dysfunction other
than stroke, diagnosis of peripheral neuropathy, or presence of unilateral spatial neglect.
Study exclusion criteria differed with respect to stroke lesion location. Individuals with
brain stem infarcts were excluded from CoNNECT and In Touch studies, but not the other
studies. Furthermore, CoNNECT and In Touch studies only included participants with first
ever stroke and were right hand dominant. There were no such restrictions in the other
studies. However, for the purposes of the current study, only those with first ever stroke
were included. As CoNNECT and In Touch were neuroimaging studies, participants who
did not meet eligibility criteria with respect to MRI safety were not eligible.
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2.3. Somatosensory Assessments
2.3.1. Tactile Discrimination Test (TDT)

The TDT is a quantitative assessment of the ability to discriminate precisely defined
surface textures (grids) through the sense of touch, using one’s preferred finger tip (either
index or middle), with vision occluded [20]. It is a three-alternative, forced-choice assess-
ment where participants have a 33% chance of guessing correctly. This assessment has high
retest reliability (r = 0.92) and good discriminative validity [20]. Test procedures for this as-
sessment are published in Carey et al. [20]. All participants in the current study completed
the 25-item version of this assessment. A percent maximum area (PMA) raw score ranging
from 0 to 100 was calculated for each participant. This is an updated scoring approach [39].
A score less than or equal to 73.1 PMA is associated with impaired performance (95th
percentile criterion of abnormality relative to age-matched healthy controls) [40].

2.3.2. Wrist Position Sense Test (WPST)

The WPST is a quantitative assessment of an individual’s perceived position of their
wrist in the absence of vision [21]. The examiner moves the participant’s wrist to 20 different
imposed test positions within a comfortable range of wrist flexion and extension. Test
positions span 35 degrees extension and 65 degrees flexion. The participant indicates the
perceived joint angle of their wrist using a protractor scale and pointer aligned with the
axis of movement at their wrist. An error score is calculated relative to the actual wrist
angle for each position. A mean error score is calculated from the absolute value of error
at each position. This assessment has high retest reliability (r = 0.88 to 0.92) and good
discriminative validity [21]. Mean error scores greater than or equal to 11.3 degrees are
considered impaired [39].

2.3.3. Functional Tactile Object Recognition Test (fTORT)

The fTORT is a 14-item quantitative assessment of an individual’s ability to recognize
everyday objects through touch. Detailed procedures are presented in Carey et al. [22].
In brief, participants are presented with different objects with different somatosensory
attributes. Without vision, they must identify what the object is by indicating the matching
object from object sets presented on a poster. Object sets vary according to 7 somatosensory
attributes (size, shape, weight, texture, hardness, temperature, and object function), with
each attribute sampled twice. Each test item is scored on a scale of 0–3, where 3 is correct
identification of the test object (i.e., exact match of object sensory attribute); 2 is object pair
(i.e., error in amount of distinctive sensory object attribute); 1 is distractor object (i.e., error
in recognition of two or more sensory object attributes); and 0 is incorrect object outside
the object set (i.e., error of object type/function and sensory object attribute) [22]. Scores
less than or equal to 39.5 are indicative of impaired performance [39]. A summary of all
somatosensory assessments and scoring is provided in Table 1.

Table 1. Summary of somatosensory assessments TDT, WPST and fTORT.

Tactile Discrimination Test
(TDT)

Wrist Position Sense Test
(WPST)

Functional Tactile Object
Recognition Test (fTORT)

Assessment score description Percent Maximum Area under
the psychometric function.

Average absolute error
(degrees)

fTORT sum score: sum of ordinal
scale values across 14 test items

Score range 0–100 0–40 0–42

Interpretation Higher number = better
performance

Higher number = worse
performance

Higher number = better
performance

Impairment threshold for just
noticeable impairment
(pooled data) [39,40]

73.1 percent maximum area
(PMA)

11.3 degrees average absolute
error 39.5 sum score

Impairment threshold for
extreme impairment

(pooled data) [39]

Values at or near 33.3 PMA and
below

Values at or near 36 degrees
average absolute error and

above

Values at or near 1.5 sum score
and below
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2.4. Data Analysis

Figure 1 illustrates our process by which an unsupervised learning approach based on
GSOM was used to generate a topology-preserving mapping of the data, which was then
separated into clusters using K-means [43]. We employed this process for two independent
analyses. The first included the full sample of participants with TDT and WPST data
available (n = 203) to investigate the binary relationship between these two modalities in a
larger sample. The second included participants with complete TDT, WPST, and fTORT
data sets for both hands (n = 141) to further profile how touch, proprioception, and haptic
object recognition cluster. The selected sample size for each analysis varied according to
completeness of the available data for the variables to be analysed.
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2.4.1. Quantitative Variables

The total pooled sample included in the study consisted of 207 participants with stroke
and somatosensory impairment. The dataset consisted of three discrete measures (1 for
each modality of somatosensation: TDT, WPST, and fTORT) × 2 limbs (contralesional and
ipsilesional hand) for each participant, which were collected at a single time point. In
addition, some categorical variables related to key demographic and background clinical
information were available (e.g., age, gender, lesion level, lesion side, lesion type, affected
upper limb, dominant hand, is dominant hand affected, and latency—weeks between date
of stoke to time of TDT baseline assessment).

2.4.2. Data Pre-Processing

Data pre-processing is an essential step in data analysis since it involves cleaning,
transforming, and preparing the data before it is used to train a machine learning model.
The goal of data pre-processing is to make the data usable for the clustering algorithm by
removing any irrelevant or redundant information, handling missing values, and ensuring
that the data is in a suitable format for the chosen algorithm.

Since neither data imputation nor data interpolation yields correct participant clinical
scores, we therefore deleted data rows with missing values for clinical scores considered
for specific analysis [44]. Treating outliers was not required since no outlier values were
noticed in the dataset.

2.4.3. Data Normalization

The pre-processed dataset had clinical scores of different scales. For example, TDT
scores range from 0 to 100, WPST’s range is 0–40, and fTORT scores range from 0 to 42 (see
Table 1). Since many machine learning algorithms are sensitive to the scale of the input
data, it was necessary to normalize data to ensure that each feature contributes equally to
the final result. Data normalization involved transforming all data features to lie within the
range of 0 and 1. This is done to ensure that the magnitude of the features does not affect
the results of the GSOM algorithm. We used the min–max scalar algorithm to normalize
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clinical scores and used normalized data to construct an input feature vector for the GSOM
algorithm [19].

2.4.4. Feature Engineering of Categorical Information

Feature engineering of categorical features involved the transformation into a suitable
format for the machine learning algorithm. Categorical variables such as background clini-
cal information (i.e., hand dominance, dominant hand is affected hand) were transformed
using one-hot encoding [45]. One-hot encoding involves converting each categorical feature
into a set of binary variables, where each binary variable corresponds to a single category.
Relevant feature vectors from the results were then used to train the GSOM model for
each experiment.

2.4.5. Growing Self-Organizing Map (GSOM)

A self-organizing map (SOM) is a type of artificial neural network (ANN) used for
unsupervised learning-based clustering. A SOM projects high-dimensional input data onto
a lower-dimensional map, where similar input patterns are clustered together. The map is
self-organizing in that it adapts to represent the structure of the input data over time. The
GSOM [19] is an extension of SOMs that allows the map to grow and adapt to new data
as it is encountered without the dependence on a pre-defined fixed structure. It can also
detect and handle outliers and noise in the data, making it well-suited for unsupervised
data exploration, anomaly detection, and data mining applications.

GSOM was selected as the clustering method for this study since GSOM does not
require a pre-defined network architecture which is difficult to identify in an exploratory
study such as this study. The GSOM is also flexible and adaptable for small datasets where
the data distribution may need to be better defined. This enables unbiased exploration of
data patterns and does not require pre-defined labels.

In this study, we used GSOM’s spread factor (SF) hyperparameter value 0.9. The
spread factor parameter, which can take values between 0 and 1, controls the node growth
in the GSOM allowing the generation of maps with small or large number of nodes. Higher
spread factors (larger maps) lead to uncovering more detailed data patterns (including
non-prominent sub groupings), while lower spread factors (smaller maps) yield high-level
data patterns (only the most prominent groupings).

2.4.6. Identifying Clusters from the GSOM

The GSOM results in a two-dimensional grid of nodes, where each node represents
a cluster of similar data patterns. The nodes spatially close to each other on the map
are thought to represent clusters. Hence, we could even examine the map and identify
areas where the nodes are densely packed, as these areas typically represent clusters of
similar patterns.

However, in this study, we used another algorithm (K-means) [43] to derive the parti-
tioning on the GSOM map as a second step. The quality of uncovered clusters were then
evaluated with internal cluster validation methods such as silhouette coefficient (SC) [46]
and Davies–Bouldin index (DBI) [47], and with statistical methods such as independent
sample t-tests. Furthermore, two-sample t-tests were used to confirm the distinctiveness of
the clusters statistically.

3. Results
3.1. Demographics and Key Background Clinical Information

A summary of participant demographic data and background clinical information is
reported in Table 2 and Figure 2.



Brain Sci. 2023, 13, 1253 8 of 25

Table 2. Participant demographic and background clinical information for the total pooled sample
(n = 207) and disaggregated by study.

Total
Stroke

Discriminative
Validity

SENSe In Touch Connect NIH
Toolbox

Sense
Connect

Sample Size 207 50 46 22 45 9 35
Mean Age (SD) 56.3 (14.5) 52.0 (14.4) 61.3 (11.9) 59.7 (15.1) 52.8 (14.1) 65.2 (12.6) 56.1 (15.7)

Sex: M/F 144/63 36/14 33/13 14/8 32/13 6/3 23/12
Mean Time Since Stroke:

weeks (SD)
82.7

(145.5) 13.0 (21.2) 90.9 (124.2) 6 (5.7) 78.3 (92.6) NA 205.3
(243.5)

Lesioned Hemisphere:
R/L/Both 95/108/4 21/28/1 20/26/0 8/14/0 20/23/2 5/4/0 21/13/1

Lesion Level:
Cortical/Subcortical/

Both/Unknown

78/65/
25/39

15/9/
9/17

13/18/
10/5

8/13/
1/0

26/15/
4/0

0/0/
0/9

16/10/
1/8

Hand Dominance:
R/L/Unknown 178/25/4 40/6/4 42/4/0 21/1/0 45/0/0 0/9/0 30/5/0

Dominant Hand is
Affected Hand: n (%)

101
(48.8%)

21
(42%)

26
(56.5%)

13
(59.1%)

23
(51.1%)

5
(55.6%)

13
(37.1%)
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Figure 2. Box plots of somatosensory assessment scores disaggregated by study and hand assessed.
Participant scores are represented by individual data points, box plots present the study median score
and interquartile range. Separate panels for each hand assessed. The red horizontal line represents
the criterion of abnormality for each assessment. (a) TDT scores (criterion of abnormality = 73.1 PMA),
with lower scores indexing greater impairment. (b) WPST scores (criterion of abnormality = 11.3◦),
with higher scores indexing greater impairment. (c) fTORT summed scores out of 42 (criterion of
abnormality = 39.5 points), with lower scores indexing greater impairment.

3.2. GSOM Cluster Analysis

The following sections describe GSOM-based clustering to generate a profile of so-
matosensory impairment across different modalities of upper limb sensation: touch, propri-
oception, and haptic object recognition. Cluster generation was carried out to help answer
the following main questions: (a) How do survivors of stroke cluster according to TDT and
WPST scores for the contralesional hand, ipsilesional hand, and both hands? (b) How do
survivors of stroke cluster according to TDT, WPST, and fTORT scores for the contralesional
hand, ipsilesional hand, and both? (c) Does the hand affected and hand dominance impact
the clusters?
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3.2.1. Somatosensory Impairment Profiles across Two Modalities (TDT and WPST)

We examined how survivors of stroke cluster according to TDT and WPST scores for
contralesional hand, ipsilesional hand, and both hands.

The following figures display the result profiles from the clustering experiments across
two modalities: TDT and WPST for contralesional hand (Figure 3); ipsilesional hand
(Figure 4); and both hands (Figure 5).
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Figure 3. (a) The GSOM plot displaying three clusters (spread factor, SF = 0.9). (b) Box plots of TDT
and WPST scores for contralesional hand disaggregated by each cluster profile. Participants (n = 204)
are represented in three profiles, box plots present the study median and interquartile range (where
diamonds indicate scores beyond 1.5 times interquartile range value).
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Figure 4. (a) The GSOM plot displaying three clusters (spread factor, SF = 0.9). (b) Box plots of TDT
and WPST scores for ipsilesional hand disaggregated by each cluster profile. A total of 203 participants
are represented in three profiles (n = 203), box plots present the study median and interquartile range
(where diamonds indicate scores beyond 1.5 times interquartile range value).
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Figure 5. (a) The GSOM plot displaying three clusters (spread factor, SF = 0.9). (b) Box plots of
TDT and WPST scores for both contralesional and ipsilesional hands disaggregated by each cluster
profile. A total of 203 participants are represented in three profiles (n = 203), box plots present the
study median and interquartile range (where diamonds indicate scores beyond 1.5 times interquartile
range value).

Table 3 displays the summary of the result profiles from all three clustering experi-
ments across TDT and WPST.

Table 3. Characterization of impairment profiles disaggregated for each impairment profile across
TDT and WPST for: (a) contralesional hand; (b) ipsilesional hand; and (c) both hands (n = 204).

(a) Impairment profiles across TDT
and WPST for contralesional hand Profile 1 Profile 2 Profile 3

Label
Unimpaired to mild
impairment—both

modalities

Marked
impairment—touch

Marked impairment—both
modalities

Sample size (%) 50 (25%) 101 (49%) 53 (26%)
TDT PMA: Mean (SD) 77.9 (8.9) 44.1 (15.0) 37.9 (13.4)

WPST average error: Mean (SD) 11.5 (4.1) 11.9 (4.2) 26.7 (6.9)

(b) Impairment profiles across TDT
and WPST for ipsilesional hand Profile 1 Profile 2 Profile 3

Label
Mild-moderate

impairment—both
modalities

Unimpaired—both
modalities

Unimpaired to mild
impairment—touch only.

Sample size (%) 50 (25%) 82 (40%) 71 (35%)
TDT PMA: Mean (SD) 64.1 (12.4) 82.1 (7.6) 72.5 (11.0)

WPST average error: Mean (SD) 13.9 (4.8) 7.1 (2.5) 7.4 (2.4)

(c) Impairment profiles across TDT
and WPST for both contralesional

and ipsilesional hands
Profile 1 Profile 2 Profile 3

Label

Mild-no touch and
proprioception impairment—

contralesional. Mild-no
impairment—ipsilesional.

Marked-moderate touch
impairment—

contralesional. Mild touch
impairment—ipsilesional.

Marked touch and
proprioception impairment—

contralesional only

Sample size (%) 82 (40%) 52 (26%) 69 (34%)
TDT PMA: Mean (SD):

Contralesional/Ipsilesional 67.8 (15.1)/77.1 (11.0) 36.2 (15.6)/64.0 (10.8) 41.8 (14.2)/78.7 (10.7)

WPST average error: Mean (SD):
Contralesional/Ipsilesional 10.8 (3.6)/8.4 (3.3) 12.3 (5.1)/9.8 (5.9) 23.8 (8.1)/8.9 (3.8)
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Cluster-Based Profiles with TDT and WPST for Contralesional Hand

Altered somatosensation was profiled across TDT and WPST for the contralesional
hand and three profiles of individual level data patterns were observed (n = 204). Figure 3
and Table 3 (a) display the summary of the profiles.

Profile 1 (25% of analysed participants) presented with no to mild touch impairment
and relatively mild to no proprioception impairment for the contralesional hand. Par-
ticipants of Profile 2 (49%) exhibited relatively severe touch impairment and no to mild
proprioception impairment for the contralesional hand. Profile 3 (26%) had participants
with moderate to extreme impairment in both touch and proprioception.

Cluster-Based Profiles with TDT and WPST for Ipsilesional Hand

Somatosensory impairment was profiled across TDT and WPST for the ipsilesional
hand, and three profiles having weak cluster structure were observed at individual-level
data patterns (n = 203). Figure 4 and Table 3 (b) display the summary of the profiles.

Profile 1 (25% of analysed participants) typically ranged from mild to moderate impair-
ment in both touch and proprioception. Profile 2 participants (40%) mostly had no impair-
ment in both modalities. Profile 3 (35%) exhibited no proprioception impairment mostly
for the ipsilesional hand, while touch sensation varied from no to mild impairment levels.

Cluster-Based Profiles with TDT and WPST for Both Contralesional and Ipsilesional Hands

Somatosensory impairment was profiled across TDT and WPST for both contralesional
and ipsilesional hands and three profiles having weak cluster structure were observed at
individual level data patterns (n = 203). Figure 5 and Table 3 (c) display the summary of
the profiles.

Profile 1 consisted of participants (40%) with no to mild touch impairment (high
variance) and no to mild proprioception impairment in the contralesional hand. Their
ipsilesional hand exhibited no to mild touch and proprioception impairment. Profile 2
(26%) ranged from moderate to severe touch impairment (high variance) and no to mild
proprioception impairment for the contralesional hand, with mild impairment in touch for
the ipsilesional hand. Profile 3 (34%) included participants with a range of moderate to
severe contralesional impairment for touch and proprioception (high variance) and no to
mild impairment in ipsilesional hand in both touch and proprioception.

3.2.2. Somatosensory Impairment Profile Generation across Three Modalities (TDT, WPST
and fTORT)

As a further step, we examined how somatosensory impairment based on the TDT,
WPST, and fTORT is grouped into clusters, for contralesional, ipsilesional, and both hands,
and how the two variables “handedness” and “is the affected hand the dominant hand”
impact the clusters.

The following figures display the result profiles from the clustering experiments across
three modalities: TDT, WPST, and fTORT for contralesional hand (Figure 6); and ipsilesional
hand (Figure 7).



Brain Sci. 2023, 13, 1253 12 of 25Brain Sci. 2023, 13, x FOR PEER REVIEW 13 of 26 
 

 
Figure 6. (a) The GSOM plot displaying three clusters (spread factor, SF = 0.9). (b) Box plots of TDT, 
WPST, and fTORT scores for contralesional limb disaggregated by each cluster profile. A total of 144 
participants are represented in three profiles (n = 144), box plots present the study median and in-
terquartile range (where diamonds indicate scores beyond 1.5 times interquartile range value). 
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Table 4 displays the summary of the result profiles from two clustering experiments 
across three modalities for (a) contralesional hand; and (b) ipsilesional hand. 

Table 4. Characterization of impairment profiles disaggregated for each impairment profile across 
TDT, WPST, and fTORT for (a) contralesional hand (n = 144) and (b) ipsilesional hand (n = 141). 

(a) Impairment profiles across 
TDT, WPST, and fTORT for 

contralesional hand 
Profile 1 Profile 2 Profile 3 
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Severe-moderate  
impairment—all  

modalities. 

Mild impairment—proprioception  
and object recognition.  
Mild-moderate—touch. 

Moderate impairment—all 
modalities. 

Sample size (%) 41 (28%) 67 (47%) 36 (25%) 
TDT PMA: Mean (SD) 33.3 (15.3) 55.2 (16.2) 40.8 (15.5) 

Figure 6. (a) The GSOM plot displaying three clusters (spread factor, SF = 0.9). (b) Box plots of TDT,
WPST, and fTORT scores for contralesional limb disaggregated by each cluster profile. A total of
144 participants are represented in three profiles (n = 144), box plots present the study median and
interquartile range (where diamonds indicate scores beyond 1.5 times interquartile range value).
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Figure 7. (a) The GSOM plot displaying four clusters (spread factor, SF = 0.9). (b) Box plots of
TDT, WPST, and fTORT scores for ipsilesional limb disaggregated by each cluster profile. A total of
141 participants are represented in three profiles (n = 141), box plots present the study median and
interquartile range (where diamonds indicate scores beyond 1.5 times interquartile range value).

Table 4 displays the summary of the result profiles from two clustering experiments
across three modalities for (a) contralesional hand; and (b) ipsilesional hand.
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Table 4. Characterization of impairment profiles disaggregated for each impairment profile across
TDT, WPST, and fTORT for (a) contralesional hand (n = 144) and (b) ipsilesional hand (n = 141).

(a) Impairment profiles across
TDT, WPST, and fTORT for

contralesional hand
Profile 1 Profile 2 Profile 3

Label
Severe-moderate
impairment—all

modalities.

Mild impairment—proprioception
and object recognition.

Mild-moderate—touch.

Moderate
impairment—all

modalities.
Sample size (%) 41 (28%) 67 (47%) 36 (25%)

TDT PMA: Mean (SD) 33.3 (15.3) 55.2 (16.2) 40.8 (15.5)
WPST average error:

Mean (SD) 24.6 (8.7) 10.9 (3.3) 18.5 (5.9)

fTORT summed score:
Mean (SD) 5.5 (3.1) 34.4 (8.3) 19.9 (8.0)

(b) Impairment profiles
across TDT, WPST, and

fTORT for ipsilesional hand
Profile 1 Profile 2 Profile 3 Profile 4

Label
Mild

impairment—touch
only.

Mild
impairment—touch

and object
recognition.

No impairment—all
modalities.

Mild and variable
proprioception

impairment.

Sample size (%) 32 (23%) 30 (21%) 38 (27%) 41 (29%)
TDT PMA: Mean (SD) 61.9 (8.6) 63.1 (8.9) 82.2 (7.3) 82.3 (8.8)
WPST average error:

Mean (SD) 9.6 (4.0) 7.6 (2.3) 7.2 (2.0) 10.8 (6.0)

fTORT summed score:
Mean (SD) 41 (0.8) 36.9 (3.3) 41.6 (0.5) 40.1 (1.2)

Cluster-Based Profiles with TDT, WPST, and fTORT Values for Contralesional Hand

After deleting records with missing values, 144 participants were included in the
experiment (n = 144). These participants were from the SENSe, In Touch, CoNNECT,
and SENSe CONNECT studies, all sensory intervention studies. Three profiles were
observed through the cluster analysis. Figure 6 and Table 4 (a) display the summary of the
uncovered profiles.

In the analysed sample, 28% of participants were classified into Profile 1, showing
a range from moderate to severe touch, proprioception, and haptic object recognition
impairment. Profile 2 consisted of 47% of participants, with varying severity from mild
to moderate touch impairment (high variance), no to mild proprioception, and mild to
moderate haptic object recognition impairment (high variance). Profile 3 consisted of 25%
of participants, showing relatively moderate impairment across all modalities.

Cluster-Based Profiles with TDT, WPST, and fTORT for Ipsilesional Hand

We profiled somatosensory impairment across TDT, WPST, and fTORT for ipsilesional
hand (n = 141) and observed four major profiles. Figure 7 and Table 4 (b) display the
summary of the profiles.

Profile 1 (23% of the analysed participants) showed mild touch impairment in the ip-
silesional hand, but no proprioception and/or haptic object recognition impairment. Profile
2 (21%) had varying levels of mild touch impairment, but no proprioception impairment,
with a range from no to mild haptic object recognition impairment. Profile 3 (27%) showed
no impairment in touch, proprioception or haptic object recognition for the ipsilesional
hand. Profile 4 (29%) had no to mild touch and haptic object recognition impairment, with
varying levels from no to moderate proprioception impairment.

Furthermore, we examined how somatosensory impairment based on the TDT, WPST,
and fTORT is grouped into clusters, for both contralesional and ipsilesional hands, and



Brain Sci. 2023, 13, 1253 14 of 25

how the two variables “handedness” and “is the affected hand the dominant hand” impact
the clusters.

The following figures display the result profiles from the clustering experiments
across three modalities for both hands (Figure 8); and when clinical background informa-
tion, handedness, and affected hand’s dominance variables are included in the analysis
(Figure 9).
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Figure 9. (a) The GSOM plot displaying three clusters (spread factor, SF = 0.9). (b) Box plots of TDT,
WPST, and fTORT scores for both contralesional and ipsilesional hands disaggregated by each cluster
profile when handedness and affected hand’s dominance variables are included in the analysis. A
total of 141 participants are represented in three profiles (n = 141), box plots present the study median
and interquartile range (where diamonds indicate scores beyond 1.5 times interquartile range value).



Brain Sci. 2023, 13, 1253 15 of 25

Table 5 displays the summary of the result profiles from two clustering experiments for
both hands across (a) three modalities; and (b) three modalities when clinical background
information including handedness and affected hand’s dominance variables are included
in the analysis.

Table 5. Characterization of impairment profiles disaggregated for each impairment profile for both
contralesional and ipsilesional hands across (a) TDT, WPST, and fTORT; and (b) TDT, WPST, and
fTORT when clinical background information including handedness and affected hand’s dominance
variables are included in the analysis. (n = 141).

(a) Impairment profiles across TDT,
WPST, and fTORT for both

contralesional and ipsilesional hands
Profile 1 Profile 2 Profile 3 Profile 4

Label

No to mild
impairment, all

modalities—
contralesional.
Unimpaired—
ipsilesional.

Marked impairment,
all

modalities—
contralesional.

No to mild touch
impairment—
ipsilesional.

Moderate
impairment, all

modalities—
contralesional.
Unimpaired
ipsilesional.

Mild to marked
impairment (high

variability)—
contralesional. No to
mild impairment—

ipsilesional.

Sample size (%) 35 (25%) 37 (26%) 28 (20%) 41 (29%)
TDT PMA: Mean (SD):

Contralesional/Ipsilesional
65.5 (11.7)/
79.0 (8.7)

30.5 (12.2)/
71.6 (12.6)

52.6 (12.0)/
82.5 (11.1)

36.8 (12.9)/
64.5 (11.1)

WPST average error: Mean (SD):
Contralesional/Ipsilesional

10.8 (4.2)/
6.8 (2.1)

21.4 (8.4)/
7.6 (2.7)

21.3 (9.0)/
9.0 (3.3)

14.2 (6.5)/
11.7 (5.7)

fTORT summed score: Mean (SD):
Contralesional/Ipsilesional

37.1 (5.2)/
40.7 (1.3)

8.4 (5.4)/
39.6 (2.3)

17.1 (11.4)/
39.3 (4.1)

27.4 (12.0)/
40.4 (1.6)

(b) Impairment profiles across TDT,
WPST, and fTORT for both

contralesional and ipsilesional hands
when handedness and affected hand’s
dominance variables are included in

the analysis

Profile 1 Profile 2 Profile 3

Label

Mild-moderate impairment, all
modalities—contralesional.

No to mild touch impairment—
ipsilesional

Moderate and
variable impairment,

all modalities—
contralesional. No to

mild touch
impairment—
ipsilesional.

Marked impairment,
all modalities—
contralesional.

No to mild touch
impairment—
ipsilesional.

Sample size (%) 51 (36%) 53 (38%) 37 (26%)
TDT PMA: Mean (SD):

Contralesional/Ipsilesional
50.9 (17.3)/
73.8 (12.1)

44.7 (20.0)/
75.2 (11.9)

39.0 (15.6)/
71.0 (15.2)

WPST average error: Mean (SD):
Contralesional/Ipsilesional

12.1 (4.0)/
8.8 (4.3)

16.2 (7.9)/
7.9 (3.2)

23.5 (9.2)/
10.4 (5.1)

fTORT summed score: Mean (SD):
Contralesional/Ipsilesional

36.0 (6.9)/
40.8 (1.4)

18.5 (12.8)/
40.1 (1.9)

10.6 (6.5)/
39.2 (3.8)

Hand Dominance: R/L 46/5 48/5 37/0
Dominant Hand is Affected Hand:

n (% of sample size) 17 (32%) 53 (100%) 3 (8%)

Cluster-Based Profiles with TDT, WPST, and fTORT for Both Contralesional and
Ipsilesional Hands

Somatosensory impairment was profiled across TDT, WPST, and fTORT for both
contralesional and ipsilesional hands as the next step for participants with complete data
sets for both hands (n = 141). Four major profiles were identified. The summary of profiles
is described in Figure 8 and Table 5 (a).
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Profile 1 consisted of participants (25%) with no to mild impairment in all three modal-
ities for the contralesional hand. Their ipsilesional hand showed no to mild impaired touch
impairment, with no proprioception or haptic object recognition impairment. Profile 2
(26%) ranged from moderate to severe impairment in touch, proprioception, and haptic
object recognition for the contralesional hand, with varying levels of no to mild touch im-
pairment (high variance), and no impairment in proprioception or haptic object recognition
for the ipsilesional hand. Profile 3 (20%) included participants with a range of moderate
contralesional impairment (high variance) and no to mild impaired ipsilesional hands in
all three modalities. Participants of Profile 4 (29%) had mild to severe impaired touch, with
varying levels from no to moderate impaired proprioception and haptic object recogni-
tion for the contralesional hand. Their ipsilesional hand showed no to mild impairment
across modalities.

Inclusion of Handedness and Affected Hand Dominance Variables into Somatosensory
Impairment Profiles Generated Using TDT, WPST, and fTORT for Both Contralesional
and Ipsilesional Hands

We included the following parameters in the above analysis of somatosensory assess-
ment data from both hands: (i) dominant hand (DH), (ii) is dominant hand the affected
hand (DAH). Three clusters emerged (Figure 9). Profiles are reported in Table 5 (b).

Profile 1 (36%) comprised participants having mild to moderate impairment across the
three modalities for the contralesional hand, and no/mild impairment for the ipsilesional
hand for touch only. Ninety percent were right hand dominant, with 32% dominant hand
affected. Profile 2 (38%) showed moderate contralesional impairment across modalities for
the contralesional hand, with high variability. Again, the ipsilesional hand showed no/mild
impairment for touch only. Ninety percent were right hand dominant, with 100% having
the dominant hand affected. Participants of Profile 3 (26%) had severe impairment across
all modalities for the contralesional hand, again with no/mild impairment for touch only in
the ipsilesional hand. All were right hand dominant with only 8% dominant hand affected.

Table 6 shows the cross-cluster analysis between the derived profiles of the above
two analyses. All four somatosensory impairment profiles across TDT, WPST, and fTORT
for both contralesional and ipsilesional hands (analysis A) were re-organized across three
profiles when handedness and affected hand’s dominance variables were entered (anal-
ysis B). Participants of Profile 1 in analysis A were distributed among Profiles 1 and 2 of
analysis B. Most of Profile 2 of analysis A was re-allocated into Profiles 2 and 3 of analysis
B. Participants in Profiles 3 and 4 of analysis A were re-grouped among all three profiles in
analysis B.

Table 6. Cross-cluster analysis for analysis A (Somatosensory impairment profiles across TDT, WPST,
and fTORT for both contralesional and ipsilesional hands) and analysis B (Somatosensory impairment
profiles across TDT, WPST, and fTORT for both contralesional and ipsilesional hands inclusive of
handedness and dominant hand affected) (n = 141).

Analysis A

Profile 1 Profile 2 Profile 3 Profile 4

Profile 1 22 1 14 24
Analysis B Profile 2 13 20 10 10

Profile 3 0 16 14 7

4. Discussion

Signature profiles of somatosensory impairment across modalities of touch discrimi-
nation, proprioception, and haptic object recognition were characterized for the contrale-
sional hand and ipsilesional hand of survivors of stroke. Distinct profiles were character-
ized according to somatosensory modality, relative presence/severity of impairment, and
spread/variability of scores. Two-modality (TDT and WPST) and three-modality (TDT,
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WPST, fTORT) analyses, plus the addition of background clinical information, uncovered
distinct profiles for contralesional, ipsilesional, and for combined hands. Three to four
distinct profiles (clusters) were identified in each sub-analysis, with relatively similar fre-
quencies of survivors belonging within a profile i.e., ranging from 25–49% per profile (when
three profiles emerged), and 20–29% (for four emergent profiles).

4.1. Signature Profiles of Somatosensation Post-Stroke

Characterization of somatosensory signatures using unsupervised learning-based
cluster analysis has provided new insights into profiles of clinical impairment of sensation
and residual capacity, after stroke. Clustering according to two somatosensory modali-
ties (touch discrimination and wrist position sense) highlighted a separation in clusters
(profiles) according to presence of impairment in one (usually touch) (Table 3 (a), Profile
2, 49%) or both modalities (Profile 3) for the expected contralesional (typically affected)
hand. This observation is consistent with clinical observation but has not previously been
identified as a distinct somatosensory impairment signature. Somatosensory profiles for the
contralesional hand were also characterized by the relative severity of impairment across
one or other modality, for example, with Profile 1 showing unimpaired to mild impairment
across both modalities. In the current study, both modalities were quantified and had inde-
pendently defined criterion of just noticeable impairment and severe impairment, which
is not usually the case in clinical practice. Impairment was also present in the ipsilesional
hand (typically presumed to be “unaffected”) for touch only or both modalities (40%) across
two profiles (Table 3 (b), Profiles 1 and 3), but was usually relatively mild, as previously
reported [5]. Profiling that included both hands revealed that those with relatively mild
impairment in touch and proprioception for the contralesional hand, usually had little/no
impairment in the ipsilesional hand, as might be expected (Profile 1). Surprisingly there
was a subgroup who had marked contralesional hand impairment in both modalities but
little/no ipsilesional hand impairment (Profile 3). In comparison, Profile 2 was mixed,
with marked touch and mild proprioception impairment in the contralesional hand, and
ipsilesional hand impairment mostly in the touch modality. Thus, the three profiles that
emerged for each analysis revealed distinctive impairment within a modality across hands,
across modalities within a hand, or mixed profiles. The addition of assessments from the
ipsilesional less-affected hand may be useful in further differentiating those who present
with more severe sensory loss.

Somatosensory profiles using the three modalities (touch, limb position sense, and
haptic object recognition) emerged based primarily on severity of impairment for this
sample who were recruited to sensory intervention trials. Profiles for the contralesional
hand were characterized as severe impairment (Profile 1), mild impairment (Profile 2) or
moderate impairment (Profile 3) across all modalities. Those with severe impairment in
one modality tended to be severely impaired in others. Again, relatively mild ipsilesional
hand impairment was evident for three of the four profiles for touch (Profiles 1 and 2),
haptic object recognition (Profile 2) or proprioception (Profile 4). When both hands were
considered, impairment ranged from no to severe impairment for the contralesional hand,
with little or no ipsilesional hand impairment. Although not tested here, the severity-
related profiling across modalities is likely impacted by injury to common neural pathways
known to be part of a distributed network of brain regions that is responsible for processing
somatosensory information [48,49]. Together, identification of these profiles has potential
impact not only in relation to the nature and extent of assessment recommended but also
the relative impact of multi-modality and multi-hand impairment on sensory rehabilitation
training approaches.

A feature of analyses of the three somatosensory modalities for the contralesional hand
was that haptic object recognition impairment, measured with the fTORT, was consistently
a distinguishing feature between profiles. Further, while there was evidence of distinction
in presence and severity of impairment for the two modality analyses, the severity of
impairment was more consistent across modalities for the three modality analyses when
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haptic object recognition was included. Haptic object recognition is dependent on the ability
to integrate both touch and proprioceptive information and relies on cognitive resources
such as working memory and attention to form a percept of the object informed by shape
and texture [50]. Underpinning these functions are common neural pathways [26] that
culminate in shared neural correlates in the parietal operculum (e.g., secondary somatosen-
sory cortex) that are associated with processing all three somatosensory modalities [50–52].
Hence, it is not surprising that we observed that the profiles that exhibited severe impair-
ments in touch and proprioception also had severe impairments in haptic object recognition.
These data suggest that inclusion of measures of haptic object recognition may be useful in
distinguishing subgroups of somatosensory impairment and capacity after stroke.

We also observed how accounting for hand dominance and whether the more affected
hand was the dominant hand changed subgroups of impairment. With the addition of these
two parameters, the four profiles (Table 5 (a)) redistributed into three profiles (Table 5 (b)).
Wide variability in severity was observed within and across modalities for the contralesional
hand profiles, with little/no ipsilesional hand impairment, except of touch, across profiles.
Profile 2, where the dominant (usually right) hand was affected for all participants, showed
the greatest variation in haptic object recognition scores, ranging from relatively mild
to moderate and severe impairment. Those in Profile 2 also showed wide variability in
proprioception for the contralesional hand. In comparison, proprioception was consistently
and most severely affected in the contralesional limb for Profile 3 participants, where
only 8% had the dominant right hand affected (i.e., the left non-dominant hand was
impaired for the vast majority in this subgroup). Our finding of most severe proprioceptive
impairment in those with right hemisphere lesions is consistent with previous evidence that
proprioception function for both arms may be partially lateralized to the right hemisphere,
specifically the right supramarginal gyrus [53]. Others have also identified that lesions to
the supramarginal gyrus, among other regions of interest (arcuate fasciculus and Heschl’s
gyrus), are associated with persistent proprioceptive deficits in the contralesional upper
limb post-stroke, with larger proportions of damage being associated with more severe
deficits [51]. Marked impairment in touch discrimination for the left affected hand in
this group is also consistent with evidence of bilateral activation of the supramarginal
gyrus in response to unilateral tactile stimulation [52]. The Profile 3 subgroup also showed
marked impairment in contralesional hand haptic object recognition, presence of ipilesional
hand touch impairment, and individuals with impairment in the ipsilesional hand for
proprioception and haptic object recognition. Although not tested here, future work
using techniques like lesion–symptom mapping [1,51,54] could be used to investigate the
relationships between these profiles and lesion location.

To our knowledge, our study is the first to investigate how multiple modalities of
somatosensory impairments cluster at an individual subject level with a large enough
sample to identify potential sub-groupings or clusters of impairment, referred to here as
profiles. For example, we have previously reported on the frequency of stroke patients
presenting with discriminative sensory loss of the hand across touch and proprioception
in the post-acute rehabilitation phase, but this was only at the group level [5]. While we
were able to also report on the numbers with impairment in one or both modalities, and
look at the relationship between severity across modalities and hands at a group level,
we have not previously been able to quantitatively characterize individual participant
profiles. Other studies have looked at how measures of somatosensation may differ between
subgroups of stroke survivors. In a study comparing groups of stroke survivors with and
without post-stroke shoulder pain, different proportions of individuals with impaired
touch and proprioceptive impairments are reported; however, it does not identify the
frequency of individuals where both senses were impaired, nor does it report on impairment
severity [55].

In the present study, we have demonstrated that individuals can present with impair-
ments across multiple modalities of somatosensation not only within the same limb, but
also across contralesional and ipsilesional limbs. Individuals who experience patterns of
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impairment across multiple modalities will likely have unique challenges in interacting
with their environment compared to those who are impaired in a single somatosensory
domain and may have different recovery trajectories. Generating profiles has relevance for
investigating the impact of patterns of impairment on function, as different signatures of
impairment could differentially impact arm use, participation, and recovery trajectories.
Now that somatosensory signatures have been identified, it would be of value to investi-
gate the relationship between such profiles and functional outcomes such as arm use and
participation in daily activities.

We also demonstrated that there is value in including assessments of both hands.
Through the addition of ipsilesional hand scores we were able to identify profiles of indi-
viduals that may have more widespread impairment. Indeed, we found a somatosensory
signature where individuals with severe impairment in their contralesional hand often
experienced mild impairment in the tactile discrimination test with their less-affected hand
and sometimes impaired position sense (three modality analysis, Profile 4, Table 5 (a)).
Surprisingly, however, there was also a subgroup in the two modality analysis who did
not show ipsilesional hand impairment despite moderate to severe impairment of touch
and proprioception in the contralesional limb (two modality analysis, Profile 3, Table 3 (c)).
Impairment of the ipsilesional upper limb in addition to the contralesional upper limb
has previously been reported [5,33,56] and is consistent with evidence of tract-specific
changes associated with touch impairment of the ipsilesional hand [32]. Our current
finding suggests the value of further investigation of factors associated with ipsilesional
hand impairment, including interruption to specific brain networks. For now, our findings
support a rationale to assess for deficits in the ipsilesional hand, especially for those who
present with severe impairment in their contralesional affected hand, and consideration of
inclusion of intervention approach that target rehabilitation of both hands.

In summary, characterizing profiles of somatosensory impairment across multiple
modalities for an individual is indicated, given evidence of distinctive patterns in the pres-
ence and severity of impairment across modalities. Further, assessment of the ipsilesional
hand is recommended, especially for those with severe impairment on the contralesional
limb. By examining the clustering solution, researchers can gain insight into the com-
plex relationships between different somatosensory impairments and potentially highlight
modalities that are most impaired and help inform tailoring interventions and treatment
planning to address the specific deficits of subgroups and individuals.

4.2. Advantages and Clinical Utility of Using Unsupervised Machine Learning to Profile
Somatosensory Impairment Patterns

Generating signature profiles of clinical outcomes for an individual brings us one
step closer to personalized medicine or personalized rehabilitation. The application of
data-driven multifactorial analysis in health care, termed “rehabilomics” [57], is emerging
as an area of interest in the field of rehabilitation. Profiling or evaluating patients based on
measures related to demographics, measures of clinical status, and measures of recovery
status can all be used to develop models that have the potential to predict outcome and
personalize health care (for a recent review, see [57]). Our focus was on somatosensa-
tion, which is multi-modal in nature, thus introducing complexity to understanding the
expression of impairment of this function in an individual. We used three standardized
measures of somatosensation, which are sensitive to a range of impairments and variability
in performance, have well-documented psychometric properties, and have clear criteria of
abnormality and extreme impairment [20–22,39,40].

We used Growing Self-Organizing Maps (GSOM) [19] to capture the individuality
of somatosensory capacity across multiple modalities, also taking into account the hand
affected. Generating signature profiles involves multiple variables, which can be com-
plicated to summarize or aggregate. Application of artificial intelligence (AI) and deep
learning to this multi-modal data allowed generation of new insights, as visualized in
our profile graphs and plots. A strength of using unsupervised clustering approaches
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like GSOM, is that it is well suited to managing multidimensional data sets and has the
flexibility to find non-linear relationships in data compared to other statistical analysis
approaches which require assumptions on data distribution [58]. To date, common machine
learning-based approaches that have been applied in stroke rehabilitation are primarily
regression-based methods [57]. Unsupervised learning cluster analysis can be a powerful
tool for clinicians to better understand and profile stroke survivor populations. Cluster
analysis can identify novel associations and patterns among different clinical variables
while reducing the opportunity for subjectivity in interpreting outcomes. The GSOM ap-
proach has the further advantage that it enables unbiased exploration of data patterns and
does not require pre-defined labels in the dataset. It is recognized that the implementation
of machine learning approaches in rehabilitation is still an emerging field; thus, further
work is needed to not only determine what algorithms and parameters are appropriate
for patient profiling and predicting outcome in stroke populations but also to validate the
predictive models on larger samples of new data [57].

4.3. Future Directions

Our current study has mapped distinct profiles of somatosensory impairment across
multiple modalities at a single timepoint. While this provides new insights into how im-
pairments co-occur for different clusters of individuals, it does not provide us with a robust
indicator of recovery over time. Characterizing impairment profiles at an individual level
opens the potential to better characterize sensory recovery trajectories, which is currently
limited. In a small sample of nine acute stroke participants, Winward and colleagues [59]
found that severity of touch and proprioception impairment varied within individuals at a
single timepoint and the recovery trajectory of different modalities varied greatly within
and between individuals. For example, despite starting with the same magnitude of sever-
ity, one participant demonstrated evidence of partial recovery of proprioception, yet no
change in touch detection at one month post-stroke, while another participant who started
with similar severe levels of touch impairment, yet milder proprioception impairments,
showed a marked recovery in their sense of touch [59]. Although a small and variable
sample, these data speak to the importance of indexing not only the presence of impairment
across different somatosensory modalities, but also the magnitude of impairment severity
within each modality, consistent with our somatosensory profiles. The potential now exists
to extend our profile analysis over time, identifying subgroups of individuals with unique
combinations or patterns of impairment severity across modalities and over time.

Future work should map how clusters of impairment may change longitudinally
along key timepoints of the stroke recovery continuum [60] and after intervention. This
would allow us to better understand how somatosensory impairments change as a part of
neurobiological recovery processes, as well as be used to inform clinical predictors of an
individual’s capacity for recovery and/or ability to benefit from therapy. Characterization
of signatures of impairment and recovery would also permit interpretation of an individ-
ual’s recovery relative to such benchmarks. A batch implementation of GSOM may be used
to capture patterns in such trajectory data [61]. With the ability to preserve topological
relationships in data, GSOM is well placed to represent trajectory patterns. In a clinical
setting, this may enable development of automated deviation alerts in the future.

This approach does not need to be restricted to profiling of somatosensory impairment.
A strength of unsupervised clustering techniques is the capacity to explore potentially
meaningful relationships with large multivariate data sets. With respect to stroke recovery,
many large data repositories including national stroke registries have been developed to
facilitate meta-analyses of large pooled samples of data to advance scientific discovery and
stroke care [62,63]. Stroke recovery is complex and involves many interacting systems that
may differentially impact recovery given the relative severity of impairments, together with
presence of different biopsychosocial factors [64,65]. Inclusion of data related to severity of
specific motor impairments and spasticity, could expand meaningful profiles of impairment
across somatosensory and motor domains after stroke. Accounting for specific lesion



Brain Sci. 2023, 13, 1253 21 of 25

location and other indices from neuroimaging data (if available) can also shed light on
the importance of critical anatomy associated with impairments and impairment profiles.
Key demographics and background clinical information can also be included to extend the
current analysis and predictive models. Analysis could be further enriched by introducing
other forms of data such as video and wearable sensors, and using multi-modal fusion to
cluster behavioural patterns [66]. To account for all these variables in a single statistical
model is not feasible [67]. However, application of analyses approaches like GSOM can
serve as a starting point to facilitate discovery of relationships between key parameters
or unseen common latent variables that better describe and predict recovery in a stroke
population. Further, the GSOM algorithm is scalable to capture patterns from large volumes
of sensor data and from larger cohorts and more frequent readings [67].

The somatosensory impairment profiles characterized were based on quantitative
measures of somatosensory discrimination across tactile (TDT) and proprioceptive (WPST)
modalities, and haptic object recognition. As such, the profiles that emerged were linked
to these measures of impairment and to the upper limb. They were also defined in stroke
populations that span subacute to rehabilitation and chronic phases, providing limits to
the generalizability of our findings. Nevertheless, such impairment is common in these
populations [1–5], and characterization of patterns of impairment has significance not only
in relation to better understanding the nature of impairment, but also providing a means by
which specific profiles (phenotypes) might be associated with certain functional outcomes.

4.4. Limitations

Our current study focused on somatosensory variables and creating a sensory signa-
ture with a relatively restricted number of variables. The GSOM methodology is capable
of handling large volumes of data [61], but this feature was not required for the current
analysis. Other factors such as age, presence of motor impairment, time post-stroke, etc.,
could also influence the profiling of impairment. While these variables were available for
most participants, we chose not to include them in the current analysis which was focused
on characterizing somatosensory profiles that can be interpreted meaningfully and simply
in clinical contexts. Given the demonstrated value of the GSOM approach, the potential
now exists to further interrogate the data to discover other profiles that include a wider
range of variables. The study could also be further extended by generating GSOMs of
varying level of spread and detail in clustering by changing the spread factor parameter
between 0 and 1 for each data set to achieve hierarchical clustering. Such further experimen-
tation will provide a more comprehensive understanding of how super clusters (parent,
low spread factor) break up into sub-clusters (high spread factor). We are aware that to
date these methods may not be as readily accessible and interpretable by clinicians and
will likely require support from collaborators for guidance in interpretation. For now, such
analyses are opening the door to new insights and new ways of meaningfully capturing
the complexity of functions such as somatosensation and how they might be differentially
impacted by brain injury such as stroke.

5. Conclusions

To our knowledge this is the first study to apply an unsupervised machine learning
approach to profile somatosensory impairments post-stroke. Signature profiles were cre-
ated using data from touch, proprioception, and/or haptic object recognition modalities;
contralesional and/or ipsilesional hands; and hand dominance. Through the inclusion
of quantitative assessments for both the affected (contralesional) and less-affected (ip-
silesional) hand of stroke survivors, we identified distinct profiles (or “fingerprints”) of
somatosensation that differed with respect to patterns of impairment presence and sever-
ity. A noteworthy finding is that individuals with severe impairment across multiple
modalities in the affected hand can be further divided into two distinct subgroups with
and without impairment in the less-affected (ipsilesional) hand. These two subtypes of
severe impairment may have different challenges with functional tasks which could be an
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important consideration for tailoring rehabilitation therapies. The feasibility and value of
using unsupervised learning-based cluster analysis to profile signatures of somatosensory
impairment after stroke was demonstrated and may inform improved characterization of
both somatosensory impairment and capacity for targeted rehabilitation and recovery.
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