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Abstract: Since the inception of the transcranial magnetic stimulation (TMS) technique, it has become
imperative to numerically compute the distribution of the electric field induced in the brain. Various
models of the coil-brain system have been proposed for this purpose. These models yield a set
of formulations and boundary conditions that can be employed to calculate the induced electric
field. However, the literature on TMS simulation presents several of these formulations, leading to
potential confusion regarding the interpretation and contribution of each source of electric field. The
present study undertakes an extensive compilation of widely utilized formulations, boundary value
problems and numerical solutions employed in TMS fields simulations, analyzing the advantages
and disadvantages associated with each used formulation and numerical method. Additionally, it
explores the implementation strategies employed for their numerical computation. Furthermore, this
work provides numerical expressions that can be utilized for the numerical computation of TMS
fields using the finite difference and finite element methods. Notably, some of these expressions
are deduced within the present study. Finally, an overview of some of the most significant results
obtained from numerical computation of TMS fields is presented. The aim of this work is to serve as
a guide for future research endeavors concerning the numerical simulation of TMS.

Keywords: transcranial magnetic stimulation; review; formulations; boundary value problems;
review of numerical methods

1. Introduction

Transcranial magnetic stimulation (TMS) is a method that modulates brain activity
using an electric field induced in the brain by potent magnetic field pulses [1–4]. This
method is based on the application of magnetic field pulses to the brain cortex using coils,
inducing electric fields oriented along certain paths to stimulate or inhibit brain activity
in these areas. Several works [5–9] have shown that after TMS treatments, patients show
improvement in their conditions, such as depression [5], mania, obsessive–compulsive
disorder, post-traumatic stress disorder and schizophrenia [6–9]. TMS in combination with
EEG methods [10,11] can also be used as a tool too study brain functions. However, the
efficacy of TMS for treatments is highly influenced by factors such as the efficiency [12,13],
focality [14–19] and convenient distribution [15] of the induced electric fields. Furthermore,
these factors are determined by several parameters, such as the quantity, [16,20], arrange-
ment [16,17,20] and geometric parameters of excitation coils [16,18,21,22]; coil distance and
orientation with respect to the brain [20,23,24]; excitation current waveform [25–29]; and
electric properties of the brain tissues [30–34], among others.

Based on the studies of the influence of the aforementioned parameters on TMS, previ-
ous works [35–41] have analyzed the general mechanisms associated with TMS. From these
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works, it can be deduced that to optimize the excitation parameter for each TMS application,
avoiding ethical conflicts, and for a practical and cost-effective estimation of the effect of the
excitation electric field on neuronal activity, it is necessary to use simulation methods. In
particular, Roth and Basser [42] proposed a method for computing the electric field and its
gradient along a nerve induced by a single coil. They modeled the nerve as a passive cable
whose electric potential is influenced by an excitatory electric field gradient. The excitatory
electric field corresponds to the primary electric field [42–44], which depends only on the
magnetic potential vector rate [45,46], without considering the effect of the scalar potential.
This approximation was used in the some of initial TMS simulation works [42–44] and
os still widely used but for coil parameter optimization [21,22]. However, it was later
demonstrated [47–51] that a more precise estimation of the actual electric field induced in
the brain tissues requires consideration of the secondary electric field equal to the negative
gradient of the scalar potential. The scalar potential results from the electric charges formed
at the tissue interfaces [47–51]. From this point, most of the works dedicated to the com-
putation of the induced electric field [38,52–57] have proposed increasingly more realistic
models for the coils, brain geometry and tissue properties and different formulations based
on quasistatic approximation of the Maxwell equations [45,46]. In particular, quasistatic
approximations have varied from magnetic quasi-static Laplace to magnetic quasistatic
Poisson formulations, and with improvement of finite-element software, it was possible
to include most of the source and potential contributions. However, the simultaneous
use of complex coils, realistic brain geometry and complex formulations does not come
for free, and even with the use of advanced software, the computational time increases
substantially. This fact has brought forward questions such as: how much detail of the
coil geometry is necessary to estimate the actual electric field induced by the real coil [58]?
The development of new numerical methods such as neural networks [59] has also been
motivated in order to increase the computation speed of TMS fields. Nevertheless, the most
common approach has been the use of specific formulations of quasistatic approximation
of Maxwell equations depending on the TMS applications, which is likely to remain the
dominant approach for future TMS numerical computation, which, due to the microscopic
size of neurons and nerves, requires increasing resolution and precision. Therefore, it is
necessary to know the limitations and advantages of different formulations, as well as the
different available numerical methods for their solutions.

2. Scope and Contributions

The TMS formulations analyzed in the present work correspond to the Maxwell equa-
tion potential representations and their quasistatic approximations, which are solved using
numerical methods [1–9,14–57,60–98]. Other methods such as the impedance method [99]
and neural network methods [59] are not considered in this review. The methods that
start from Maxwell equations but derive non-differential equation representations such as
dipole-based methods [100] are also not considered in the present analysis.

The objective of this study is to serve as a comprehensive guide for the numerical
computation of TMS fields by reviewing previous works in this field. To achieve this, a
series of deductions leading to various quasistatic approximations for the computation of
TMS fields are presented, followed by a review of works that have utilized these approxi-
mations. Furthermore, the numerical solutions using finite difference and finite element
methods are discussed in detail, drawing upon existing methods proposed in the literature.
Additionally, this study deduces methods not found in the consulted literature, such as
finite difference for quasistatic magnetic A-φ and Darwin models and finite element for
quasistatic magnetic A-φ and Darwin models using the Galerkin method, as well as their
implementation of boundary conditions applied to TMS fields.

The papers included in this review pertaining to field simulations in TMS were sys-
tematically chosen in a chronological manner, with emphasis placed on commencing with
highly impactful publications based on their citation count. Additionally, works that cited
these influential papers while introducing novel variants of formulations and numerical



Brain Sci. 2023, 13, 1142 3 of 31

methods were also considered. It is essential to acknowledge that not all the works encom-
passing TMS field simulations propose new formulations or numerical methods. In fact, a
significant portion of the TMS field simulation literature references the original works that
introduced these methods, with their contributions primarily concentrated in the domain
of applications. Every effort was made to incorporate as many of these application-oriented
works as feasible.

3. Field Theory of TMS
3.1. Maxwell Equations and Their Representation Using Vector and Scalar Potentials

To reduce the computational time and facilitate the numerical computation of TMS
fields, some quasistatic approximations of the Maxwell equations [45,46] or, more specif-
ically, their vector and scalar representation have been proposed [42–44,47–51]. Each of
the formulations described below, some of which were used in previous TMS works, is
derived from the potential representation of Maxwell equations. The classical forms of
Maxwell equations are the Maxwell–Faraday, Maxwell–Ampere, Maxwell–Thompson and
Maxwell–Gauss equations, expressed, in that order, as follows:

~∇× ~E = −∂~B
∂t

(1a)

~∇× ~H = ~Js +~Jind +
∂~D
∂t

(1b)

~∇ · ~B = 0 (1c)
~∇ · ~D = ρ (1d)

The constitutive equations should also be considered:

~D = ε~E = εoεr~E (2a)
~B = µ~H = µoµr ~H, (2b)

as well as Ohm’s law
~J = σ~E (3)

which establish the relation between the current density and the electric field. The Maxwell
equations could be expressed using vector and scalar potentials [45,46]. Since the diver-
gence of the curl of a vector is always zero, ~∇ ·

(
~∇× ~A

)
= 0. Then, B, the divergence of

which is zero according to the Maxwell–Thompson equation (~∇ · ~B = 0), could be replaced
by the curl of an arbitrary vector such that:

~B = ~∇× ~A (4)

where ~A is the vector magnetic potential. Substituting this expression into the Maxwell–
Faraday’s Equation (1a) and considering the distributive and commutative properties of
the curl and the partial derivative, the following expression is obtained:

~∇×
(
~E +

∂~A
∂t

)
= 0 (5)

According to Jackson [45], ~∇×
(
−~∇φ

)
= 0 for any scalar function as it is, for example,

for the electric scalar potential (φ). Then, the term inside the curl can be expressed as ~E+ ∂~A
∂t =

−~∇φ and resolving with respect to ~E:

~E = −∂~A
∂t
− ~∇φ (6)



Brain Sci. 2023, 13, 1142 4 of 31

Substituting Equations (3) and (6) and the constitutive Equation (2) into the Maxwell–
Ampere Equation (1b) results in:

~∇×
(

1
µ
~∇× ~A

)
+ σ

(
∂A
∂t

+∇φ

)
+

∂

∂t

(
ε

(
∂A
∂t

+∇φ

))
= ~Js (7)

Applying the divergence operator to this equation and taking into account the afore-
mentioned identity, i.e., that the divergence of the curl of a vector is always zero, gives:

~∇ ·
(

σ

(
∂~A
∂t

+ ~∇φ

))
+ ~∇ · ∂

∂t

(
ε

(
∂~A
∂t

+ ~∇φ

))
= ~∇ · Js (8)

where~Js is the external current density.
Using Equations (7) and (8), the full Maxwell equations are represented using vector

and scalar potentials. However, the computational cost required to solve this set of differ-
ential equations could be significantly high depending on the geometry of the domains and
their electric and magnetic properties. These equations could be simplified by making some
considerations valid for TMS excitation characteristics and electric and magnetic properties
of brain tissue. The formulations corresponding to this approximations are referred to in
the literature as quasistatic approximations. The most well-known quasistatic approxi-
mations are [45,60,61] electro-quasistatic (EQS) approximation, which enables modeling
of the potentials under the influence of conduction and displacement currents, including
capacitive-resistive effects, but neglects the inductive phenomena; magnetic quasistatic
(MQS) approximation, which neglects displacement current and capacitive effects and
considers inductive phenomena; and the Darwin model, which comprises short-off electro-
magnetic quasistatic approximation and allows for the inclusion of inductive phenomena,
as well as capacitive effects.

3.2. Poisson MQS φ-Formulation

The principle of TMS stimulation is that an electric field is induced in the brain by a
time-varying magnetic field. The magnetic field is produced by a coil (or coils) fed by cur-
rent peaks. Therefore, it is impossible to neglect inductive phenomena. Consequently, the
behavior of potential can be computed using MQS. In MQS, the most restrictive formulation
is the MQS-φ formulation, which is based on three approximations:

1. The wavelength of the excitation field is significantly higher than the size of the
head. For TMS pulses with a duration of τ ≥ 0.1 ms corresponding to a frequency of
f ≤ 10 kHz, the corresponding wavelength is λ ≥ 300 m, which is much higher than
the head dimensions;

2. Diminishment of the capacitive effects in the brain tissue: Resulting from continuity
conditions of electric currents in the interface between materials with different electric
conductivities [45], the electric charges accumulate in this area, which could provoke
capacitive effects. However, under this quasistatic approximation, induced charges
are considered to move freely inside the brain, not allowing for static accumulation of
charges that could generate capacitive effects. Furthermore, polarization effects are
not considered;

3. Neglecting the skin-effect: A time-varying magnetic field induces electric currents
that oppose the magnetic field. The amplitude of the induced current is propor-
tional to the electric conductivity. Consequently, when a magnetic field enters a
medium with an electric conductivity other than zero, it decays as it penetrates in
the medium. However, the electric conductivity of brain tissue is low (σwhitematter =
0.15 S/m), and together with the paramagnetic magnetic properties of these tissues,
δ = 1/

√
π f µσ ≈ 5 m [62], which confirms this approximation.
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To apply these approximations to Equations (7) and (8), it is important to explain the
cause–effect relations in these equations. According to Equation (6), Ohm’s Law and the
constitutive equation for the electric flux density, Equation (7) can be expressed as:

~∇×
(

1
µ
~∇× ~A

)
= ~Js +~Jind +~Jdisp (9)

where Jind = σ~E = −σ
(

∂A
∂t +∇φ

)
are the induced conductive currents or eddy currents,

and Jdisp = ∂~D
∂t = ∂

∂t

(
ε~E
)

= − ∂
∂

(
ε
(

∂A
∂t +∇φ

))
are the displacement currents. This

expression shows that the magnetic field is induced by an external current whose value
decreases due to the induced currents. The induced currents can be computed according to
Equation (8) , which can be rewritten as:

~∇ ·~Jind + ~∇ ·~Jdisp = −~∇ ·~Js (10)

The simplification of the MQS φ-formulation implies neglect of the effects of eddy cur-
rents on the magnetic field (no skin effect) and of the displacement currents (no capacitive
effects). Consequently, this approximation implies removing Jind and Jdis from Equation (9).
This approximation does not mean that the induced current is zero but that Jind << Js.
Furthermore, all the materials involved in the phenomenon are paramagnetic (µr = 1).
Therefore, Equation (9) becomes:

~∇×
(
~∇× ~A

)
= µ0~Js (11)

Since the vector magnetic potential is not unique, a restriction such as the Coulomb
gauge (∇ · ~A = 0) could be used [45], which, together with the identity ~∇× ~∇× ~A =

~∇
(
~∇ · ~A

)
−∇2 ~A, modifies Equation (9) as follows:

∇2 ~A = −µ0~Js (12)

On the other hand, in the domain of the brain, neglecting the displacement current,
Jdis = 0, and since there is no external current,~Js = 0, and Equation (10) becomes:

~∇ ·~Jind = 0 (13)

or

~∇ ·
(

σ

(
∂~A
∂t

+ ~∇φ

))
= 0 (14)

which could also be expressed as:

~∇ ·
(

σ~∇φ
)
= −~∇ ·

(
σ

∂~A
∂t

)
(15)

Expressions (12) and (15) could be used to obtain ~A(r, t) and φ(r, t), which allow for
computation of the TMS-induced electric field (~E) using Equation (6). For this purpose, the
electric field is divided in two components: ~E = ~Ep + ~Es, where:

Ep = −∂~A
∂t

(16)

is called the primary electric field and

Es = −∇φ (17)
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is the secondary electric field.
This formulation can be called the Poisson MQS φ-formulation, since both expressions

are Poisson equations. This is also a φ formulation because ~A and φ are only partially
coupled. The scalar electric potential (φ) is produced by electric charges induced by the
time variation of the vector magnetic potential (~A), but the influence of the electric field on
the magnetic potential is neglected. This approximation has the advantage that it could be
easily solved using numerical methods with low computational resources. However, it is
necessary to consider the aforementioned limitations of the model.

3.3. Laplace MQS φ Formulation

A further simplification of the Poisson MQS formulation consists of considering that
the electric charges responsible for the secondary electric field are formed only at the
brain-to-air interface. The principle of TMS stimulation is that an electric field is induced
in the brain by a time-varying magnetic field. The magnetic field is produced by a coil
(or coils) fed by current peaks. The accumulation of charges at the brain-to-air interface
could be explained by considering the following principles: The primary electric field (Ep)
is computed as if the medium were isotropic and uniform. Therefore, Ep is continuous
across all interfaces.

~E1
p ·~n = ~E2

p ·~n = ~Ep ·~n (18)

According Ohm’s Law, ~Jp
i = σi ~Ep, and considering that electric conductivities of the

interfacing areas are different, (σ1 6= σ2), at the interfaces:

σ1 ~Ep ·~n 6= σ2 ~Ep ·~n (19)

Therefore,
~J1

p ·~n 6= ~J2
p ·~n (20)

In the quasistatic limit, the normal component of total current crossing an interface
between tissues is continuous, and it is given by the continuity law [45]:

~J1 ·~n = ~J2 ·~n (21)

which seems to contradict (20). However, this law is satisfied by the formation of electric
charges, which generate a secondary electric field (~Es) and the corresponding current
(~Ji

s = σi
~Ei

s). In this case, Equation (21) can be expressed as:(
~J1

p +
~J1
s

)
·~n =

(
~J2

p +
~J2
s

)
·~n (22)

or
σ1

(
~Ep + ~E1

s

)
·~n = σ2

(
~Ep + ~E2

s

)
·~n (23)

The fact that the secondary fields in the media of the interface are different compensates
for the total electric field in such a way that the continuity condition holds. In the case of
the brain-to-air interface, σair = σ2 = 0. Then, Equation (23) reduces to:

σ1

(
~Ep + ~E1

s

)
·~n = 0 (24)

or (
σ1~∇φ

)
·~n +

(
σ1

∂~A
∂t

)
·~n = 0 (25)

Since the charges and the corresponding electric currents are restricted to the brain
boundary, which corresponds to the case when the brain model is made of a uniform tissue,
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then σ is considered to be uniform and isotropic inside the brain, and Equation (15) for the
brain domain becomes:

~∇2φ = 0 (26)

This Laplace equation can be used to compute the electric potential inside the brain
domain. To obtain a unique and non-trivial solution from this equation, the Neumann
boundary condition expressed by Equation (25) should be used. After obtaining φ from
Equation (26) with the boundary condition (25) and ~A from Equation (12), the electric field
is computed using Equation (6).

3.4. MQS A-φ Formulation

If only capacitive effects are neglected (~Jdis = 0) using the general transformations and
considerations described in Section 3.2, Equations (7) and (8) can be expressed as:

σ

(
∂~A
∂t

+∇φ

)
+

1
µ0

~∇× ~∇× ~A = ~Js (27a)

~∇ ·
(

σ~∇φ
)
+ ~∇ ·

(
σ

∂~A
∂t

)
= 0 (27b)

or using the Coulomb gauge:

σ

(
∂~A
∂t

+∇φ

)
− 1

µ0
∇2 ~A = ~Js (28a)

~∇ ·
(

σ~∇φ
)
+ ~∇ ·

(
σ

∂~A
∂t

)
= 0 (28b)

which is the transient representation of the MQS A-φ formulation. In this case, ~A and φ
are coupled, and the effects of the conductively induced currents on ~A are considered.
However, due to the complexity of numerical computation of the time-dependent functions
(~A(r, t) and φ(r, t)), it is more usual to use the harmonic expressions of Equations (28a)
and (28b):

jωσ~A + σ~∇φ +
1

µ0
~∇× ~∇× ~A = ~Js (29a)

jω~∇ ·
(

σ~A
)
+ ~∇ ·

(
σ~∇φ

)
= 0 (29b)

The harmonic formulation can be used considering that the stimulation current
presents a constant frequency (ω). This approximation should be used carefully, since
the stimulation peak patterns are far from having a harmonic waveform. It seems unneces-
sary and a waste of computational resources to consider the induction currents for TMS.
However, this approach could be useful for optimizing the effect of electric conductivity
and geometry of the coil on the TMS. . It could also be used for analyzing TMS in subjects
with non-normative brains, such as those with brain implants.
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3.5. TMS Full Maxwell Equation Formulation and the Darwin Model

The numerical computation of the electric field can be performed without any qua-
sistatic approximation using Equations (7) and (8), but again, the complexity of the numeri-
cal computation of these equations is substantial. Therefore, the harmonic formulation of
these equations is more commonly used:(

jωσ−ω2εoεr

)
~A + (σ + jωεoεr)~∇φ +

1
µ0

~∇× ~∇× ~A = ~Js (30a)

~∇ ·
((

jωσ−ω2εoεr

)
~A
)
+ ~∇ ·

(
(σ + jωεoεr)~∇φ

)
= ∇ · ~Js (30b)

Nevertheless, apart from the harmonic stimulus limitation, this formulation still
presents high computation complexity. An alternative that could be used for transient
process computation is the Darwin model [61]. The Darwin model is not a full Maxwell
equation formulation but allows for consideration of almost all the coupled effects, except
for wave propagation. Since the domain scale in TMS is significantly smaller than the
wavelength of the excitation magnetic field, simulation of wave propagation is completely
unnecessary. The Darwin model is based on Helmholtz decomposition [45], in which the
electric field is decomposed into an irrotational component and a solenoid component:
~E = ~Eirr + ~Esol , where ~∇× ~Eirr = 0 and ~∇ · ~Esol = 0. After replacing the electric field in
the Maxwell equations with these approximations, neglecting the radiation effects and
replacing the expression of the potentials yields:

~∇×
(

1
µ
~∇× ~A

)
+ σ

(
∂A
∂t

+ ~∇φ

)
+

∂

∂t

(
ε~∇φ

)
= ~Js (31a)

~∇ ·
(

σ

(
∂~A
∂t

+ ~∇φ

))
+ ~∇ · ∂

∂t

(
ε~∇φ

)
= ∇ ·~Js (31b)

This formulation takes into account all the effects relevant for TMS included in the
full Maxwell equation formulation, and it is less computationally complex than integrating
the full Maxwell equations. Moreover, in this case, it seems excessive to include capacitive
effects for TMS simulations, but it could be useful to optimize the stimulation devices
and for analysis of TMS in subjects with non-normative brains, such as those with brain
implants.

3.6. Boundary Value Problems of TMS

Figure 1 shows the domain and boundary representation of a generic TMS setup. The
meaning of the domains, their boundaries, and electric and magnetic properties are shown
in Table 1.

The coil is a special domain, as the source of external current, the electric conductivity
of which depends on the type of quasistatic formulation. In this case, it is not the boundary
that is relevant but the integration path used to compute the magnetic potential vector, as
shown latter.
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Figure 1. Domains and domain boundaries for TMS boundary value problems.

Table 1. Domains, their boundaries, and electric and magnetic properties.

Domain Boundary Applicable Properties Description

Ω Γ σ 6= 0, εr 6= 1, µr = 1
System domain that includes all other domains:
Ω = Ωa ∪ Ωc ∪ Ωb. Its boundary is limited by
the air exterior boundary: Γ ∩ Γa = Γ

Ωa Γa σ = 0, εr = 1, µr = 1 Air

Ωc Σc (integration path) σ = {0, σcupper}, εr = 1, µr = 1 Coil

Ωb Γb σ 6= 0, εr 6= 1, µr = 1
The brain, composed of several brain tissues
(Ωb =

⋃n
i=0 Ωi

b); its boundary is limited by the air
(Γa ∩ Γb = Γb )

Ωi
b Γi

b σ 6= 0, εr 6= 1, µr = 1
Brain tissues. Some of these domains are considered to,
partially share boundaries (Γi

b ∩
⋃n

j=0 Γj
b 6= O, ∀i 6= j)

Based on these assumptions related to the domains, the boundary value problems(BVP)
can be expressed as follows:
The Laplace MQS-φ BVP:

~∇2 ~A = −µ0~Js on Ω (32a)
~∇2φ = 0 on Ωb (32b)
~∇× ~A · n = 0 on Γ (32c)

~∇φ · n = −∂~A
∂t
· n on Γb (32d)
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The Poisson MQS-φ BVP:

~∇2 ~A = −µ0~Js on Ω (33a)

~∇ ·
(

σ~∇φ
)
= −~∇ ·

(
σ

∂~A
∂t

)
on Ωb (33b)

~∇× ~A · n = 0 on Γ (33c)
~∇φ · n = 0 on Γ (33d)

The MQS A-φ BVP:

σ

(
∂~A
∂t

+∇φ

)
− 1

µ0
∇2 ~A = ~Js on Ω (34a)

~∇ ·
(

σ~∇φ
)
= −~∇ ·

(
σ

∂~A
∂t

)
on Ωb (34b)

~∇× ~A · n = 0 on Γ (34c)
~∇φ · n = 0 on Γ (34d)

The Darwin model BVP:

~∇×
(

1
µ
~∇× ~A

)
+ σ

(
∂A
∂t

+ ~∇φ

)
+

∂

∂t

(
ε~∇φ

)
= ~Js on Ω (35a)

~∇ ·
(

σ

(
∂~A
∂t

+ ~∇φ

))
+ ~∇ · ∂

∂t

(
ε~∇φ

)
= ∇ ·~Js on Ω (35b)

~∇× ~A · n = 0 on Γ (35c)
~∇φ · n = 0 on Γ (35d)

Several works have used the MQS φ formulation. Table 2 lists some of these works
and their models:

Table 2. Studies of TMS numerical simulation-based MQS-φ boundary value problems.

BVP Model Publications

MQS only Ep

Several coils and coil configurations in an air
box [21,50]

A coil over a passive cable [42]

Figure-8 coil over a tissue planar interface [44]

A quasispherical volume conductor and a paired
coil [71]

A neurocortical neuron model and a coil [77]

Ep + skin effect A coil over an non-homogeneous volume con-
ductor [54]

Laplace MQS-φ

A coil over a cylindrical volume conductor [43]

Three types coils over a spherical volume con-
ductor [48]

An arbitrarily shaped coil over a half-plane con-
ductor [49]

A circular coil over a spherical conductor [72,88,97]

A coil over a half-plane tissue [84]
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Table 2. Cont.

BVP Model Publications

Poisson MQS-φ

Figure-8 coil over a realistic brain model [22,56,58,75,79–
82,85,87,90–92,94]

A circular coil over a parallelepiped volume con-
ductor [47,51,95]

A coil over an approximate brain model [52,93]

Figure-8 coil over several brain models [73]

Figure-8 coil over a high-resolution brain model [74,86]

Uniform and realistic E-fields and a realistic
brain model [78]

MQS A-φ

An 8-shaped coil over a cortical sulcus [39,98]

A circular coil over a realist head model [53]

A custom coil over three concentric spheres [76]

Figure-8 coil over an approximate head model [83]

MQS full Maxwell equa-
tions Figure-8 coil over a brain approximate model [62]

4. Solutions of TMS Field BVPs
4.1. Solution of MQS-φ BVP

Various methods have been proposed to address the MQS-φ formulation. In the case
of the Laplace MQS-φ formulation, one of the most common solution is, first, to compute
the primary field, Ep = − ∂~A

∂t , where ~A is obtained by integrating the Poisson Equation (32a)
over the volume of the coil (Ωcoil), which gives:

~A(ro, t) =
µo

4π

∫
Ωcoil

~Js(r, t)
|r− ro|

dV (36)

where~Js(r, t) is the current density. This equation is easy to solve numerically. For example,
in the case of a circular coil with uniform current density (Js(t)), a constant cross-section
area (S) and a current path in a plane perpendicular to the z axis in the domain (Ω), each
component of the magnetic potential vector at the position of r = ro, ~A(ro, t) could be
computed as as:

~A(ro, t) =
µoSJs(t)

4π

∮
Σcoil

1
|r− ro|

d~l (37)

where Σcoil is the path. Equation (37) can be numerically computed as follows:

Ax(ro, t) =
µoSJs(t)

4π

N−1

∑
i=0

∆xi√
(xi − xo)2 + (yi − yo)2 + (zi − zo)2

(38a)

Ay(ro, t) =
µoSJs(t)

4π

N−1

∑
i=0

∆yi√
(xi − xo)2 + (yi − yo)2 + (zi − zo)2

(38b)

Az(ro, t) = 0, ∀ro ε Ω (38c)

∀~r = (xi, yi, zi) ε Ω, r 6= ro

where

xi = Xm + R cos(ψi) (39a)

yi = Ym + R sin(ψi) (39b)
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and
∆xi = xi+1 − xi, ∆yi = yi+1 − yi (40)

where S, Xm and Ym are the coil cross-sectional area, the coil center position on the x
axis and the coil center position on the y axis, respectively. It is possible to set up different
types of excitation coils by adding coils with different parameters, positions and sizes .

Once the primary field is obtained, the secondary field can be computed using the
following equation: Es = −∇φ, where φ is obtained after solving the Laplace Equation (32b)
and the boundary condition (32d).

In the case of the Poisson MQS-φ formulation, ~A is computed using the same procedure
as in the Laplace formulation, but φ is computed by solving the Poisson Equation (33b)
with boundary conditions (33c) and (33d). This equation can be solved using numerical,
analytical or semianalytical methods depending on the complexity of the brain model.
Two of the most commonly used numerical methods are the finite difference method
(FDM) [63–67] and the finite element method (FEM) [64,68–70].

Equation (33b) for the scalar potential can be expressed as:

~∇ · (σ∇φ) = ~∇σ · ~∇φ + σ · ∇2φ = ~∇ ·~Jind (41)

where ~Jind = σ~E = −σ ∂~A
∂t is the conductively induced current.The FDM to solve this

Poisson equation can be implemented using the interactive method:

φi,j,k =
1
α
[
σi− 1

2 ,j,kφi−1,j,k + σi+ 1
2 ,j,kφi+1,j,k

∆x2 +
σi,j− 1

2 ,kφi,j−1,k + σi,j+ 1
2 ,kφi,j+1,k

∆y2 +

σi,j,k− 1
2
φi,j,k−1 + σi,j,k+ 1

2
φi,j,k+1]

∆z2 +

1
2α


(

Jx
i+1,j,k − Jx

i−1,j,k

)
∆x

+

(
Jy
i,j+1,k − Jy

i,j−1,k

)
∆y

+

(
Jz
i,j,k+1 − Jz

i,j,k−1

)
∆z


(42)

where α =

[
σ

i− 1
2 ,j,k

+σ
i+ 1

2 ,j,k

∆x2 +
σ

i,j− 1
2 ,k

+σ
i,j+ 1

2 ,k

∆y2 +
σ

i,j,k− 1
2
+σ

i,j,k+ 1
2

∆z2

]
and Jx

i,j,k = σi,j,kEx
i,j,k,

Jy
i,j,k = σi,j,kEy

i,j,k, Jz
i,j,k = σi,j,kEz

i,j,k are the currents densities due to the primary electric

field (Ep = (Ex
p, Ey

p, Ez
p)), and ∆x, ∆y and ∆z are the grid intervals. This method is valid for

σ 6= 0.
It is clear that in the case of the Laplace MQS-V formulation, the same approach as

before could be used, except that~Jind = 0,

φi,j,k =
1
6

(
φi−1,j,k + φi+1,j,k + φi,j−1,k + φi,j+1,k + φi,j,k−1 + φi,j,k+1

)
(43)

This expression should be solved using the boundary conditions (32d), which can be
expressed as:

∂φ

∂x
nx +

∂φ

∂y
ny +

∂φ

∂z
nz = Ep

x nx + Ep
y ny + Ep

x nz (44)

which is solved using the finite difference as: φi,j,k = 1
nx
∆x +

ny
∆y +

nz
∆z

(
Ep

x +
φi−1,j,k

∆x

)
nx+(

Ep
y +

φi,j−1,k
∆y

)
ny +

(
Ep

z +
φi,j,k−1

∆z

)
nz

It is also important to note that the above numerical solution corresponds to an
Euclidean coordinate system, and consequently, the brain should be circumscribed inside
an air cube, and the boundary conditions in this case correspond to an interior boundary.
From a computational coding perspective, the FDM is straightforward. However, the
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precision and the computation time required by this method depend on the complexity of
the geometry.

4.1.1. Solutions Using FEM

The FEM usually requires much less computational time than the FDM but can be
more tricky to implement. The Poisson MQS-φ BVP can be solved with FEM using different
approaches: the direct minimization of energy functional and the weighted residuals or the
Galerkin method . For example, Weiping Wang and Solomon R. Eisenber [95] considered
the following energy functional:

W(φ) =
∫ (

~J · ~E
)

dV, (45)

which represents the energy dissipated in the conduction media during the induction
process. Using the expressions of the induced current and electric fields, the resultant
equation is:

W(φ) =
∫

σ

(
~∇φ +

∂~A
∂t

)
·
(
~∇φ +

∂~A
∂t

)
dV (46)

The objective is to find the potentials (φ and ~A) that minimize the energy functional,
i.e., W(φ). The potentials at any coordinate (x, y, z) inside the domain can be obtained from
the potential at the nodes of the finite elements (usually tetrahedral elements), in which the
domain is divided using interpolation functions:

Φe(x, y, z) =
nn

∑
i=1

φe
i Ni(x, y, z) (47a)

~Ae(x, y, z) =
nn

∑
i=1

~Ae
i Ni(x, y, z) (47b)

where nn is the number of nodes of the finite elements, nn = 4 represents tetrahedral
elements, Ni(x, y, z) are the interpolation functions and φe

i , ~Ae
i = (Ax)e

i
~i + (Ay)e

i
~j + (Az)e

i
~k

are the electric scalar potential and the spacial part of the magnetic vector potential, re-
spectively, corresponding to node i in element e. In this case, variable separation for the
magnetic potential vector (~A(x, y, z, t) = ~A(x, y, z) · f (t)) is assumed . The interpolation
functions are usually linear functions of the form Ni(x1, x2, . . . , xnn) = ∑nn

j=1 aj
i xj + d. For

example, in the case of tetrahedral elements (Ni(x, y, z) = aix + biy + ciz + d), the coeffi-
cients are obtained by solving a linear equations system, considering that Ni(x, y, z) = 1
for x = xi, y = yi, z = zi and Ni(x, y, z) = 0 for x = xj, y = yj, z = zj, where xi, yi, zi are the
coordinates of node i, and xj, yj, zj are the coordinates of the other nodes of the element.

The integral corresponding to total dissipated power for each element given by Equa-
tion (46) is divided in two parts: a voltage-dependent power and a constant term:

We(Φe) = We
N(Φ

e) + We
const (48)

Considering that ∂~A
∂t = ḟ ~A(x, y, z), ḟ = ∂ f (t)

∂t .

We
N(Φ

e) =
∫ (

σ(∇Φe)2 + 2σ ḟ ~A · ~∇Φe
)

dV (49)

We
const(Φ

e) = ( ḟ )2
∫

σ(~A)2dV (50)

The constant term does not influence the minimum value of the functional and is
therefore removed. The potential dependent term after replacing Equations (47a) and (47b)
gives:

We
N(Φ

e) = (Φe)TPeΦe + (Φe)TQe (51)
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where Φe = (φe
1, φe

2, φe
3, φe

4, . . . , φe
nn)

T is the vector of scalar potentials corresponding to the
nodes of the element (e), Pe is a square matrix and Qe is a column vector given by:

Pe
ij =

∫
σ∇Ni · ∇NjdV (52)

and

Qe
i = 2 ḟ

nn

∑
j=1

∫
σ∇Ni · ~AjNjdV (53)

These integrals are very easy to compute, since the interpolation functions are linear
functions. For example, in the case of tetrahedral elements, the integrated expressions are:

Pe
ij = Ve

(
Λx

i aj + Λy
i bj + Λz

i cj

)
(54)

and

Qe
i =

2 ḟ Ve

2

4

∑
j=1

(
Λx

i Ax
j + Λy

i Ay
j + Λz

i Az
j

)
(55)

where Ve is the volume of the element, and Λk
i = σkxai + σkybi + σkzci, k = x, y, z. Equa-

tion (51) corresponds to the power dissipated in one element. The total power is obtained
as the sum of the power of all elements:

WN(Φ) = ∑
e

We
N(Φ

e) (56)

Nevertheless, it is worth noting that to obtain this sum, the dimensions of the vec-
tors (Φe and Qe) and the matrix (Pe) should be increased such that dim(Φe) = nn × Ne,
dim(Qe) = nn × Ne and dim(Pe) = (nn × Ne)2, filling the rest of the components with zero
and shifting the position of the vector or matrix according to the element index (e) and the
number of nodes nn. For example, the new vector (Φe) should look like:

Φe =

(e−1)×nn︷ ︸︸ ︷
0, . . . , 0 , φe

1, φe
2, φe

3, φe
4, . . . , φe

nn , 0, . . . , 0


T

(57)

Similarly to the vector (Qe), the matrix (Pe) should look like:

Pe =



(e− 1)× nn + 1︷ ︸︸ ︷
0 . . . 0 · · · 0 0
...

...
...

...

0 · · · Pe
11 · · · Pe

14 · · · 0
...

...
...

...
0 · · · Pe

41 · · · Pe
44 · · · 0

...
...

...
...

0 · · · 0



(e− 1)× nn + 1

(58)

In the new space, which is called disjoint space, Equation (56) can be written as:

Wdis(Φdis) = ΦT
disPdisΦdis + ΦT

disQdis (59)

The potentials in the disjointed space are represented by variables refereed to each
element, which gives a large number of variables. The number of variables can be reduced
significantly by considering that neighbor elements share nodes, and therefore, it is possible
to use the same variable for the potential of the nodes shared by different elements. In
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other words, the variables can be renamed using a common global notation for all the
nodes inside the domain. This process is called assembly and can be performed using a
connectivity matrix (C) such that:

Φdis = CΦasem (60)

Substituting this equation into Equation (69) gives:

Wasem(Φasem) = ΦT
asemPΦasem + ΦT

asemQ (61)

where P = CPdisCT and Q = CQdis.
The linear equation system used to obtain the potentials at each node (Φi) is formed

by finding the minimum of the energy with respect to each node potential:

∂W(Φ)

∂Φi
= 0 (62)

which results in the following linear equation system:

2PΦ + Q = 0 (63)

Furthermore, to obtain a unique solution, it is necessary to impose an additional
condition, which is usually achieved nu setting the potential of the Nth node to zero
(ΦN = 0). Thus, the equation system is updated by removing the Nth row and column of
matrix P and the last element of Q, resulting in a matrix (P′ (dim(P′) = (N− 1)× (N− 1)))
and a vector (Q′ (dim(Q′) = 1× (N − 1))). The solution for the equations system is:

Φ = −1
2

P′−1Q′ (64)

After computing the scalar potential, it is possible to obtain the electric field using
Equation (6).

4.1.2. Weighted Residual Galerkin Method

The Weighted residual Galerkin method [68,69] is one of the most widely used FEMs.
In this case, the starting point is Equation (32), which considers the domain of a single
element (Ωe), and the weak formulation [68,69] and the residual for the element (e) can be
written as :

re = ~∇ ·
(

σ~∇φ
)
+ ~∇ ·

(
σ

∂~A
∂t

)
(65)

If the numerical solution were exact, the residual would be zero. However, since
the numerical solutions are not ideal, it is necessary to find a solution that minimizes the
residual or, in the case of this method, the weighted residual. The procedure involves
multiplying the residual by a weight (w), integrating this product over the volume of the
element and setting the integral to zero.

∫
Ωe

w re dV =
∫

Ωe
w

(
~∇ ·
(

σ~∇φ
)
+ ~∇ ·

(
σ

∂~A
∂t

))
dV = 0 (66)

using the identity ~∇ ·
(

w~A
)
= w~∇ · ~A + ~A · (~∇w), which implies that:

w~∇ · ~A = ~∇ ·
(

w~A
)
− ~A · (~∇w) (67)
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Using this identity, Equation (67) can be modified as:

∫
Ωe

~∇ ·
(

wσ~∇φ
)

dV −
∫

Ωe

(
σ~∇φ

)
· ~∇w dV +

∫
Ωe

w~∇ ·
(

σ
∂~A
∂t

)
dV = 0 (68)

Applying the divergence theorem [45] (
∫

Ωe

(
∇ · ~F

)
dV =

∮
Γe

(
~F · n

)
dS) to the first

term of Equation (68) and rearranging the equation yields:

−
∫

Ωe

(
σ~∇φ

)
· ~∇w dV +

∫
Ωe

w~∇ ·
(

σ
∂~A
∂t

)
dV +

∮
Γe

w
(

σ~∇φ
)
· ndS = 0 (69)

The three components of this equation are the potential-dependent term, the source
term and the boundary condition term, in that order. The source term can be modified by
considering the induced current density (~J = −~σ · ∂~A

∂t ):

−
∫

Ωe

(
σ~∇φ

)
· ~∇w dV −

∫
Ωe

w~∇ ·~JdV +
∮

Γe
w
(

σ~∇φ
)
· ndS = 0 (70)

According to the Garlerkin formulation [68], the weight function (w) should be set
equal to the interpolation functions:

w = Ne
i (x, y, z) = aix + biy + ciz + d (71)

Moreover, using Equation (47a) for the interpolation of the scalar potential (φe) and
considering the interpolation for the induced current density values:

~Je(x, y, z) =
nn

∑
i=1

Je
i Ni(x, y, z) (72)

Equation (70) becomes a system of nn equations, where nn is the number of element nodes:

PeΦe + Qe Je + Be = 0 (73)

where

Pe
ij =

∫
Ωe

[
σe

xx
∂Ni
∂x

∂Nj

∂x
+ σe

yy
∂Ni
∂y

∂Nj

∂y
+ σe

zz
∂Ni
∂z

∂Nj

dz

]
dV (74a)

Qe
ij =

∫
Ωe

Ni

[
∂Nj

∂x
+

∂Nj

∂y
+

∂Nj

∂z

]
dV (74b)

Be
i = −

∮
Γe

Ni

[
σe

xx
∂Φ
∂x

nx + σe
yy

∂Φ
∂y

ny + σe
zz

∂Φ
∂z

nz

]
dV (74c)

dim(Pe) = nn × nn, dim(Qe) = nn × nn, dim(Je) = 1× nn, dim(Be) = 1× nn,

Due to the fact that the normal vector of the faces shared by two neighbor elements
has opposite directions [68,69], the integral Be cancels for interior element boundaries, and
Be is different from zero only for the outer boundaries. Furthermore, if the simulation is
performed considering an air box circumscribing the brain, in the air, σ = 0; therefore,
Be(x, y, z) = 0, ∀(x, y, z) ε Ωsys. Accordingly, this term can be removed from the equation,
and the equation system becomes:

PeΦe + Qe Je = 0 (75)
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On the other hand, if the brain is considered the outer boundary and the approximation
of having only one tissue interface, for example, the interface between the brain and the air,
the second term can also be modified using the divergence theorem, which gives:

−
∫

Ωe

(
σ~∇φ

)
· ~∇w dV +

∮
Γe

w

(
σ

∂~A
∂t

)
ndS +

∮
Γe

w
(

σ~∇φ
)
· ndS = 0 (76)

or

−
∫

Ωe

(
σ~∇φ

)
· ~∇w dV +

∮
Γe

w

(
σ

∂~A
∂t

+ σ~∇φ

)
· ndS = 0 (77)

Considering the boundary condition corresponding to Equation (32d), it is evident
that the second term is zero. Therefore, for this particular case, Equation (77) becomes:∫

Ωe

(
σ~∇φ

)
· ~∇w dV = 0 (78)

which gives the following linear equation system:

PΦ = 0 (79)

The trivial solution (Φ = 0) is avoided, considering the boundary condition ex-
pressed by Equation (32d) for boundary nodes. This can be implemented in several forms,
for example, by considering the following equation system that results from condition
Equation (32d):

∂Φ
∂x

= −∂Ax

∂t
= Ep

x (80a)

∂Φ
∂y

= Ep
y (80b)

∂Φ
∂z

= Ep
z (80c)

The value of Φ for the boundary nodes can be obtained from these equations for each
element separately, forming a 3× 3 linear equation system:

3

∑
i=1

Φe
i
∂Ns

i
∂x

= (Ep
x )

e (81a)

3

∑
i=1

Φe
i
∂Ns

i
∂y

= (Ep
y )

e (81b)

3

∑
i=1

Φe
i
∂Ns

i
∂z

= (Ep
z )

e (81c)

where Ns
i represents the interpolation functions for the potential of the nodes forming the

triangular face, that is, facing the outer boundary, and (Ep
x )

e, (Ep
y )

e, (Ep
z )

e are the compo-
nents of the primary electric field in the boundary space .

Equation (75) corresponds to one element. To solve the global equation system,
it is necessary to assembly the matrices for the entire domain (Ω). This can be done
again by applying a procedure similar to that explained in the previous section. The
dimensions of the matrices (Pe and Qe) and the vectors (Je and Φe) are extended as shown
in Equations (57) and (58), generating a system of linear equations in the disjointed space
such that:

Pdis = ∑
e ε Ω

Pe (82)
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Qdis = ∑
e ε Ω

Qe (83)

and
Jdis = ∑

e ε Ω
Je. (84)

Therefore,
PdisΦdis + Qdis Jdis = 0 (85)

There is also a redundancy of variables of the disjointed space due to the presence of
shared nodes between neighbor elements. To remove this redundancy, it is necessary to
assemble the matrices using an assembly process as in the previous section, which can be
achieved using the connectivity matrix:

Φdis = CΦasem (86)

Jdis = CJasem (87)

and substituting in (85):
PasemΦasem + Kasem = 0 (88)

where Pasem = PdisC and Kasem = QdisCJasem, and the potential can be obtained from:

Φasem = P−1
asemKasem (89)

4.2. Solution of MQS Φ-V BVP
4.2.1. Solution Using FDM

The FDM can be applied to solve the BVP given by Equation (34) using several
approaches. One of the most straightforward methods is the explicit interactive method [63],
which can also be applied using different considerations. For example, in the case of
isotropic conductivity, Equation (34a) can be divided in three equations corresponding to
each of three coordinates in the Euclidean space. If Cartesian coordinates are used:

σ

(
∂Ax

∂t
+

∂φx

∂x

)
− 1

µ0
∇2 Ax = ~Js

x (90a)

σ

(
∂Ay

∂t
+

∂φy

∂y

)
− 1

µ0
∇2 Ay = ~Js

y (90b)

σ

(
∂Az

∂t
+

∂φz

∂z

)
− 1

µ0
∇2 Az = ~Js

z (90c)

The procedure to obtain the electric field is described as follows:

1. For t = 0,~J = 0; therefore, Φ, ~A = 0;
2. For t = t1, ~A is obtained from Equation (90) using the explicit interactive method in

an isotropic grid (∆x = ∆y = ∆z = ∆h) as follows:

σi,j,k

(
(At

x)i,j,k − (At−∆t
x )i,j,k

∆t

)
− 1

µ0

(
(At

x)i−1,j,k + (At
x)i+1,j,k + (At

x)i,j−1,k

(∆h)2

)

+
6

µ0

(At
x)i,j,k

(∆h)2 −
1

µ0

(
(At

x)i,j+1,k + (At
x)i,j,k−1 + (At

x)i,j,k+1

(∆h)2

)

+σi,j,k

(
(Φt−∆t

x )i+1,j,k − (Φt−∆t
x )i−1,j,k

2∆h

)
= (Js

x)i,j,k

(91)
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which, resolved with respect to (At
x)i,j,k, gives:

(At
x)i,j,k =

1
α
[β
(
(At

x)i−1,j,k + (At
x)i+1,j,k + (At

x)i,j−1,k

)
+

(At
x)i,j+1,k + (At

x)i,j,k−1 + (At
x)i,j,k+1]+

γ

α

(
(Φt−∆t

x )i+1,j,k − (Φt−∆t
x )i−1,j,k

)
+

θ

α
(At−∆t

x )i,j,k +
1
α
(Js

x)i,j,k

(92)

where α =
(

σi,j,k
∆t + 6

µo(∆h)2

)
, β = 1

µo(∆h)2 , γ = −
(

σi,j,k
2∆h

)
and θ =

σi,j,k
∆t . This equation is

applied recursively to all nodes, except for the boundary nodes (where the solution is
already given) and given the initial condition (~A = 0) until the solution converges.
The obtained value of ~A is replaced in Equation (41), which can be resolved for Φ
using Equation (42);

3. The same procedure is applied to compute Ay and Az;
4. The values of ~A and Φ are used to compute the electric field using Equation (6). For

the next time instant, the value of Φ is replaced in step 2, and the process is repeated.

4.2.2. Solution Using FEM (Galerkin Method)

The FEM solution can also be obtained using different approaches. Considering that
electric conductivity is isotropic, Equation (90) can be represented as a weighted residual
as follows: ∫

Ωe
w
[

σ

(
∂Ax

∂t
+

∂φ

∂x

)
− 1

µ0
∇2 Ax − ~Js

x

]
dV = 0 (93)

or ∫
Ωe

[
wσ

∂Ax

∂t
+ wσ

∂φ

∂x
− 1

µ0
w∇2 Ax − w~Js

x

]
dV = 0 (94)

which, applying the identity a∇2b = ∇ · (a∇b)−∇a · ∇b to the third term, becomes:∫
Ωe

[
wσ

∂Ax

∂t
+ wσ

∂φ

∂x
− 1

µ0
~∇ ·
(

w~∇Ax

)
+

1
µ0

~∇Ax · ~∇w− w~Js
x

]
dV = 0 (95)

Using the divergence theorem as in the previous sections applied to the third term
and rearranging the equation yields:

1
µ0

∫
Ωe

~∇Ax · ~∇wdV +
∫

Ωe

[
wσ

∂Ax

∂t
+ wσ

∂φ

∂x

]
dV

−
∫

Ωe
w~Js

xdV − 1
µ0

∮
Γe

w
(
~∇Ax · n

)
dS = 0

(96)

The potential at any position ((x, y, z) ε Ωsys) is computed using the potential at the
nodes and the interpolation functions:

Ae
x(x, y, z) =

nn

∑
i=1

(Ae
x)i Ni(x, y, z) (97a)

Φe(x, y, z) =
nn

∑
i=1

(Φe)i Ni(x, y, z) (97b)

Replacing the weight function, (w) with the interpolation functions in Equation (96)
and Ax, φ with expression (97) gives:

Pe(At
x)

e + Te(At
x)

e + ReΦ + Te(At−∆t
x )e + Fe + Be = 0 (98)
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where Pe
ij = 1

µo

∫
Ωe

[
∂Ni
∂x

∂Nj
∂x + ∂Ni

∂y
∂Nj
∂y + ∂Ni

∂z
∂Nj
dz

]
dV, Te

ij = − σe

∆t
∫

Ωe
Ni NjdV, Re

ij =

σe ∫
Ωe

∂Ni
∂x NjdV, Fe

x = −(Js
x)

e ∫
Ωe

NidV and Be
x = 1

µo

∫
Ωe

Ni
(

∂Ax
∂x nx +

∂Ax
∂y ny +

∂Ax
∂z nz

)
dV

is the boundary condition as in the previous section.
Equation (98) corresponds to one element and can be expanded for the disjoint

space using the same procedure explained in the previous two sections, after which the
equation system is assembled using the connectivity matrix. The resulting equation system
considering all components of ~A and the potential (Φ) is:

[P + T]At
x + RΦ = −TAt−∆t

x − Sx (99a)

[P + T]At
y + RΦ = −TAt−∆t

y − Sy (99b)

[P + T]At
z + RΦ = −TAt−∆t

z − Sz (99c)

P′Φ = −QJ (99d)

or (
[P + T] R

0 P′

)(
At

Φ

)
=

(
−TAt−∆t − S
−QJ

)
(100)

where Sv = Fv + Bv for v = {x, y, z}, J is a row of vectors formed by the values of induced

currents for each of the nodes of each element (Ji = σi
(

∂Ai
x

∂t +
∂Ai

y
∂t +

∂Ai
y

∂t

)
and P′ij = −µoσiPij).

4.2.3. Solution of the Darwin Model BVP

It can be seen from Equations (35a) and (35b) or their versions considering the
Coulomb gauge that they can be integrated using the procedure explained in the two
previous sections by adding a new source term to Equations (34a) and (34b) and consid-
ering the change of potential due to the presence of displacement currents in the second
equation. Considering the Coulomb gauge and that the electric permittivity (ε) is time-
independent, Equations (35a) and (35b) can be expressed as:

− 1
µo

~∇2 ~A + σ

(
∂A
∂t

+ ~∇φ

)
+ ε~∇∂φ

∂t
= ~Js (101a)

~∇ ·
(

σ

(
∂~A
∂t

+ ~∇φ

))
+ ~∇ ·

(
ε~∇∂φ

∂t

)
= ∇ ·~Js (101b)

where the new source term for the first equation is ε~∇ ∂φ
∂t , and the new scalar potential term

in the second equation is ~∇ · ε~∇ ∂φ
∂t . Equations (101a) and (101b) can be further modified by

approximating the scalar potential using a finite difference scheme:

− 1
µo

~∇2 ~A + σ

(
∂A
∂t

+ ~∇φt
)
+

ε

∆t
~∇φt − ε

∆t
~∇φt−∆t = ~Js (102a)

~∇ ·
(

σ

(
∂~A
∂t

+ ~∇φ

))
+ ~∇ ·

( ε

∆t
~∇φt

)
− ~∇ ·

( ε

∆t
~∇φt−∆t

)
= ∇ ·~Js (102b)

The term ~Jdis = ε
∆t
~∇φt−∆t is a displacement current density that comes from the

potential induced in the previous time instant. The term −σ ∂~A
∂t is the conductive current

density (~Jind), which is magnetically induced. Therefore, these equations can be rearranged
as:

σ
∂A
∂t
− 1

µo
~∇2 ~A +

(
σ +

ε

∆t

)
~∇φt = ~Js +~Jdis (103a)

~∇ ·
(

σ +
ε

∆t

)
~∇φt = ~∇ ·

(
~Js +~Jdis +~Jind

)
(103b)
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which essentially have the same form as the A-Φ formulation, with an additional current
source. Therefore, this equation set can be solved using the finite difference method as
described in Section 3.1.

4.2.4. Solution of the Darwin Model BVP Using FEM

Houssein Taha [60] proposed the solution of the Darwin model directly using Equa-
tions (35a) and (35b) applied to electric machines. However, working with the numerical
curl of vectors usually requires a high computational cost if applied to a complex geometry
mesh such as the brain cortex. Based on the modification of the equations described in the
previous section, the Darwin model for TMS applications can be reduced to a type of Φ-V
formulation. Therefore, comparing Equations (34a) and (34b) and their FEM numerical
solution (Equation (100)) with Equation (103), the FEM formulation for the Darwin model
can be expressed as: (

[P + T] R′

0 P′′

)(
At

Φ

)
=

(
−TAt−∆t − S′

−QJ′

)
(104)

where P, T and Q are the same as in the Φ-V formulation solution, and R′ij = βi
σε

∫
Ω

∂Ni
∂x NjdV,

where βi
σε =

(
σi + εi

∆t

)
, is constant for the nodes of each element. P′′ij = −µoβi

σεPij,

S′v = F′v + Bv for v = {x, y, z}, with F′ = −(Js + Jdis)
∫

Ω NidV and J′ = (Js + Jdis).

4.3. Analytical and Semianalytical Solutions

It is clear that it is very difficult—if not impossible—to obtain an analytic solution of
the TMS field formulations on realistic brain cortex geometries. However, it is possible
to obtain analytic solutions considering simplified geometric models of the excitation coil
and the brain. The advantage of these solutions is that they serve as a calibration reference
for numerical simulations. Esselle et al. [49] computed the electric field produced by an
arbitrarily shaped coil above half-space tissue with a planar interface with the air. The
formulation corresponds to the Laplace MQS-φ formulation:

∇2 ~A = −µo Js, /
{
~A ⊂ Ω,∇× ~AΓ = 0

}
(105a)

∇2φ = 0, /
{

φ ⊂ Ωb, n1 · ~J1Γ = n2 · ~J2Γ

}
(105b)

The solution of the magnetic vector potential generated by a coil formed by N thin
wires carrying a current (I) is:

~A(ro) =
µo NI

4π

∮
Σcoil

1
|r− ro|

d~l (106)

The primary electric field can be computed from the magnetic potential vector; there-
fore:

d~Ep = −µo N(dI/dt)
4π|r− ro|

d~l (107)

The secondary electric field (~Es) of a coil element (d~l) is computed from the scalar
potential as:

d~Es = −~∇φ = −∂φ

∂x
i− ∂φ

∂y
j− ∂φ

∂z
k (108)

Consequently, the total electric field of the coil element (d~l) is given as:

d~E = d~Ep + d~Es =

(
dEx

p −
∂φ

∂x

)
i +
(

dEy
p −

∂φ

∂y

)
j +
(

dEz
p −

∂φ

∂z

)
k (109)
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Considering the condition of the continuity of the current in the interfaces, since the
electric conductivity of the air is zero, then the current in the air–tissue interface produced
by the d~l element of the coil perpendicular to the tissue interface is in the z direction;
therefore:

~Jb = σbd~E = σbd~Ez = 0 (110)

or
d~Ez = 0 (111)

Therefore, it is only necessary to compute dEx and dEy. Furthermore, the boundary
condition Equation (111) can be used to compute these components. From the boundary
condition (d~Ez = 0), it is deduced that at the interface is z = 0:

−µo N(dI/dt)
4π|r− ro|

dz− ∂φ

∂z
= 0 (112)

A general solution of the Laplace Equation (105b) can also be expressed as the Bessel
integral:

φ =
∫ ∞

0
U(λ)eλz Jo(λρ)dλ (113)

where ρ =
√

x2 + y2, and Jo is the Bessel function of the first kind. Replacing Equation (113)
in Equation (112) and also using the expansion of 1

|r−ro | as a function of the Bessel function
(Jo), the value of φ is obtained as:

φ = −µo N(dI/dt)
4π

dlz
∫ ∞

0

1
λ

e−λ(zo−z) Jo(λρ)dλ (114)

This expression is replaced in Equation (109) to obtain components dEx and dEy, which
are given by:

dEx = dEx
p −

∂φ

∂x
= −µo N(dI/dt)

4π

[
dlx

R
+

xdlz
ρ2

(
1− z− zo

R

)]
(115)

and

dEy = dEy
p −

∂φ

∂y
= −µo N(dI/dt)

4π

[
dly
R

+
ydlz
ρ2

(
1− z− zo

R

)]
(116)

The differential of the total electric field is obtained as dE = dExi + dEyj.
Although the work by Esselle et al. [49] starts from the approximation that the tissue

interface is plane, they also conclude that the result was independent of the tissue inho-
mogeneities inside the tissue half-plane if the conductivity of the inhomogeneous tissue
changes perpendicular to the location of the interface.

A more precise geometrical model was used in the H. Eaton model [48], which pro-
posed an analytical expression to compute the electric field and current density induced by
a coil inside a homogeneous spherical coil. The author used the Laplace MSQ-V formula-
tion as described in Section 3.3. Therefore, the solution of the magnetic potential vector is
given by Equation (36). To analytically integrate this expression, the inverse of the distance
term is expanded in terms of spherical harmonics:

1
|r− ro|

= 4π
∞

∑
l=0

l

∑
m=−l

[
rl

(2l + 1)rl+1
o

]
Y∗lm(θo, φo)Ylm(θ, φ), ro > r (117)
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where Ylm(θ, φ) represents the spherical harmonic functions, and * indicates a complex
conjugate. After replacing this expression in Equation (36), the value of the magnetic
potential vector is:

~A = µo I
∞

∑
l=0

l

∑
m=−l

rl

(2l + 1)
~ClmYlm(θ, φ) (118)

where
~Clm =

∮
Ωcoil

Y∗lm(θo, φo)

rl+1
o

d~lo (119)

The values of the coefficient (~Clm) are obtained by dividing the domain (Ωb) into
rectangular components such that:

~Clm = Cx
lmi + Cy

lmj + Cz
lmk (120)

Moreover, φ is obtained after integrating the Laplace equation (∇2φ = 0), which is the
other equation of the the Laplace MQS-φ formulation, with boundary conditions given by
the current continuity Equation (32d) and the electric potential outside the brain (sphere of
radius (R)), vanishing (φ = 0) for r → ∞:

φ =
∞

∑
l=0

l

∑
m=−l

(Flm + Glm)Ylm(θ, φ) (121)

where
Glm = FlmR2l+1 (122)

Flm = − jωµo I[σ + jω(ε− εo)]

l(σ + jωε) + jωεo(l + 1)
(−αlmDl−1,m−1 + βlmEl−1,m+1 + γlmCz

lm) (123)

with αlm =
√

(l+m−1)(l+m)
(2l+1)(2l−1) , βlm =

√
(l−m−1)(l−m)
(2l+1)(2l−1) , γlm =

√
(l−m)(l+m)
(2l+1)(2l−1) , Dlm =

Cx
lm−jCy

lm
2

and Elm =
Cx

lm+jCy
lm

2 for l > 0 and Foo = 0. Until this point, it is possible to obtain a
semianalytical solution of the formulation by numerically integrating Equation (119) and
computing ~A and φ using Equations (118) and (121), respectively, and the electric field
using Equation (6). However, the authors took a step forward by replacing the analytic
expressions with their corresponding spherical harmonic functions and obtaining analytical
expressions for the electric field component in spherical coordinates,as described in [48].

5. Implementation of Numerical Solutions
Review of Solutions and Implementations Presented in the Literature

Table 3 provides a comprehensive overview of the predominant BVPs employed
in the simulation of TMS fields. Alongside these BVPs, we present the corresponding
Simulation Tools and their respective authors who have utilized them. The term ”Direct
implementation” pertains to cases where the authors have custom-built their simulation
codes using programming languages, tailoring them to the specific requirements of their
studies. On the other hand, ”Commercial general-purpose software” refers to computer
simulation programs, frequently employing the finite element method, capable of sim-
ulating various multiphysics problems represented by partial differential equations and
boundary conditions.
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Table 3. TMS numerical simulation studies based on different BVPs.

Boundary Value Problem Simulation Tool Type Publications

MQS only Ep
Matlab Direct implementation [21]

Equations solved with VAX 750 and Fortran Direct implementation [42]

Laplace MQS-φ

FEM using version 4.7 of SCIRun: A Scien-
tific Computing Problem Solving Environ-
ment (SCI), Utah, USA

Custom software [58]

FEM model using Matlab and the Get-
FEM++ library Direct implementation [75,89]

Comsol multiphysics Commercial general purpose soft-
ware [96]

Poisson MQS-φ

FEM custom-written Matlab and C++ rou-
tines together with Getfem++ functions Direct implementation [22]

FEM software Unknown [52]

Ansoft finite-element package Commercial general-purpose soft-
ware [97]

SimNIBS pipeline Open-source software for TMS sim-
ulation [56,94]

SimBio software environment Open-source software for TMS sim-
ulation [74,81,82]

SimNIBS Open-source software for TMS sim-
ulation [78,79,85,93]

Matlab and C++ Direct implementation [80,90,91]

Matlab FDM Direct implementation [92]

I-DEAS FEM package Commercial general-purpose soft-
ware [95]

MQS A-φ
FEM implemented by Comsol Multiphysics Commercial general-purpose soft-

ware [39]

Eddy current solver from the commercial
FEM package Maxwell3D from Ansoft Commercial software [53,83,86]

Full Maxwell equations FEM implemented by Comsol Multiphysics Commercial general-purpose soft-
ware [62]

6. Overview of Some of the Main TMS Simulation Results

The effectiveness and applications of TMS depend on several parameters of the coil-
brain system, as mentioned in the Introduction. Some analyses using simulation methods
have revealed how these parameters influence the electric field acting on the nerves. The
use of different formulations, brain models and levels of numerical method precision can
also influence the accuracy of estimating the field. A brief overview of some of these results
is presented below.

Although it is difficult to establish a level of priority of elements that influence the
electric field induced in the brain by TMS and the computation of the actual field distribu-
tion in the brain, there seems to be a consensus among works [16,18,20–24] related to the
simulation of the electric field induced by TMS, which analyzed the influence of the coil pa-
rameters (geometry, positioning, current waveform, etc.). Their main conclusion is that the
adequate selection of these parameters is crucial for inducing the value of the electric field.
In other words, the excitation parameters are the most fundamental elements for achieving
the necessary value and distribution of the electric field in the brain, and the smallest
variation of these parameters could have a significant impact on the excitation field.
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Research conducted by Mills [20] demonstrated that the utilization of single coils
for the purpose of stimulating long nerves is not advantageous. This is attributed to
the presence of “hot spots” within the induced electric field generated by such coils,
which possess both positive and negative fields. These hot spots can elicit contradictory
effects on the nerve. Additionally, through the simulation of various coil geometries and
configurations, Deng [17] established that figure-8-type coils exhibit greater focal properties
compared than circular-type coils. None of the simulated coil configurations surpassed the
figure-8-type coils in terms of achieving a tradeoff between depth of penetration and focal
precision. Furthermore, Deng’s research [17] indicated that an increase in the number of
coil turns (N) amplifies coil inductance and peak voltage while reducing the necessary peak
current. Theoretically, augmenting N enhances the accuracy of field replication, although
this is constrained by the coil’s dimensional requirements.

The impact of TMS is heavily influenced by the parameters employed for excitation.
Specifically, the electric field distribution, which crucial for effective stimulation, may not
always achieve the desired level of focus due to the configuration of the excitation coil
in TMS. Consequently, achieving highly localized stimulation through the appropriate
selection and arrangement of coils can prove challenging for specific applications. In this
regard, a novel emerging technique called transcranial ultrasound stimulation (TUS) [101,
102] offers several advantages, including the ability to provide highly focused excitation
using an ultrasonic transducer. Moreover, the utilization of ultrasonic waves allows for
deeper penetration of the stimulus into the brain, enabling access to central brain regions.
Nevertheless, despite being considered a safe technique, further research is necessary to
establish the long-term safety and potential risks associated with TUS. Additionally, the
use of coupling gel is required for excitation in TUS. Furthermore, the indirect mechanism
by which ultrasound stimulates neural activity through mechanical oscillations is more
intricate compared to the direct electrical stimulation employed by TMS.

In reference to the precision of the estimation of the induced electric field, the accuracy
of the coil and current parameters used in the model is very important, as well as an
adequate formulation and BVP [20,23,24]. In order of significance, the correct assignment
of electric conductivity to each point in the brain model [30–34] and the selection of an
appropriate numerical method for the simulations [73,90] are the subsequent key factors
to be considered. Lastly, there are the details of brain model geometry, provided the use
of a basic brain model including most of the fundamental parts (gyrus and sulcus) of the
brain is used, although there is no clear consensus about the importance of the later. In this
review , the effect of the shape and length of neurons and nerves, [103–105] which is also of
fundamental importance, is not considered.

Petrov’s study [58] reported that in the specific region where neurostimulation is
typically performed, spiral wire coil models exhibited higher precision (RE < 5%) in
predicting the actual induced field compared to a single circular wire coil model, which
deviated from field measurements by up to 10% RE. These findings emphasize the necessity
of employing a spiral winding-turns model to accurately approximate the induced field of
a typical TMS coil [58]. Moreover, the utilization of realistic magnetic resonance imaging
(MRI)-derived head models demonstrated that differences in tissue conductivities had a
negligible impact on the magnitudes of the electric field (E-field). However, the position
and orientation of the coil, as well as the size of the brain, exerted significant effects on
the magnitude of the E-field [24]. Notably, substantial deviations in E-field magnitude
were observed with respect to coil placement when considering the evaluation of effects
over a 2 cm range in each direction of a two-dimensional plane of the TMS coil [24].
This estimation may be regarded as conservative when assessing the disparity between
the scalp location and the intended cortical target. The results highlight the extensive
cortical area that may be affected when accounting for this level of positioning uncertainty,
encompassing a significant portion of the dorsolateral prefrontal cortex [24]. Certainly, it is
feasible to reduce this uncertainty within an individual patient by developing reliable coil
placement procedures combined with neuronavigation techniques [24,58].
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On the other hand, in a recent study [83], it was discovered that the standard deviations
in maximum electric field values resulting from uncertainties in tissue conductivities
accounted for approximately 5% of the mean value in TMS. Tissue conductivity emerged as
the primary factor determining the magnitudes of current density when the displacement
current was insignificant [83]. Conversely, with the presence of displacement currents, the
permittivity became the principal determinant of current density magnitude. Furthermore,
the study revealed that the existence of displacement currents could potentially increase
the maximum cortical current density by an order of magnitude, assuming the extreme
permittivity values reported by certain researchers prove to be accurate [83]. Notably, all
solutions exhibited currents that were perpendicular to the cortical interface, challenging
models that propose preferential stimulation of tangentially oriented neurons based on the
assumption that fields normal to the interface are negligible. Consequently, these models
warrant re-examination [83].

The impact of brain models on simulation accuracy remains a contentious topic.
Salvador et al. [96] demonstrated that the most consistent correspondence between the esti-
mated electric field and motor activation was observed in realistic brain models, specifically
in the crown region of the precentral gyrus. Conversely, the use of simplified head models,
such as spherical head models, yielded spatially nonspecific findings [96]. This study also
proposed that the maximum electric field strength serves as the optimal parameter for
exploring the applicability of field calculations in quantitative dosing [62,96]. However,
Janssen et al. [89] showed that in a highly realistic head model, variations in sulcus width
(up to 3 mm) did not result in significant differences in the calculated electric field values
for most brain areas. Thus, for a global estimation of the electric field, an accurate represen-
tation of sulci is of limited importance [89]. Nevertheless, considerable overestimation of
sulcus width led to an overestimation of local field strength in locations distant from the
cortical hot spot. In contrast, Saturnino et al. [85] demonstrated that accurate anatomical
representation of tissue boundaries, including sulci, significantly improved the numerical
accuracy of TMS field estimation in full-head models and sulcus models. Specifically, the
sulcus model highlighted the importance of higher mesh density around highly curved
regions of the gray matter/cerebrospinal fluid boundary, where electric potential undergoes
rapid changes. This approach helped prevent local simulation errors and emphasized that
the under-representation of sulci could lead to substantial errors in the electric field [85].
Moreover, modifications to cortical geometry were shown to disrupt stimulating fields,
potentially impairing cortex targeting in non-normal populations [83].

Regarding numerical methods employed in simulations, it was found that the finite
difference method (FDM) requires high spatial resolution in regular grids or hexahedral
meshes to achieve detail comparable to that of tetrahedral meshes. However, this results
in a large number of elements, necessitating lengthy computation times and significant
computational resources. Therefore, the finite element method (FEM) based on tetrahedral
meshes was suggested as better-suited for these calculations [90].

7. Conclusions

Herein, we present a survey of the most used formulations, boundary value problems
and implementations for the numerical computation of TMS fields. These aspects were
analyzed, showing theirs limitations and advantages. The deduction of the formulations
from the Maxwell equations and the numerical solution of the corresponding BVP were
described in detail. We also induced some numerical solutions not found in the consulted
literature, such as finite difference for quasistatic magnetic A-φ and Darwin models and
finite element for quasistatic magnetic A-φ and Darwin models using the Galerkin method,
as well as their implementation of boundary conditions applied to TMS fields. The aim of
the present work was to serve as a guide for reproduction and future implementation of
TMS simulations.

Several of the main results deduced from the TMS fields simulations emphasize the im-
portance of the stimulation parameters, in particular, the coil parameters and arrangement,
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followed by the precision of the specification of the electrical properties of the tissue and
details of the brain geometry model. Our literature analysis highlights that the most used
approach is the Poisson MQS-φ formulation applied to a model consisting a figure-8-type
coil and a brain model. The advantage of this method is that it does not require large
computational resources and enables consideration of the effects of the formation of electric
charges in the inner interfaces of the brain. In this case, computational resources can also be
redirected to increase the detail of the brain model geometry. Laplace MQS approximation
requires significantly fewer computational resources. However, apart from its limitation in
considering the charges formed at the inner interfaces, it is practically limited in terms of
setting the boundary condition in the complex brain-to-air interface, which usually requires
an advance graphical interface. The use of commercial software is common practice in
the reviewed works. Nevertheless, the use of software has its drawbacks, as it limits the
flexibility of connection in the simulated electric field output with the input for neuron
equations and models. The use of a direct implementation could solve these limitations, but
there is still a considerable range of code implementations and source code styles, which
limits the widening of their use. The recent development of TMS custom platforms such
as SimNIBS represents a step forward in solving these drawbacks, although the tendency
of the development of graphical interfaces that should be mastered could affect the ef-
fectiveness of such platforms. In that sense, it may be more useful to work towards the
development of flexible toolboxes and libraries for TMS simulations.
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Abbreviations

for Maxwell Equations
~E Electric field
~D Electric flux density
~H Magnetic field
~B Magnetic flux density
~A Magnetic potential vector
φ Electric scalar potential
ρ Electric charge density
~Js Vector of external (excitation) current density
~Jind Vector of induced current density
~Jdisp Vector of displacement current density
σ Electric conductivity
ε0 Electric permittivity of free space
ε Material electric permittivity
µ0 Magnetic permeability of free space
µ Material magnetic permeability
ω Frequency of the excitation current
j =
√
−1 Complex number imaginary unit
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for Numerical Methods
φi,j,k Electric scalar potential
Φe Electric scalar potential vector of element e
Φ Electric scalar potential vector for all elements in the domain Γ
Jk
i,j,k Nodal current density with the component k = {x, y, z}

Je Current density vector of the element e
J Current density vector of all the elements in the domain Γ
Ak

i,j,k Nodal magnetic potential of the component k = {x, y, z}
Ae Magnetic potential vector for the element e
Ak Magnetic potential k-component for all elements in the domain Γ
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