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Abstract: Alzheimer’s disease (AD) is a degenerative brain disease, and the condition is difficult
to assess. In the past, numerous brain dynamics models have made remarkable contributions to
neuroscience and the brain from the microcosmic to the macroscopic scale. Recently, large-scale brain
dynamics models have been developed based on dual-driven multimodal neuroimaging data and
neurodynamics theory. These models bridge the gap between anatomical structure and functional
dynamics and have played an important role in assisting the understanding of the brain mecha-
nism. Large-scale brain dynamics have been widely used to explain how macroscale neuroimaging
biomarkers emerge from potential neuronal population level disturbances associated with AD. In this
review, we describe this emerging approach to studying AD that utilizes a biophysically large-scale
brain dynamics model. In particular, we focus on the application of the model to AD and discuss
important directions for the future development and analysis of AD models. This will facilitate
the development of virtual brain models in the field of AD diagnosis and treatment and add new
opportunities for advancing clinical neuroscience.

Keywords: Alzheimer’s disease; large-scale brain dynamics models; alpha rhythm; neuronal excitability;
abnormal regions of AD; neural mass model; Kuramoto model; brain network; neurodynamics

1. Introduction

Alzheimer’s disease (AD) is a brain disorder characterized by the accumulation of
amyloid-based neuritic plaques and the abnormalities of neurodegeneration [1]. In particu-
lar, there is a progressive loss of neurons or their processes (axons and dendrites), and the
corresponding neuronal function is impaired [2]. Similarly, AD is affected by age, biological
sex, and other related factors. Progressive cognitive and behavioral impairment will be
presented at different stages of AD (early, moderate, and severe phases) [3,4].

In recent years, substantial advancements have been made in the diagnosis, treatment,
and prevention of AD via systematic implementation based on multimodal neuroimaging
modalities, cognitive assessment tests, and clinical characteristics [5]. At the microscale
level, many different alterations may eventually lead to synaptic decay [6,7]. For example,
microcircuit dysfunction in the brain of AD patients is associated with the synaptic inhi-
bition of excitatory neurons [8]. It has also been shown that changes in the morphology
and density of dendritic spines have been postulated as the main reasons for the synaptic
and neuronal loss observed in AD [9]. Additionally, hyperphosphorylated τ deposition
and amyloid-β (Aβ) both impair neuronal functions and ultimately lead to axonal de-
generation [4]. At a vastly different level of analysis, the macroscopic level, non-invasive
neuroimaging has been used as a vector for diagnostic biomarkers of AD due to its excellent
speed, considerable spatial resolution, and ability to record neuronal activity [10–12], and
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it also plays a crucial role in the clinical identification of MCI and AD [13,14]. It is under-
stood that deficiencies caused by AD will affect cognitive functions in large-scale brain
networks, but how it will do so is not yet clear. Even more important for AD, traditional
non-invasive methods capturing brain activity for early changes have not yet yielded spe-
cific, generally accepted features of underlying neuronal hyperactivity [15–17], and newer
approaches based on source localization or non-invasive brain stimulation still require
further validation [10,11,18].

Large-scale brain dynamics models based on nonlinear dynamical systems allow for
integrating experimental data from multiple modalities into a common framework [19]
and help us to better understand the neurophysiological changes in AD. According to
existing research findings, models can reveal the structural and functional relationships
of the brain [20–22], understand the working mechanisms of the brain [23,24], explore
the pathogenic mechanisms of brain diseases [25–27], and explain processes such as the
development or evolution of the brain neural system [28,29]. Given that AD is a complex
multifactorial disease characterized by neuronal degeneration and neuronal synaptic disor-
ders in cortical and subcortical areas, as well as abnormalities of white and gray matter, it
is better suited to be studied with large-scale brain dynamics models. Using neurodynamic
model simulations, researchers have demonstrated that the disconnection of macroscopic
anatomical structures in the brains of AD patients leads to abnormal changes in metasta-
bility, and this revealed an important relationship between metastability, cognition, and
the efficiency of anatomical structures [30,31]. In addition, other researchers have used
models that can analyze the characteristics of the evolutionary process to identify changes
in alpha rhythms [32,33] and excitatory neurons [6,34] in the brains of AD patients and
areas of abnormality [31,35,36] between AD patients and controls.

In this review, we systematically examined 24 identified studies on the application
of large-scale brain dynamics models in AD from 2010 to 2023. We aim to review the
large-scale brain dynamics models that are available for AD research and summarize the
findings from studies using these models. In addition, we also highlight opportunities
that will require the further development of models about AD (Table 1). In particular,
we emphasize the importance of incorporating more information in the model as well
as in the modeling process and in the selection of longitudinal data. This also presents
a key challenge to adequately constrain neuroimaging data and construct models with
these relevant properties. In summary, large-scale brain dynamics models can provide new
opportunities for advancing clinical neuroscience.
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Table 1. List of studies employing large-scale brain dynamics models to understand AD.

References Dynamics Model Subject Imaging Modality Means of Simulating AD Main Conclusion

(de Haan et al. 2012) [37] Neural Mass Model NC\MCI\AD EEG Lowering synaptic strength Excessive neuronal activity and hub vulnerability.

(Ghorbanian et al. 2014) [38] Coupled Duffing–van der Pol
Oscillator Model NC\AD EEG Simulation based on empirical data α dominant for CTL subject and θ dominant for AD patients.

(de Haan et al. 2017) [39] Neural Mass Model NC\AD EEG Changing neuronal excitability levels due
to varied threshold potential (Vd) settings

AD-like network degeneration can be countered by global
stimulation of excitatory neurons.

(Demirtas et al. 2017) [35] Hopf Normal Model NC\PAD\MCI\AD fMRI Manipulating the bifurcation parameter Synchronization ↓, FC strength ↓, and the significant EC differences
in AD were located in left temporal lobe.

(Zimmermann et al. 2018) [40] Reduced Wong–Wang
Model NC\MCI\AD fMRI Simulation based on empirical data The model parameters correlated with cognition and the predictive

capacity ↑.

(Alderson et al. 2018) [31] Kuramoto Model NC\MCI\AD fMRI Lesioned the structural connections of
healthy subjects

Metastability ↓; damage was centered around highly connected
nodes; abnormal network topology; a link between metastable
neural dynamics, cognition, and the structural integrity of the

human brain.

(Stefanovski et al. 2019) [34] Jansen–Rit Model NC\MCI\AD fMRI Based on individual PET-derived
distributions of Abeta

Spatial heterogeneous Abeta distribution, impaired inhibitory
function, and neural frequencies ↓.

(Ruiz-Gomez et al. 2019) [33] Kuramoto Model NC\MCI\AD EEG Simulation based on empirical data Θ band ↑ and α band ↓.

(Cakir 2020) [41] Izhikevich Model and Neural Mass
Model NC\AD fMRI Simulation based on empirical data The alpha rhythms ↓ in the thalamic, and fALFF of slow-4 band ↓ in

the striatum.

(Li et al. 2020) [32] Thalamo-cortico-thalamic (TCT)
Circuitry Model Simulated AD EEG Decreasing synaptic connectivity

parameters Synapse loss and alpha rhythm ↓.

(Bachmann et al. 2020) [6] Leaky Integrate-and-Fire (LIF) Model Simulated AD EEG Adjusting the weight of
excitatory synapses The loss of excitatory synapses on excitatory neurons.

(Arbabyazd et al. 2021) [42] Stochastic Linear Model (SLM) and
Mean-Field Model (MFM) NC\MCI\AD fMRI Simulation based on empirical data Realistic data can be generated by whole-brain modeling.

(Triebkorn et al. 2022) [43] Jansen–Rit Neural Mass Model NC\MCI\AD fMRI Adjusting the global scaling factor G and
linked local Aβ concentrations Local hyperexcitation caused by Aβ can classify AD.

(van Nifterick et al. 2022) [44] Neural Mass Model SCD\MCI\AD MEG Adjusting single relevant parameters Oscillatory ↓; hyperexcitation.

(Das and Puthankattil 2022) [36] Kuramoto Model NC\MCI-AD EEG Edges originating from one specific region
of the cortex are set to the lowest value

Functional connectivity ↓ and complexity ↓ in anterior and central
regions.

(Patow et al. 2023) [45] Balanced Excitation–Inhibition Model NC\MCI\AD fMRI Adjusting the inhibitory bias and
scaling parameters

The neuronal activity of Aβ over tau in MCI, while tau dominates
over Aβ in AD.

(Salimi-Nezhad et al. 2023) [46] Pinsky–Rinzel Neuron Model Healthy rats LFP Eliminated 75% of MS cholinergic neurons Selectively stimulating the remaining healthy cholinergic neurons
was sufficient for network recovery.

(Sanz et al. 2023) [47] Hopf Normal Model NC\AD\bvFTD fMRI Simulation based on empirical data Key nodes to transition from AD towards the healthy state included
the hippocampus as well as temporo-posterior regions.

(Alexandersen et al. 2023) [48] Neural Mass Model NC E/MEG Adjusting the Aβ and τP
damage variables

Excitatory neuronal activity↓; oscillatory↓ independently of
structural changes due to axonal damage.
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2. Materials and Methods

In this paper, we investigate the application of large-scale brain dynamics models in
AD. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [49]
was used to identify studies and narrow the collection for this review. This study was
registered at PROSPERO. We performed a search on PubMed and Web of Science using the
following group of keywords: “Alzheimer’s Disease” AND (“Neural dynamics” OR “Brain
dynamics” OR “neuroanatomy” OR “dynamical systems” OR “Nonlinear dynamics”) AND
(“Computational model” OR “Whole brain computational model” OR “computational
modeling” OR “mathematical model” OR “Neural activity”) AND (“large-scale” OR “large
scale” OR “macroscale”).

References from 2010 to 2023 were used for further analysis. As shown in Figure 1,
after excluding unqualified studies, this review narrowed the original count of 109 studies
to the final count of 24 studies.
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3. Large-Scale Brain Dynamics Models
3.1. Neural Dynamics Models

In the field of neuroscience, theory and computational models are playing increasingly
important roles in the challenges of understanding complex biological dynamic systems.
The neurodynamic models constructed based on real collected imaging data can not only
discover some phenomenon that conforms to statistical significance but also adequately
explain mechanistically and conduct systematic studies on the development, evolution,
or dynamics of the brain nervous system [19]. Currently, models play an important role
in the “observation-experiment-theory” phase of comprehensive exploration, especially
on the basis of the pioneering work of Hodgkin and Huxley [50]. As the model evolved,
the neural mass model was formed in order to bridge the gap between the activity of
individual neurons and the circuits [51,52]. This was later followed by the construction of
the continuum neural field model [53], which can be extended in space, and the whole-brain
network model that can be applied clinically [52,54].

Neural dynamics models simulate brain dynamics using biologically inspired mathe-
matical equations that model regional activity and are coupled through the observed brain
structure [21]. These equations can be built from knowledge concerning the biophysical
mechanisms underlying different forms of brain activity or as phenomenological models
chosen by the kind of dynamics they produce [55]. Thus, the models are also classified
into two main categories: biologically informed models and phenomenologically informed
models [27]. Depending on the amount of biological information covered in the models,
the models are represented on the biological information axis in the position of the category
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to which it roughly belongs (Figure 2). In the context of phenomenologically informed
models, we tend to consider more the phase transition for global connectivity and ignore
the details of the model [26,43]. For example, the Kuramoto model, used to study network
synchrony, considers time-delayed interactions between nodes [56,57]; the Hopf normal
model has the advantage of allowing transitions between asynchronous noise activity and
oscillations [35,58]; and the stochastic linear model is a linear stochastic system of coupled
Ornstein–Uhlenbeck processes [59]. In the context of biologically informed models, we
could treat the brain as a large set of single-cell neurons that cover the entire brain and are
wired using white matter tract information from diffusion tensor imaging (DTI) [27]. For
instance, a number of researchers have used the neural mass model, which describes a local
population of interacting neurons, such as pyramidal and inhibitory cells [19]. This model
is constructed in two ways: one uses the same conductance-based model as a single-neuron
model to model the mean ensemble activity; the other uses careful empirical observations
to understand and model the response of the system to inputs, as is the case with the
Jansen–Rit model [19]. An additional class of models, dynamic mean-field models, has
been used, which includes some of the more refined local models with an ability to model
the balance between excitation and inhibition. These models are based on firing rates and
synaptic gating activity [40,60]. There is also the Wilson–Cowan model [51], which uses a
phase-plane approach and numerical solutions to describe the response of neuronal popu-
lations to stimulation, and the thalamocortical model [61], which describes the interaction
of cortical and thalamic populations using a delayed feedback loop. A detailed review of
the different models can be found in [52,62].
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3.2. Large-Scale Dynamics Model Building

The study of model building can be divided into three parts: microscopic, mesoscopic,
and macroscopic. The interrelationships between network structure and dynamics are
largely elusive at the micro- and mesoscopic level [63]. From a purely neuroscientific
perspective, modeling studies are important to provide fundamental insight into the
driving factors of connectivity fluctuations, which will potentially bridge the gap between
microscopic and macroscopic activity and connectivity [27]. The model architecture requires
two key elements: (1) a structural connectivity matrix defining the coupling between areas,
which can be derived from empirical data; (2) equations governing the neural dynamics of
each local node, which can be constrained by known neurophysiology [64,65]. The specific
modeling process is shown in Figure 3.
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Figure 3. Modeling process of large-scale brain dynamics models. The multimodal neuroimages
are preprocessed to extract the empirical SC and FC. Then, a large-scale brain dynamics model with
SC coupling constraints is used to simulate neuronal activity in the brain, converting the simulated
neuronal activity into BOLD signals and extracting the FC. Finally, the empirical and simulated FC,
synchrony, and metastability are fitted to find and determine the optimal parameters of the model to
simulate the closest functional activity of the real brain.

Structural connectivity, as an essential part of the modeling process, specifies fiber
density across various white matter tracts [52]. Together with the brain parcellation that
determines the number of regions and the spatial resolution where brain dynamics take
place [55], large networks are constructed. In models, elements of the structural connectivity
matrix set the strength of the coupling between nodes [65]. Also, in previous studies, the
choice of parcellation was found to be important. For example, subcortical nodes are
also crucial where the main pathology may involve subcortical structures [52] such as the
hippocampus [66], the thalamus [41], and so on.

Functional connectivity is defined as the temporal dependence of the neuronal ac-
tivity patterns of anatomically separated brain regions and is typically measured as the
co-variation between brain signals originating at different locations [62]. This has been
particularly useful for the optimization and validation of models via the comparison with
the FC matrix obtained using model simulations [56,62,67].

Given network dynamics evident spontaneous emergence and their spatial similarity
with the underlying structural connectivity, whole-brain network models are useful tools
for investigating the biophysical mechanisms underlying brain activity [62]. By considering
the dynamics emerging spontaneously from the interplay between brain areas when these
are embedded in the neuroanatomical network, one can analyze the observed phenomena
in the light of empirical data and formulate scenarios for the physiological origin of brain
activity [62]. And a number of theoretical works have used reduced whole-brain network
models to investigate the activity emerging from the interplay of brain areas in the neu-
roanatomical network [62,67,68]. The activity of each brain area is represented by one or
more mathematical expressions representing the spontaneous behavior of isolated brain
areas with an additive term representing the input received by anatomically connected
areas [62].

Another point of the modeling process that needs attention is model fitting. The model
parameters can be calibrated in such a way that the model dynamics closely replicate the
dynamics of the brain networks extracted from the empirical data [20]. Most previous
studies have used static correlations to estimate the model fit. However, as the research
advanced, the use of dynamical metrics, such as functional dynamic connectivity [62],
synchrony, and metastability [67], was proposed to further constrain the model fitting
in order to preserve the dynamic time characteristics present in the signals at different
functional states. These make use of exploring the parameter space to find the optimal
parameter set by minimizing the error function or the maximizing correlation between
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empirical and simulated matrixes, but currently there are also iterative-fitting strategies
used to update the model parameters [26,69].

Intuitively, the potential utility of brain network dynamics models is large, and it
is not only influenced by biological mechanisms but also closely related to whole-brain
neuroimaging data. From the summary of existing studies, it is clear that from the per-
spective of acquisition, the results of brain network dynamics model simulation can solve
the problems of difficult data acquisition to a certain extent, such as the small number of
patients with brain diseases and the inability of patients to remain quiet during acquisition.
The model can also simulate data at different resolutions, allowing for a more detailed
study of the content in question. In addition, the simulation results can avoid the influence
of noise during the acquisition process, thus obtaining data that more closely resemble the
real brain. More importantly, depending on the changes in the real data set, some of the
study findings are not reproducible, but the results simulated using the model avoid such
effects. From the perspective of applied research, brain network dynamics models are more
able to reflect the principles of the biophysical mechanisms of the brain because they can
reflect the relationship between brain structure and function. While human brains cannot
be used for damage or stimulation studies due to ethical concerns, researchers can construct
a personalized brain network dynamics model by changing the collected structural data
so that they can be studied in greater depth. The researcher can construct a personalized
brain network dynamics model by altering the collected structural data to study the data at
a deeper level. The brain network dynamics model can predict the subsequent state from
the existing state of the brain, thus providing a beneficial tool for the evolutionary process
of brain aging and disease prevention and treatment. At the same time, this provides new
opportunities to advance clinical neuroscience.

4. Applications of Large-Scale Brain Dynamics Models to Alzheimer’s Disease

Here, we focus on applications to AD (Table 1). As a neurodegenerative disease, AD is
a disease that integrates the pathogenesis of excitatory synaptic deficits, slowed oscillatory
rhythms, and regional changes. Most of the current modeling studies have been analyzed
from these three aspects.

4.1. Slowing of Alpha Rhythm: A Biomarker for AD

Each oscillatory frequency of brain activity conveys specific physiological information
on brain functional states during sleep and wake periods. The alpha rhythm represents
memory and attentional processes, which functionally inhibit task-irrelevant brain regions
and transmit information to task-relevant regions [70]. Low-frequency oscillations are
associated with functional inhibition, so the slowing of the alpha rhythm is thought to
better characterize AD [41]. Initially, Pons et al. found a slowing of the alpha rhythm and an
increase in functional connectivity in older MCI patients based on a neural mass model [71].
Subsequently, a more detailed study by van Nifterick et al. found that a relatively higher
theta power and a lower beta power followed by a decrease in alpha power at later stages
could serve as a mechanism for well-established AD hallmarks [44]. The same conclusion
was demonstrated by Ruiz-Gomez et al. using the Kuramoto model [33]. Meanwhile,
current researchers have improved the thalamo-cortico-thalamic (TCT) model and suggest
that this model is relevant to AD and that it is a good candidate for understanding the
thalamo-cortico-thalamic neuronal mechanisms associated with alpha rhythm slowing
observed in AD [32]. Based on these studies, a point was proposed: the decrease in
synaptic strength has a dominant effect on the slowing of the alpha rhythm [32,34,41]. This
established the basis for the following studies.

4.2. Altering Neuronal Excitability: A Therapeutic Strategy for AD

The impairment of cognitive function in Alzheimer’s disease is clearly correlated
to synapse loss [6]. Using a spiking neural network model, Bachmann et al. found that
the loss of excitatory synapses drives the network into a less sensitive regime, which
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may also account for the cognitive deficits of AD [6]. To study the potential etiology of
AD and simulate the Abeta-induced disruption of interneuronal inhibitory function and
consecutive hyperexcitability, Stefanovski et al. proposed a mathematical model that adds
a description of molecular changes to alter population activity, where individual Abeta
burden modulates regional excitation–inhibition balance, leading to local hyperexcitability
with a high Abeta load in personalized virtual brains [34]. This also builds a bridge between
molecular pathways and brain network modeling.

Similarly, de Haan et al. used a large-scale neural mass network to simulate the
temporal evolution of activity-dependent network degeneration, and the results showed
that functional network damage can be opposed by the targeted adjustment of neuronal
excitability levels [39]. Van Nifterick et al. combined model and human data and found that
neuronal hyperactivity may be due to hyperexcitation and/or disinhibition in early AD [44].
Therefore, we can consider increasing the excitability of excitatory neurons, followed by
increasing the inhibition of inhibitory neurons as current effective therapeutic strategies.

4.3. Abnormal Regions of the Brain: Potential Therapeutic Target Areas

AD is characterized by the degradation of the connectome and of network organization
by these long-range connections, with both structural and functional connectivity being
affected [40]. It has been proposed that damage to the connectivity of an AD computer
model focuses on nodes with high topological centrality, integration, and efficiency scores
and builds connections between structure and cognition via metastability [31]. This also
provides a unique perspective for AD research.

In the existing study, the relation between functional connectivity and complexity
was explored using the Kuramoto mean-field model in the MCI-AD condition, and cer-
tain variations were found in the anterior and central regions in the results, specifically
including the frontal and temporal lobes [36]. And in Zimmermann et al.’s study, the re-
searchers attempted to identify biophysical model neural parameters that were associated
with cognition along the spectrum from healthy controls to mild cognitive impairment
(MCI) to AD, modeled the limbic subnetwork as well as the entire brain, and found that
neurodegeneration and functional changes occurred first in the limbic and temporal regions
of the brain and, later, in the motor and sensory areas [40].

Demirtas et al. proposed a whole-brain computational model to explore the mecha-
nisms behind changes in whole-brain and regional connectivity and, among the results,
found that regions of FC impairments in AD overlap with the default mode network (DMN)
and that decreased effective connectivity (EC) strength primarily affects the left temporal
lobe, instead of prompting widespread decreases in FC strength [35]. It was also found that
preclinical Alzheimer’s disease (PAD) subjects exhibited decreased EC strength in several
regions including the left hippocampus, while no significant EC differences were found in
the MCI group [35]. This has been interpreted according to previous studies as a compen-
sation mechanism for maintaining cognitive function under pathology-related insults in
the preclinical stage of AD [72,73]. It is worth noting that Bachmann also proposes a circuit
compensation mechanism for AD treatment, which restores the mean network activity by
increasing the weight of the remaining connections [6]. Now, the limbic system and basal
ganglia structures constitute the primary target locations for stimulation in AD [74].

5. Future Directions

Large-scale brain dynamics models of AD have been presented as useful tools to fill the
gap between theoretical models and biological evidence. They link microscopic excitatory–
inhibitory neurons, mesoscopic fiber tract connections, and macroscopic brain function
and cognition, providing new ideas for exploring AD pathogenesis. In addition, the
model-based optimization of neuromodulation schemes can be performed without ethical
constraints. By giving stimulation to the AD-simulated brain and adjusting it according
to the post-stimulation neural activity, it is possible to predict whether the stimulation
protocol can normalize the abnormal network dynamics characteristics of AD and give



Brain Sci. 2023, 13, 1133 9 of 13

an interpretable neuromodulation strategy. However, the challenges associated with the
integration of findings from different levels of analysis (micro-, meso-, and macroscale) are
delaying the development of models of the disease [18]. Thus, we have suggested some
areas that could be further optimized.

At present, most researchers analyzing the mechanisms of brain activity from a mi-
croscopic and mesoscopic perspective have found that these influencing factors play an
important role. However, large-scale brain dynamics models only focus on valid infor-
mation about whole brains or the relationships between local regions, ignoring factors
at a more detailed scale. In this sense, the model should be considered to include more
information on biological details. In particular, in AD, degenerative changes in several neu-
robiological processes spanning molecular to macroscopic scales are involved, including
proteinopathies, modified gene expression, synaptic alterations, vascular dysregulation,
hypometabolism, and structural atrophy [75,76]. Identifying important pathways between
truly microscopic-scale variables and observable macroscopic neuroimaging in Alzheimer’s
disease would both advance the understanding of the underlying biology and improve
the selection of therapeutic targets tailored to an individual’s particular disease subtype or
presentation [76]. Therefore, we should incorporate more biological features into the model
for the more accurate simulation of brain dynamics.

The investigation of the strength and directionality of interactions in the resting hu-
man brain could help to better understand the cognitive deficits associated with network
disruption in certain neurological disorders and provide new biomarkers of these disor-
ders [77]. Directed FC between the hippocampus and other brain regions had significant
differences among NC, MCI, and AD subjects, and these differences were significantly
correlated with cognitive and clinical measurements [78]. EC has also been proposed
and has been demonstrated to reveal the direction of information flow between different
brain regions, providing new insights into the underlying neuronal alterations in MCI and
AD [79]. However, at present, we have not considered the directionality of the connection
network when building the model, and this is one of the key elements to be considered
for optimization.

We also found that only a few features of brain nodes have been focused on in some
studies, and the attributes are more singular. For example, Tijms et al. used cortical
thickness as a nodal attribute and constructed a gray matter brain network by calculating
Pearson similarity. They found that MCI patients had lower values of standardized cluster-
ing coefficients and small-world attributes, which would become even lower as the disease
progressed [80]. In contrast, the brain attribute network [81] contains nodal attributes and
connectivity information, which can describe the structure and function of the brain from
multiple perspectives and better characterize the subtle changes in the brains of patients
with different stages of AD. If we construct a model using the brain attribute network, this
will provide more advantages in studying the pathogenesis and progression of AD.

In addition, to date, studies of brain networks in AD have been mainly cross-sectional.
In contrast, using longitudinal data from the whole brain, information from two points in
time can be brought together simultaneously to generate different idiosyncratic networks
for AD, resulting in more accurate inferences [82]. Moreover, the models can be used to
analyze the characteristics of the disease evolution process and understand the progression
of AD using longitudinal data, which is also important for developing treatment plans
and predicting the trend of disease progression. Therefore, subsequent studies may also
consider using longitudinal data for analysis.

6. Conclusions

In this review, we have shown that large-scale brain dynamics models can accurately
explore and characterize brain mechanisms in AD patients. We provide a brief overview
of the neural dynamics model and its large-scale modeling process. The application
of models to AD concerning alpha rhythms, excitatory neurons, and abnormal regions
is also summarized and discussed. Like other fields, the building of large-scale brain
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dynamics models for AD needs further development to realize its greater potential, and we
provide methodological and technical recommendations in terms of the models themselves,
the modeling process, and data selection. In summary, biophysically based whole-brain
dynamics models are well positioned to impact the treatment field of AD. This also sets the
stage for ushering in personalized medicine.
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