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Abstract: Fear extinction is the basis of exposure therapies for posttraumatic stress disorder (PTSD),
but half of patients do not improve. Predicting fear extinction in individuals with PTSD may
inform personalized exposure therapy development. The participants were 125 trauma-exposed
adults (96 female) with a range of PTSD symptoms. Electromyography, electrocardiogram, and skin
conductance were recorded at baseline, during dark-enhanced startle, and during fear conditioning
and extinction. Using a cross-validated, hold-out sample prediction approach, three penalized
regressions and conventional ordinary least squares were trained to predict fear-potentiated startle
during extinction using 50 predictor variables (5 clinical, 24 self-reported, and 21 physiological). The
predictors, selected by penalized regression algorithms, were included in multivariable regression
analyses, while univariate regressions assessed individual predictors. All the penalized regressions
outperformed OLS in prediction accuracy and generalizability, as indexed by the lower mean squared
error in the training and holdout subsamples. During early extinction, the consistent predictors across
all the modeling approaches included dark-enhanced startle, the depersonalization and derealization
subscale of the dissociative experiences scale, and the PTSD hyperarousal symptom score. These
findings offer novel insights into the modeling approaches and patient characteristics that may reliably
predict fear extinction in PTSD. Penalized regression shows promise for identifying symptom-related
variables to enhance the predictive modeling accuracy in clinical research.

Keywords: posttraumatic stress disorder; machine learning; fear extinction; psychophysiology;
skin conductance; startle; electrocardiography; penalized regression

1. Introduction

Laboratory fear extinction studies have provided the mechanistic basis of “gold-
standard” exposure therapies for posttraumatic stress disorder (PTSD; [1]), but as many as
half of patients do not recover [2]. Psychophysiological measures are promising clinical
tools for predicting fear extinction and eventually informing extinction-based exposure
treatments [3]. However, to fulfill this promise, novel statistical approaches may be needed
to increase the accuracy and generalizability of fear extinction predictions [3–5]. Numerous
clinical and self-report measures have been associated with fear extinction in some studies,
but their findings have not consistently replicated [4,6–8]. Thus, it may be beneficial to apply
novel bottom-up statistical approaches to simultaneously evaluate multiple predictors of
fear extinction in a single study [4,9,10]. Penalized regressions are a class of machine
learning approaches used in clinical psychology research to increase predictive accuracy,
improve generalizability, and select predictors [11–13]. Additionally, prior studies have
shown that penalized regression analyses can be combined with complementary OLS
regression analyses to identify promising predictors in clinical research [13,14]. However,
we are not aware of any studies that have applied penalized regressions, with or without
complementary OLS regression analyses, to predict fear extinction in PTSD samples.

Despite the clear clinical relevance of fear extinction in PTSD treatment [15], there is no
consensus regarding whether current PTSD diagnoses or symptom severity robustly predict
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fear extinction [7,9]. For example, some studies have found evidence of deficient fear extinc-
tion learning in PTSD patients versus controls, while others have not (as reviewed by [7]).
The findings have been similarly mixed when examining PTSD symptom severity [16,17]
and specific PTSD symptom clusters [16,18–20] as predictors of fear extinction. Several
explanations for these inconsistent findings have been proposed, including: the biologi-
cal [18,21] and clinical [21,22] heterogeneity of PTSD, the insufficient statistical power of
previous studies [7], and the methodological heterogeneity across previous studies [9,23].
These findings align with prior calls for an increased emphasis on the within-group dif-
ferences in fear extinction in PTSD [21,22]. Further, they highlight a need for strategies
to improve predictive performance and generalizability [7,9,23]. Ultimately, the accurate
and generalizable prediction of fear extinction in PTSD samples may inform advances in
precision extinction-based treatments [3,15].

Prior evidence has suggested that individual differences in demographic, self-reported,
clinical, and psychophysiological characteristics may predict fear extinction, but specific
robust predictors have yet to be identified (for reviews, see [4,6,24]). Each of the fol-
lowing variables has been associated with fear extinction, albeit inconsistently across
studies: sleep (for reviews, see [25–27]), sex [6,8,17,28], level and type of childhood trauma
exposure [29,30], level of adulthood trauma exposure [19,31], severity of depression symp-
toms [32,33], trait anxiety (reviewed by [6]), state anxiety (reviewed by [6]), and resting
heart rate variability (HRV) [24,34,35]. Although the literature thus far is inconclusive, each
of these patient characteristics is relevant to PTSD treatment and they warrant further study
as predictors of fear extinction.

Given the lack of consensus on predictors of fear extinction, it is important to consider
individual differences associated with fear physiology and PTSD that have not (to our
knowledge) specifically been examined in relation to extinction. A number of variables have
been associated with fear physiology and PTSD, including trait dissociation [36,37], a disso-
ciative clinical subtype of PTSD [37], trait resilience [38,39], anhedonia symptoms [40–42],
trauma exposure type [43,44], anxiety sensitivity [45–51], trait fearfulness [52], age [6],
race [53], baseline heart rate [54,55], and baseline startle [3,56,57]. Although we are not
aware of any studies examining these variables in relation to fear extinction specifically,
this evidence suggests that these patient characteristics may be relevant to fear extinction
in PTSD. For additional details, see the Supplementary Materials.

Physiological activity during stressors that occur before fear extinction learning also
may predict extinction in PTSD. One such stressor is the dark-enhanced startle paradigm,
which elicits physiological responses in an anxiety-provoking environment (i.e., an unfa-
miliar dark room) [58]. Alterations in parasympathetic (e.g., HRV) and sympathetic (e.g.,
heart rate) activity evoked by dark-enhanced startle tasks have been associated with PTSD
and fear extinction [58]. Similarly, fear acquisition, a pre-requisite for de novo laboratory
fear extinction [1], has been associated with physiological responses during extinction in
some PTSD studies [19,59]. Notably, in PTSD samples, responding to a safety cue (CS−)
during fear acquisition may be a better predictor of extinction than physiological responses
to a danger cue (CS+), suggesting a relationship between deficient safety inhibition and
impaired fear extinction in PTSD [59,60]. In addition to startle, skin conductance response
(SCR) evoked by a CS+ and CS− and individual differences in continuously measured
(i.e., tonic) heart rate and HRV during acquisition are candidate predictors of extinction
in PTSD [59–62]. Thus, all these physiological variables hold promise as predictors of
extinction in PTSD.

Approaches that can consider a range of potential predictors for fear extinction in-
clude novel multivariable statistical techniques such as penalized regressions. Applying
a data-driven approach that explores numerous variables in a single study may be more
impactful than a series of studies that examine one to a few at a time [4]. Penalized regres-
sions are machine learning algorithms that enable the simultaneous modeling of many
predictors [63,64]. As such, these models hold promise for improving the accuracy and
generalizability of multivariable predictions of fear extinction. Ridge Regression, Lasso
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Regression, and Elastic Net Regression (ENR) are three commonly used penalized regres-
sion models that have advanced the clinical research in other domains [65–67]. In a study
of depression treatment outcomes, each was found to be more accurate than traditional
Ordinary Least Squares (OLS) regression in both a training sample and separate holdout
sample [11]. This suggests that penalized regression algorithms can increase the accuracy
and generalizability of clinical predictions [11]. One advantage of penalized regression ver-
sus OLS regression is the use of regularization to address multicollinearity: this enables the
development of multivariable models that can account for many intercorrelated predictor
variables [63]. A second advantage is that Lasso and ENR perform variable selection by
including a penalty term that drops some variables from the model [11,13,68]. The penalty
term allows Lasso and ENR to select the subset of candidate predictors that minimize
the prediction error [11,13,68]. Thus, in addition to an increased predictive accuracy and
generalizability, Lasso and ENR are useful tools for selecting a parsimonious set of predictor
variables. For example, a prior study on depression treatment applied ENR to select the pre-
dictors of post-treatment outcomes [11]. This study investigated 51 pre-treatment patient
characteristics and identified a subset of 14 as predictors using ENR [11], demonstrating
that ENR can identify a parsimonious subset of predictor variables from a wide array of
potential predictors [11]. Similarly, ENR has previously been used to select an optimal
multivariable model to prospectively predict PTSD symptoms using imaging, demographic,
and clinical patient characteristics [14]. Moreover, simulation studies have demonstrated
that Lasso and ENR perform more accurate and parsimonious variable selection than other
procedures, such as step-wise variable selection [69–71]. Thus, previous work has provided
proof-of-concept for combining penalized regressions with complementary univariate and
multivariable OLS regression analyses to identify predictors. To our knowledge, no study
has yet applied this strategy to predict fear extinction in PTSD.

The aims of this study were to: (1) compare the accuracy and generalizability of penal-
ized regression (Ridge, Lasso, and ENR) and conventional OLS regression for predicting
fear extinction in a sample of trauma-exposed adults with a range of PTSD symptoms,
and (2) identify the clinical, psychological, and physiological characteristics that predict
fear extinction. Informed by the theory and evidence suggesting that FPS during specific
extinction phases may be a promising translational measure of fear extinction in PTSD
samples [19,72], we used FPS during early extinction and late extinction as our outcome
variables. Based on evidence that penalized regression approaches may improve the pre-
dictive accuracy in a cross-validated training sample and the generalizability to a holdout
sample [11,65,67], we hypothesized (Primary Hypothesis 1) that our three penalized re-
gression approaches would be more accurate than conventional OLS regression in both
the cross-validated training sample and a separate holdout sample. We also compared our
three penalized regression approaches, but did not have a specific hypothesis regarding
the most accurate. Based on evidence that startle variables are highly intercorrelated [73],
we hypothesized (Primary Hypothesis 2) that startle variables would be significant predic-
tors of FPS during both early and late extinction. We regarded the comparisons between
specific startle variables (e.g., baseline startle versus dark-enhanced startle) as exploratory.
Given the lack of consensus regarding predictors of fear extinction [6,10], we regarded all
non-startle predictor variables as exploratory.

2. Materials and Methods
2.1. Participants

The participants were 125 trauma-exposed adults recruited from the greater Boston
metropolitan area. The inclusion criteria were: the ability to provide written informed
consent, being aged between 18–55, exposure to at least one DSM-5 PTSD criterion A
trauma, and meeting the criteria for at least 2 PTSD symptom clusters, as defined by the
Clinician-Administered PTSD Scale for DSM-5 (CAPS; [74]). The exclusion criteria were:
a medical condition that would confound the results, history of head trauma, current
treatment with an antipsychotic, benzodiazepine use within 48 h, moderate-to-severe
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alcohol or substance use disorder in the past month, a current psychotic disorder, current
anorexia, current obsessive-compulsive disorder, a current manic or mixed mood episode,
and a lifetime history of schizophrenia or schizoaffective disorder. The Mass General
Brigham and Partners Human Research Committee approved the study procedures. All the
participants provided written informed consent. Table 1 shows the participant demographic
and clinical characteristics.

Table 1. Sample demographic and clinical characteristics.

Variable Mean ± SD or N (%) Missing (%)

Age, years 29.48 ± 8.27 0 (0)
Sex, female 96 (77) 0 (0)
Race/Ethnicity 0 (0)

Asian 13 (10)
Black 10 (8)
Hispanic non-white 12 (10)
Other 2 (2)
white 88 (70)

CAPS Total 29.10 ± 10.59 0 (0)
Intrusion (Cluster B) 7.79 ± 3.14 0 (0)
Avoidance (Cluster C) 3.48 ± 1.75 0 (0)
Negative Cognitions (Cluster D) 10.73 ± 5.15 0 (0)
Hyperarousal (Cluster E) 7.47 ± 3.72 0 (0)

PCL-5 Total 39.73 ± 13.65 0 (0)
CD-RISC Total 25.01 ± 6.99 3 (2.4)
STAI Trait Total 49.56 ± 10.95 4 (3.2)
STAI State Total 38.77 ± 10.35 4 (3.2)
SHAPS Total 27.73 ± 7.05 3 (2.4)
PSQI Total 8.19 ± 3.78 5 (4)
LEC Experienced + Witnessed 7.36 ± 4.06 0

LEC Experienced 4.48 ± 2.03 0
CTQ Total 58.44 ± 19.44 2 (1.6)

Sexual Abuse 10.89 ± 6.41 1 (0.8)
Physical Neglect 9.25 ± 4.07 1 (0.8)
Physical Abuse 9.41 ± 4.94 2 (1.6)
Emotional Neglect 14.41 ± 5.217 1 (0.8)
Emotional Abuse 14.51 ± 5.73 2 (1.6)

FSS Total 162.66 ± 38.36 3 (2.4)
ASI Total 25.56 ± 12.56 2 (1.6)
BDI Total 21.16 ± 10.14 0 (0)
DES Total 17.23 ± 10.72 3 (2.4)

Depersonalization and Derealization 10.04 ± 13.53 3 (2.4)
Amnesia and Dissociation 7.41 ± 7.22 3 (2.4)
DES Absorption and Imagination 25.51 ± 15.2 3 (2.4)

Note. CAPS = Clinician-Administered PTSD Scale, LEC = Life Events Checklist, FSS = Fear Survey Schedule,
ASI = Anxiety Sensitivity Index, CD-RISC = Connor–Davidson Resilience Scale, CTQ = Childhood Trauma
Questionnaire, PCL-5 = PTSD Checklist for DSM-5, DES = Dissociative Experiences Scale, BDI = Beck Depression
Inventory II, PSQI = Pittsburgh Sleep Quality Index, SHAPS = Snaith–Hamilton Anhedonia Pleasure Scale, and
STAI = State Trait Anxiety Inventory.

2.2. Procedures

After providing informed consent, the participants filled out self-report questionnaires
and completed clinical interviews administered by doctoral-level psychologists. During a
laboratory visit, the participants then completed a dark-enhanced startle task consisting of
three phases, as previously described [58]. After the dark-enhanced startle, the participants
completed a fear conditioning paradigm, as previously described [16].

2.2.1. Clinical Interviews

All the participants were administered the CAPS for DSM-5 [74] and the Mini Interna-
tional Neuropsychiatric Interview (MINI; [75]) by doctoral-level psychologists.
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The CAPS [74] is the gold-standard semi-structured interview for PTSD assessment [76]
and was used to determine a diagnosis of PTSD (Table 1). In addition, we derived the CAPS
total score and scores for each of the four symptom clusters (B-E), due to prior evidence
that the relationship between PTSD symptom severity and extinction may depend on the
PTSD symptom cluster examined [16,18–20]. The MINI was used to assess other DSM-5
disorders, including those relevant to the exclusion criteria above.

2.2.2. Self-Report Measures

Table 2 shows the full list of the self-report measures that we examined. Some of
these can be used to derive both total and subscale scores. Based on evidence and theory
from the literature, we included a combination of total and/or subscale scores for sev-
eral measures (see the list below and a detailed justification behind each decision in the
Supplementary Materials).

Table 2. Candidate predictors and outcome measures examined in this study, including estimates of
internal consistency for multi-item scales and psychophysiological measures.

Predictors
Clinical Measures Demographics

CAPS for DSM-5 total score (α = 0.87) Age ˆˆ
CAPS Intrusion (Cluster B) score (α = 0.68) ˆˆ Race (white, non-Hispanic) *ˆ
CAPS Avoidance (Cluster C) score (α = 0.61) **ˆˆˆˆ Sex (Female) ***
CAPS Negative Cognitions (Cluster D) score (α = 0.72)
CAPS Hyperarousal (Cluster E) score (α = 0.63) *****ˆˆ

Self-Report Measures Psychophysiological Measures

PTSD Checklist for DSM-5 Total Score (α = 0.90) ** Baseline Startle (rSB = 0.96) ****ˆˆˆˆˆˆ
LEC. Experienced + Witnessed (α = 0.76) *ˆˆ Dark-Enhanced Startle (rSB = 0.74) ********ˆˆˆ
LEC Experienced (α = 0.62) FPS to CS+, Acq block 1 (rSB = 0.79) *****
CTQ total score (α = 0.86) ˆ FPS to CS+, Acq block 2 (rSB = 0.81) ****ˆˆˆˆˆ
CTQ Emotional Abuse subscale score (α = 0.89) * FPS to CS+, Acq block 3 (rSB = 0.75) *****ˆˆ
CTQ Emotional Neglect subscale score (α = 0.92) *ˆˆ FPS to CS−, Acq block 1 (rSB = 0.71) *ˆˆˆ
CTQ Physical Abuse subscale score (α = 0.87) FPS to CS−, Acq block 2 (rSB = 0.78) ****ˆˆˆ
CTQ Physical Neglect subscale score (α = 0.80) ***ˆˆˆ FPS to CS−, Acq block 3 (rSB = 0.67) ****ˆˆˆˆˆ
CTQ Sexual Abuse subscale score (α = 0.92) HR, Baseline (rSB = 0.98)
DES total score (α = 0.90) ** HR, Dark-Enhanced Startle (rSB = 0.98) *
DES Absorption subscale score (α = 0.81) * HR, Dark blocks Dark-Enhanced Startle (rSB = 0.98)
DES Amnesia subscale score (α = 0.67) HR, Light blocks Dark-Enhanced Startle (rSB = 0.98)
DES Depersonalization subscale score (α = 0.82) ***** HR, Acq (rSB = 0.99) *ˆ
Anxiety Sensitivity Index total score (α = 0.88) ** HRV, Baseline (rSB = 0.94) **
STAI, State Anxiety score (α = 0.93) HRV, Dark-Enhanced Startle (rSB = 0.96) ˆˆ
STAI, Trait Anxiety score (α = 0.92) * HRV, Dark blocks Dark-Enhanced Startle (rSB = 0.92)
BDI total score (α = 0.89) *ˆˆ HRV, Light blocks Dark-Enhanced Startle (rSB = 0.91)
PSQI total score (α = 0.73) ***ˆˆ HRV, Acq (rSB = 0.99)
CDRISC total score (α = 0.85) SCR Difference score, Acq block 1 (rSB = 0.71)
Fear Survey Schedule total score (α = 0.93) ˆ SCR Difference score, Acq block 2 (rSB = 0.65) ˆˆ
Snaith–Hamilton Pleasure Scale total score (α = 0.89) SCR Difference score, Acq block 3 (rSB = 0.58)

Outcome Measures

FPS to CS+, Early Extinction (rSB = 0.82) FPS to CS+, Late Extinction (rSB = 0.73)

Note. Each * indicates one predictor criterion (as defined in the “Examining Specific Predictor Variables” Subsec-
tion of the Section 2) that was met for early extinction; Each ˆ indicates one predictor criterion (as defined in the
“Examining Specific Predictor Variables” Subsection of the Section 2) that was met for late extinction; α = Cron-
bach’s alpha; rSB = Spearman–Brown corrected split-half internal consistency; CAPS = Clinician-Administered
PTSD Scale for DMS-5; LEC = Life Events Checklist; CTQ: Childhood Trauma Questionnaire; DES = Dissociative
Experiences Scale; FPS = Fear-Potentiated Startle; HR = Heart Rate HRV = Heart Rate Variability; Acq = Acquisi-
tion; SCR = Skin Conductance Response; STAI = State and Trait Anxiety Index; BDI = Beck Depression Inventory,
II; PSQI = Pittsburgh Sleep Quality Index; and CDRISC = Connor–Davidson resilience Scale.

Trauma-Exposure and PTSD Symptom Questionnaires

The Childhood Trauma Questionnaire (CTQ; [77]) is a 28-item questionnaire used to
assess the occurrence and frequency of childhood abuse and neglect. We included the CTQ
total score and each of the 5 CTQ subscale scores: Emotional Abuse, Emotional Neglect,
Physical Abuse, Physical Neglect, and Sexual Abuse. The Life Events Checklist (LEC; [78] is
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a self-report measure of exposure to 16 types of potentially traumatic events. We included
the LEC Experienced + Witnessed and LEC Experienced scores. The PTSD Checklist for
DSM-5 (PCL-5; [79]) is a 20-item self-report measure that assesses the 20 DSM-5 symptoms
of PTSD. We included the PCL-5 total score in our main analyses and the PCL-5 cluster
scores in our post hoc analyses (see Section 3.3).

Dissociation Questionnaires

The Dissociative Experiences Scale-II [80] is a 28-item measure that assesses both
normative (e.g., daydreaming) and clinically significant dissociative experiences during
daily life. We included the Dissociative Experiences Scale total score and its 3 subscale
scores: amnesia, absorption, and depersonalization/derealization. The Multiscale Dis-
sociation Inventory (MDI; [81]) is a 30-item self-report measure of clinically impairing
dissociative symptoms. Although we did not have sufficient MDI data to include the MDI
in our primary analyses (see Section 3.3 and Supplementary Materials for details), our
post hoc analyses used the MDI total score and 6 MDI subscale scores: disengagement,
depersonalization, derealization, emotional constriction/numbing, memory disturbance,
and identity dissociation (see Section 3.3 for details).

Depression Questionnaires

The Beck Depression Inventory-II (BDI; [82]) is a 21-item inventory of depressive
symptom severity. We included the BDI total score. The Snaith–Hamilton Pleasure Scale
(SHAPS; [83]) is a 14-item anhedonia symptom questionnaire. We included the SHAPS
total score.

Fear and Anxiety Questionnaires

The State-Trait Anxiety Inventory (STAI; [84]) is a 40-item scale designed to measure
trait and state anxiety, and we included both subscale scores. The Fear Survey Schedule-II
(FSS; [85]) is a 51-item questionnaire assessing the tendency to experience fear in response
to various real-world stressors and stimuli. We included the FSS total score. The Anx-
iety Sensitivity Index-3 (ASI; [86]) is an 18-item questionnaire assessing fear of anxiety
symptoms. We included the ASI total score.

Sleep and Resilience Questionnaires

The Pittsburgh Sleep Quality Index (PSQI; [87]) is a 9-item questionnaire on sleep
quality and patterns. We included the PSQI total score. The Connor–Davidson Resilience
Scale (CDRISC; [88]) is a 10-item questionnaire assessing the dispositional tendency to
respond to stress and adversity with resilience. We included the CDRISC total score.

2.2.3. Laboratory Paradigms
Dark-Enhanced Startle

We used a dark-enhanced startle paradigm, as previously published [58]. First, during
a 2 min Baseline period, the participants acclimated to the laboratory environment and
no startle probes occurred. Second, during a 2 min Habituation phase, 8 startle probes
were delivered with the lights on. Third, during a 4 min Dark-Light phase, the participants
experienced 4 1 min blocks of alternating dark and light, with the order of dark and light
counterbalanced between the subjects. Each dark block and light block included 4 startle
probes. Across the entire dark-enhanced startle task, the inter-trial intervals ranged from
10 to 30 s.

Fear Conditioning

We used a fear conditioning and extinction paradigm, as previously published [16].
Briefly, this paradigm consisted of three phases. First, Habituation included 7 Noise Alone
(NA) trials, 4 CS+ trials, and 4 CS− trials. Second, Acquisition included 12 NA trials,
12 CS− trials, and 12 CS+ trials, with a US presented 0.5 s after the CS+ termination
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with 100% reinforcement. Third, Extinction included 16 NA trials, 16 CS− trials, and
16 CS+ trials, with no US presentation (0% reinforcement). Acquisition and Extinction were
pseudorandomized and counterbalanced between the subjects; the trials were presented
in blocks, with each block containing 4 trials of each type. All the trial durations were 6 s,
and each trial included an auditory startle probe. The auditory startle probes were 106 dB
40 ms white noise bursts with a near-instantaneous rise/fall time delivered 5.6 s into each
trial. The inter-trial intervals varied between 9 and 22 s. The stimuli were: a 140 psi airblast
delivered to the larynx, which served as the unconditioned stimulus (US), and colored
shapes displayed against a white background, which served as the conditioned stimuli.
The NA trials consisted of only the white computer screen and an auditory startle probe.

2.2.4. Physiological Data Acquisition and Processing
Startle

Electromyography (EMG) was continuously recorded from two 5 mm Ag/AgCl
electrodes filled with electrolyte gel and attached below the right eye. The EMG data
were acquired at a sampling rate of 1000 kHz, amplified, and digitized using the EMG
module of the Biopac MP150 (Biopac Systems, Inc., Aero Camino, CA, USA). The EMG
signal was filtered with low- and high-frequency cut-offs at 28 and 500 Hz, respectively.
The reflexive eyeblinks to all the startle probes within a response window from 20 to
120 milliseconds were quantified by calculating the difference in the amplitude between
the peak of the response and the EMG value at the response onset [89]. Based on prior
recommendations [89], the individual startle probes were examined, and invalid trials
(i.e., blinks in which there was excess noise, blinks which began prior to the latency window,
or trials in which a spontaneous blink occurred immediately before the startle probe) were
removed. Specifically, 5.47% of individual startles were deleted and treated as missing.

For each trial during Acquisition and Extinction, the FPS was calculated by subtracting
the startle magnitude to the corresponding noise-alone trial from the startle magnitude
to the conditioned stimulus (e.g., CS+ or CS−) trial. Thus, the FPS reflected the degree
to which the reflexive startle response elicited by the startle probe was elevated when in
the presence of the CS+ or CS−, relative to when no conditioned stimulus was present.
For each block during Acquisition and Extinction, the mean FPS was calculated across all
the trials in the block. The dark-enhanced startle response was calculated by subtracting
the mean startle magnitude during the light condition of the dark-enhanced startle from
the mean startle magnitude during the dark condition of the dark-enhanced startle. The
baseline startle response was calculated by taking the mean startle magnitude across all
7 Habituation trials that occurred before the dark-enhanced startle.

Skin Conductance

Skin conductance was continuously recorded from two 5 mm Ag/Cl electrodes filled
with isotonic paste and attached to the palm of the non-dominant hand. The skin conduc-
tance data were acquired at a sampling rate of 1000 Hz, amplified, and digitized using the
Galvanic Skin Response module of the Biopac MP150 (Biopac Systems, Inc., Aero Camino,
CA, USA). The SCR to all the conditioned stimuli within a response window from 0.9 to 6 s
after the stimulus onset was quantified by calculating the difference in the skin conductance
level between the response peak and the response trough [73,90]. The SCR to each trial was
square root transformed. Based on recommendations, [73,90], each individual SCR trial
was examined, and invalid SCRs (i.e., excessive noise) were treated as missing. SCR trials
for which no detectable response occurred (i.e., the recorded amplitude was less than the
minimum detectable amplitude of 0.2 µS) were treated as non-responses with an amplitude
of 0. Applying these criteria, 6.93% of individual SCRs were deleted and treated as missing.

For each block during Acquisition, the SCR difference score was calculated by subtract-
ing the mean SCR response to the CS− trials from the mean SCR response to the CS+ trials.
Additionally, the SCR habituation was calculated by taking the mean SCR across all the
Habituation trials before Acquisition.
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Cardiography

Electrocardiography (ECG) was continuously recorded from three 11 mm Ag/AgCl
electrodes filled with electrolyte gel and attached under each clavicle and on the left
forearm. The ECG data were acquired at a sampling rate of 1000 Hz, amplified, and
digitized using the Galvanic Skin Response module of the Biopac MP150 (Biopac Systems,
Inc., Aero Camino, CA, USA). For all the physiological tasks, the heart rate and HRV
features were extracted from 1 min intervals of continuous ECG data. Automated QRS
detection was performed in MindWare [91], and errors were detected using visual screening
and corrected manually. Based on recommendations [91], each 1 min segment of the ECG
data was examined for erroneous R peaks and cardiac arrhythmia. Any segment with
greater than 10% erroneous R peaks or greater than 2% cardiac arrhythmia was treated as
missing. Applying these criteria, 15.20% of individual ECG segments were deleted and
treated as missing.

The baseline heart rate and HRV were calculated as the mean of the heart rate and
HRV across all the 1 min segments during Habituation prior to the dark-enhanced startle.
The dark-enhanced heart rate and dark-enhanced HRV were calculated by subtracting the
mean of the heart rate across all the 1 min segments during light and the HRV across all
the 1 min segments during light, respectively, from the mean of the heart rate across all
the 1 min segments during dark and the HRV across all the 1 min segments during dark,
respectively. The heart rate during Acquisition and HRV during Acquisition were calculated
by taking the average across all the 1 min segments of the heart rate during Acquisition and
the HRV during Acquisition.

2.2.5. Statistical Analyses
Outcome Variables

Given the evidence from previous studies on the importance of considering temporal
dynamics when using FPS to measure the fear extinction in PTSD samples [18,19], we
followed that precedent to operationalize fear extinction. Specifically, we examined the FPS
during both early and late extinction as response variables. Early extinction was calculated
as the mean FPS to the CS+ across the first two extinction blocks and late extinction as the
mean FPS to the CS+ across the last two blocks of extinction [19].

Predictor Variables

The predictor variables included clinical symptom measures, self-report measures,
demographic characteristics, baseline psychophysiological measures, psychophysiological
measures taken during the dark-enhanced startle task, and psychophysiological measures
taken during fear Acquisition. See Table 2 for a complete list.

Analysis Pipeline

Figure 1 displays a schematic of our analysis pipeline. We split our sample of
125 participants into a training sample and holdout sample. Following precedent [11],
the 20% of the participants who most recently visited the lab were assigned to the holdout
sample (i.e., a temporal validation). The predictor variables were z-transformed. The data
preparation and model development only used data drawn from the training sample.
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Figure 1. Schematic of the analysis pipeline (adapted from [11]). The total sample (n = 125) was split
into a training sample (80%) and a holdout validation sample (20%). We compared the performance
of 3 machine learning algorithms (in addition to conventional linear regression) via 100 iterations of
10-fold cross-validation. The best-performing model (lowest mean squared error; MSE) was tuned
and implemented (without modification) in the holdout validation sample.

The missing data were imputed separately for the training and holdout samples using
the missForest [92] package in R [93]. For the 50 predictor variables in our models, the
missingness rates were as follows: 12 variables with 0 missing, 25 variables with less than
5% missing, 5 variables with between 5 and 10% missing, and 10 variables with between 10
and 18% missing. For the outcome variables, all the participants had complete data.

Comparing Predictive Models

For both of our response variables (i.e., early extinction and late extinction), we
compared the performances of 4 different types of predictive models, each of which was
implemented using the glmnet package in R [94] with the wrapper function provided by
the caret package in R [95]. We implemented three different types of penalized regression
model: least absolute shrinkage and selection operator (Lasso) regression, Ridge regression,
and ENR. For comparison, we also applied conventional ordinary least squares (OLS)
linear regression. To minimize the overfitting, we used repeated cross-validation with
10 folds and 100 repeats. Importantly, the cross-validation procedure ensured that all the
predictions of the FPS during early extinction and the FPS during late extinction for all the
participants were generated from models trained without using their own data. Within
the cross-validation step, we used the caret package’s resampling grid search to select
the optimal tuning hyperparameters, alpha and lambda [95]. Specifically, for ENR, each
combination of alpha and lambda was tested (from 0 to 1 by 0.05 increments) and the
optimal values were selected (i.e., the values that minimized the MSE in the cross-validated
training sample) [95]. The same procedure was applied for the Lasso and Ridge regression,
with the exception that Lasso only identified the optimal value for lambda (with alpha fixed
at 0) and Ridge only identified the optimal value for alpha (with lambda fixed at 0) [95].
We compared the models’ performances in the testing sample based on the cross-validated
mean squared error (MSE). As a lower MSE indicates a lower predictive error, models with
a lower MSE are more accurate predictive models. We also examined the mean absolute
error (MAE), which measures the predictive error such that a lower MAE indicates less error
and a higher predictive accuracy. Finally, we examined the R2 (coefficient of determination)
values based on the following formula: 1− [MSE/var(y)]. The R2 value provides a measure
of predictive accuracy on a standardized scale with a maximum score of 1, but it is not
lower bounded [96]. An R2 of 1 indicates a perfect predictive performance, an R2 of 0 is
equivalent to chance, and an R2 < 0 indicates a worse predictive performance than chance.

After the cross-validation, all the models were tuned on the entire training sample to
derive the final model parameters, which were then used to predict the outcome for the
holdout sample. The model performance in the holdout sample was evaluated as described
in the previous paragraph.
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Examining Specific Predictor Variables

For both early extinction and late extinction, we used 8 different criteria to identify the
predictor variables: (1) we identified the variables that were significant univariate predictors
of extinction at a Bonferroni-corrected threshold of p < 0.001, (2) we identified the variables
that were significant univariate predictors at a nominal significance threshold of p < 0.05,
(3) we identified the variables that were retained as predictors in Lasso, (4) we identified
the variables that were retained as predictors in ENR, (5) we identified the variables that
were statistically significant predictors when including the predictors retained by Lasso in a
multivariable regression model and applying a Bonferroni correction based on the number
of variables included in the model, (6) we identified the variables that were statistically
significant predictors when including the predictors retained by Lasso in a multivariable
regression model using a nominal significance threshold of p < 0.05, (7) we identified
the variables that were statistically significant predictors when including the predictors
retained by ENR in a multivariable regression model and applying a Bonferroni correction
based on the number of variables included in the model, and (8) we identified the variables
that were statistically significant multivariable predictors when including the predictors
retained by ENR in a multivariable regression model using a nominal significance threshold
of p < 0.05.

To evaluate criteria 1 and 2, we performed 100 univariate regressions in the whole
study sample. Specifically, we performed 50 univariate regressions to predict early extinc-
tion and 50 univariate regressions to predict late extinction (i.e., one univariate regression
per predictor variable). The predictor variables were z-transformed before their inclusion
in the models. The participants missing the predictor variable for a given univariate model
were dropped from the corresponding univariate regression. Criteria 3 and 4 were eval-
uated based on cross-validated Lasso and ENR performed in the training sample only.
Criteria 5–8 were evaluated based on multivariable OLS regressions performed in the
whole sample. For these multivariable OLS regressions performed in the whole sample, we
used the R default setting, which dropped the participants’ missing data for any predictor
from the model. The predictor and response variables were z-transformed before their
inclusion in the models, such that the estimated regression coefficients were fully standard-
ized and comparable across the predictors and responses. In addition to our 8 criteria, we
also examined the coefficients applied to each variable within each model. Our decision
to evaluate the predictor significance at both an uncorrected threshold of p < 0.05 and a
Bonferroni-corrected threshold was based on the importance of considering both type I
and type II errors for exploratory analyses [97]. Currently, there is no clear consensus with
regard to p-value correction in exploratory research [97]. While some have argued that
exploratory analyses should always apply a Bonferroni correction to control for type I
errors (e.g., [98–100]), others have argued that corrected p-values lead to excessive type
II errors and have recommended that no correction be applied (e.g., [101–104]). Thus, to
balance these considerations and maximize transparency, we reported the significance of
the findings at both corrected and uncorrected thresholds.

Post Hoc Analyses

Although our study included the Multiscale Dissociation Inventory (MDI; [81]), this
measure was not included in the primary analyses due to the excessive missing data in the
training sample (see the Supplementary Materials for details). We initially found that the
Dissociative Experiences Scale, and its depersonalization/derealization subscale, predicted
early extinction. Following up on this finding, we performed post hoc analyses of the MDI
and its subscales.

Finally, we performed a post hoc analysis of self-reported PTSD symptom severity
using the PCL-5 [105]. We initially found that PTSD Cluster E scores on the CAPS pre-
dicted early extinction; this is consistent with two prior studies that used CAPS [18,20],
but inconsistent with two prior studies that used a self-report measure called the PTSD
Symptom Scale (PSS) [16,19]. Although we did not have PSS data in this study, we checked
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to see if a different self-report measure, the PCL-5, would yield a finding consistent with
our CAPS finding.

3. Results

In the whole sample, the FPS levels were variable during early extinction
(range = −37.56–236.9; mean = 52.54; and standard deviation = 48.57) and late extinc-
tion (range = −27.07–147.73; mean = 33.46; and standard deviation = 37.04). In the training
sample, the FPS had a mean of 53.23 during early extinction (standard deviation = 48.96)
and a mean of 32.51 during late extinction (standard deviation = 35.49). In the hold-
out sample, the FPS had a mean of 49.96 during early extinction (standard deviation
= 48.01) and a mean of 37.12 during late extinction (standard deviation = 43.22). See
Supplementary Figures S1 and S2 for the distributions of the FPS during early extinction
and late extinction.

3.1. Model Fit Comparisons
3.1.1. Early Extinction

To predict the FPS during early extinction, the 10-fold repeated cross-validation pro-
cedure indicated that the optimal tuning parameters were as follows: Lasso Regression
(alpha 1, lambda 3.59); Ridge Regression (alpha 0, lambda 40.37); and ENR (alpha 0.1,
lambda 23.55). In the training sample, the cross-validation results indicated that the model
with the lowest prediction error was ENR (MSE = 1296.41; MAE = 28.30; and R2 = 0.50).
Likewise, the model with the lowest prediction error in the holdout sample was ENR
(MSE = 726.91; MAE = 21.29; and R2 = 0.57). The Conventional OLS Linear Regression was
the model with the highest prediction error in both the cross-validated training sample and
holdout sample, and was less accurate than chance in the holdout sample (R2 = −0.29). For
a comparison of the fit indices across all the models for predicting early extinction in the
cross-validated training and holdout samples, see Table 3.

Table 3. Performance of algorithms predicting early extinction in the (A) cross-validated training
sample, and (B) holdout sample.

(A) Cross-Validated Training Sample
Algorithm MSE MAE R2

OLS Linear Regression 2454.13 39.08 0.32
Ridge Regression 1301.99 28.02 0.49
Lasso Regression 1325.76 28.31 0.48
Elastic Net Regression 1296.41 28.30 0.50

(B) Holdout Sample
Algorithm MSE MAE R2

OLS Linear Regression 3947.74 49.80 −0.29
Ridge Regression 799.81 22.50 0.53
Lasso Regression 794.48 21.92 0.54
Elastic Net Regression 726.91 21.29 0.57

Note. MSE = mean square error; MAE = mean absolute error; R2 = 1− (MSE/var(y)); and OLS = ordinary least squares.

3.1.2. Late Extinction

To predict the FPS during late extinction, the 10-fold repeated cross-validation pro-
cedure indicated that the optimal tuning parameters were as follows: Lasso Regression
(alpha 1, lambda 2.98); Ridge Regression (alpha 0, lambda 48.63); and ENR (alpha 0.1,
lambda 17.50). In the training sample, the cross-validation results indicated that the model
with the lowest prediction error was ENR (MSE = 966.55; MAE = 23.60; and R2 = 0.29).
However, the model with the lowest prediction error in the holdout sample was Lasso
Regression (MSE = 2037.19; MAE = 32.18; and R2 = 0.29). The Conventional OLS Linear
Regression was the model with the highest prediction error in both the cross-validated
training sample and holdout sample, and was less accurate than chance in the holdout



Brain Sci. 2023, 13, 1131 12 of 25

sample (R2 = −0.61). For a comparison of the fit indices across all the models for predicting
late extinction in both the cross-validated training sample and holdout sample, see Table 4.

Table 4. Performance of cross-validated algorithms predicting late extinction in the (A) cross-validated
training, and (B) the holdout sample.

(A) Cross-Validated Training Sample
Algorithm MSE MAE R2

OLS Linear Regression 2114.49 37.74 0.14
Ridge Regression 987.29 24.05 0.29
Lasso Regression 1000.88 24.82 0.28
Elastic Net Regression 966.55 23.60 0.29

(B) Holdout Sample
Algorithm MSE MAE R2

OLS Linear Regression 4747.17 48.26 −0.61
Ridge Regression 2153.86 32.49 0.25
Lasso Regression 2037.19 32.18 0.29
Elastic Net Regression 2087.37 32.33 0.28

Note. MSE = mean square error; MAE = mean absolute error; R2 = 1− (MSE/var(y)); and OLS = ordinary least squares.

3.2. Predictors
3.2.1. Early Extinction

Table A1 shows the variables that met at least one criterion used to identify the
predictors of early extinction. Dark-enhanced startle was the only variable that met all eight
criteria. No variable met seven or six out of the eight criteria. Four variables met five out
of the eight criteria: the Depersonalization and Derealization subscale of the Dissociative
Experiences Scale, the Severity of CAPS Cluster E Symptoms (i.e., Alterations in Arousal
and Reactivity), the FPS to the CS+ during block 1 of the Acquisition, and the FPS to the
CS+ during block 3 of the Acquisition. Four variables met four out of the eight criteria:
Baseline Startle, the FPS to the CS+ during block 2 of the Acquisition, the FPS to the CS−
during block 2 of the Acquisition, and the FPS to the CS− during block 3 of the Acquisition.
Three variables met three out of the eight criteria: the total score on the Pittsburgh Sleep
Quality Index, the Physical Neglect subscale on the Childhood Trauma Questionnaire, and
female sex. Five variables met two out of the eight criteria, ten variables met one out of the
eight criteria, and twenty-three variables did not meet any of the eight criteria.

Across the 50 univariate regression analyses performed on the whole sample to predict
the FPS during early extinction, 7 were significant at the Bonferroni-corrected significance
threshold of p < 0.001, and an additional 10 were significant only at the uncorrected
(nominal) significance threshold of p < 0.05. Across the 50 potential predictor variables
included in the cross-validated training sample, Lasso selected 14 predictor variables and
ENR selected 23 predictor variables. When including the 14 predictor variables selected by
Lasso in a multivariable regression model using the whole sample, 1 variable was significant
at the Bonferroni-corrected significance threshold of p < 0.00357 (0.05/14), and an additional
3 variables were significant only at the uncorrected significance threshold of p < 0.05. When
including the 23 predictor variables selected by ENR in a multivariable regression model
using the whole sample, 1 variable was significant at the Bonferroni-corrected significance
threshold of p < 0.00217 (0.05/23), and an additional 6 variables were significant only at the
uncorrected significance threshold of p < 0.05. For detailed statistics from the univariate
and multivariable regression models, see Supplementary Tables S1 and S2. For a heatmap
comparing the coefficient weights of all 50 predictors using a simple univariate regression
and the four cross-validated machine learning models, see Supplementary Figure S3.

3.2.2. Late Extinction

Table A2 shows the variables that met each criterion used to identify the predictors
of late extinction. Across the eight criteria, zero variables met all eight criteria, and zero
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variables met seven criteria. Baseline startle was the only variable to meet six criteria.
Two variables met five criteria: the FPS to the CS+ during block 2 of the Acquisition and
the FPS to the CS− during block 3 of the Acquisition. The CAPS Cluster C score was
the only variable to meet four criteria. Four variables met three criteria: the Physical
Neglect Subscale of the Childhood Trauma Questionnaire, dark-enhanced startle, the FPS
to the CS− during block 1 of the Acquisition, and the FPS to the CS− during block 2
of the Acquisition. Ten variables met two criteria, four variables met one criterion, and
twenty-eight variables met zero criteria.

Across the 50 univariate regression analyses performed on the whole sample to pre-
dict the FPS during late extinction, 4 were significant at the Bonferroni-corrected signifi-
cance threshold of p < 0.001, and an additional 5 were significant only at the uncorrected
significance threshold of p < 0.05. Across the 50 potential predictor variables included
in the cross-validated training sample, Lasso selected 14 predictor variables and ENR
selected 22 predictor variables. When including the 14 predictor variables selected by
Lasso in a multivariable regression model using the whole sample, no variables were
significant at the Bonferroni-corrected significance threshold of p < 0.00357 (0.05/14), but
2 variables were significant at the uncorrected threshold of p < 0.05. When including the
22 predictor variables selected by ENR in a multivariable regression model using the whole
sample, 0 variables were significant at the Bonferroni-corrected significance threshold of
p < 0.00227 (0.05/22), but 5 variables were significant at the uncorrected threshold of
p < 0.05. For detailed statistics from the univariate and multivariable regression models,
see Supplementary Tables S3 and S4. For a heatmap comparing the coefficient weights of
all 50 predictors using a simple univariate regression and the four cross-validated machine
learning models, see Supplementary Figure S4.

3.3. Post Hoc Analyses
Early Extinction

The univariate regression analysis of the Multiscale Dissociation Inventory (MDI)
found an association between the MDI total score and early extinction that was signifi-
cant at the p < 0.05 level, but would not have survived correction for multiple compar-
isons (B = 0.012, p = 0.03081). Across the six univariate regression analyses examining the
six MDI subscales, two were significant at the p < 0.05 level, but not at the multiple compar-
ison threshold: MDI Depersonalization (B = 0.051, p = 0.02486) and MDI Disengagement
(B = 0.056, p = 0.01914).

Across the four univariate regression analyses examining the four PCL-5 PTSD
symptom cluster scores, only cluster E was significant (B = 0.052, p = 0.00692). This
finding survived correction for multiple comparisons across the four symptom clusters
(0.05/4 = 0.01250), but would not have survived correction across all the univariate regres-
sions used to examine early extinction.

4. Discussion

Identification of the statistical modeling approaches and patient characteristics that
predict fear extinction in PTSD may eventually inform advances in precision extinction-
based treatments [3,15]. Building on prior evidence that penalized regression modeling
may increase the predictive accuracy in clinical research [11,65,67], we compared the
accuracy of fear extinction predictions from three types of penalized regressions and
traditional OLS regression in a cross-validated training sample and holdout sample. In
line with our first hypothesis, all three penalized regression models were more accurate
than the OLS regression in both samples. In line with our second hypothesis, the startle
variables were more likely to be selected as predictors relative to the non-startle variables.
Exploratory comparisons between the patient characteristics highlight three consistent
predictors of early extinction: dark-enhanced startle, trait depersonalization/derealization,
and PTSD hyperarousal symptom severity. Overall, our study yields novel insights into
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which modeling approaches and patient characteristics may reliably predict fear extinction
in PTSD.

4.1. Modeling Approaches

The model comparisons indicated that the penalized regressions predicted fear extinc-
tion with a greater accuracy than the conventional (OLS) regression. Based on the MSEs
for the models predicting early extinction, the OLS regression had 85% more predictive
error than the least accurate penalized regression in the cross-validated training sample
(2454.13 − 1325.76 = 1128.37; 1128.37/1325.76 = 0.851111 × 100 = 85.1111%). In the holdout
sample, the OLS regression had 394% more predictive error than the least accurate penal-
ized regression. Similarly, for the models predicting late extinction, the level of error for the
OLS regression was more than double that for the least accurate penalized regression in
both samples. In summary, all three penalized regression models were substantially more
accurate and more generalizable to a holdout sample than the conventional regression.
In contrast, the difference in the MSEs between the most and least accurate penalized
regression models was within 4% in both samples and during both phases. Thus, the three
penalized regressions had relatively comparable predictive performances [106]. Overall,
these results suggest that penalized regressions may hold promise for helping to develop
clinically useful predictions of exposure therapy responses in PTSD. However, treatment
studies are needed to test this theory directly.

4.2. Predictor Variables

Our study is the first to demonstrate that adults with PTSD symptoms who exhibit
heightened, unconditioned fear in an anxiety-inducing context also display deficient condi-
tioned fear extinction learning. Across the 50 variables examined during early extinction,
dark-enhanced startle was the only variable identified as a predictor across all eight criteria
in our study. Notably, the effect of dark-enhanced startle on early extinction was significant
in the multivariable models that controlled for baseline startle and the FPS during Acquisi-
tion, suggesting that it has an effect above-and-beyond individual differences in general
startle reactivity and conditioned fear before starting extinction learning. One possible
explanation is that early extinction in an uninstructed paradigm like ours, where partici-
pants are not explicitly told that the CS+ will not be followed by the US during extinction,
has been found to partially capture a participant’s response to an uncertain threat [107].
Because dark-enhanced startle falls under the RDoC construct of a potential threat (“anxi-
ety”) [108–110], our findings may suggest that individual differences in response to these
potential threats partially modulate early extinction. Although fear conditioning falls under
the RDoC construct of an acute threat (“fear”) [109,111], it has been proposed that the RDoC
domains of potential and acute threats conceptually overlap within a higher-order internal-
izing dimension [112]. Our finding that dark-enhanced startle consistently and robustly
predicted early extinction aligns with this theory. Importantly, prior treatment studies have
found that conditioned physiological responses to trauma-related threats could be valuable
for developing personalized exposure therapies for trauma-induced psychopathology [3,5].
Our finding suggests that an elevated startle in an unconditioned anxiety-inducing context,
measured before treatment, may have additional utility in identifying trauma-exposed
patients who are likely to have difficulty extinguishing fear during exposure therapy.
However, clinical treatment studies are needed to test this hypothesis directly.

Our study is also the first to show that trauma-exposed individuals with elevated
dissociation, specifically depersonalization and derealization, may experience deficient
fear extinction learning. Among the 50 variables examined during early extinction, the
depersonalization and derealization subscale of the Dissociative Experiences Scale emerged
as one of the two non-startle variables predicting extinction across all the modeling ap-
proaches. Our finding that the depersonalization subscale of the MDI was also associated
with early extinction increases the confidence of our findings. It extends it to a clinical mea-
sure of dissociation that has previously been found to be relevant to PTSD treatment [113],
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physiology [37,114,115], and clinical presentation [116]. Elevated dissociation has been
theorized to hinder safety learning in PTSD, leading to heightened fear responses to non-
threatening stimuli [37]. Our study supports this theory, suggesting that individuals prone
to dissociation may be less attentive during early extinction, and therefore more likely to
experience a delay in learning that the CS+ no longer signals danger. Additionally, we
found that the disengagement subscale of the MDI was also associated with an elevated
FPS during early extinction in the univariate regression. However, it is important to note
that these univariate and multivariate effects did not survive the Bonferroni correction,
emphasizing the need for replication in larger samples.

Our finding that PTSD hyperarousal symptoms predicted the FPS during early ex-
tinction partially aligns with the prior literature and may have clinical implications. Prior
evidence has indicated that PTSD patients with elevated arousal-related symptoms may
benefit from tailored treatment approaches designed to address these specific symptoms
(for review, see [117]). Therefore, our finding suggests that targeted treatments for PTSD pa-
tients with elevated hyperarousal should account for the possibility of delayed or deficient
fear extinction. In line with this finding, a previous study by Galatzer-Levy et al. (2017)
found that a statistically identified latent subgroup of trauma-exposed adults who had
elevated FPSs to a CS+ during early extinction also had elevated DSM-IV hyperarousal
symptoms [18]. Similarly, Richards et al. (2022) found that a higher FPS across both con-
ditioned stimuli (CS+ and CS− combined) during early extinction was correlated with
elevated DSM-IV hyperarousal symptoms [20]. However, two prior studies found that
DSM-IV intrusion, but not hyperarousal symptoms, were associated with the FPS to a
CS+ during early extinction [16,19], contrasting with our findings. A post hoc analysis of
our data found that the association of early extinction with PTSD hyperarousal symptoms
(and no other symptom clusters) was consistent across two measures of PTSD symptoms,
suggesting that these divergent findings may stem from sample heterogeneity, rather than
measurement differences (see the Supplementary Materials for additional details).

4.3. Methodological Considerations

Our findings suggest that it may be more challenging to identify the modeling ap-
proaches and clinical characteristics that robustly predict late extinction relative to early
extinction. Overall, our machine learning prediction models had a worse accuracy and
generalizability for late extinction. Although the MSE and MAE could not be compared
across the different outcome variables, the coefficient of determination (R2) provided a
standardized measure of the model performance relative to chance [106]. A comparison of
the R2 values across the penalized regression models suggests that the predictions were
more precise in the training sample for early extinction (R2 range 0.48–0.50) versus late
extinction (R2 range 0.28–0.29). Similarly, in the holdout sample, the R2 values were higher
for early extinction (R2 range 0.53–0.57) versus late extinction (R2 range 0.25–0.29). A
similar pattern extended to the OLS models (see Tables 3 and 4). Additionally, there were
fewer consistent predictor variables for late extinction compared to early extinction. For
example, across all the 50 variables tested, the average number of the predictor criteria
met was 1.46 for early extinction versus 1.12 for late extinction. When excluding the startle
variables, this difference increased, with the average number of the predictor criteria being
1.12 for early extinction versus 0.5 for late extinction. This aligns with previous research,
indicating that the relationship between fear extinction and clinical variables is influenced
by the temporal dynamics and operationalization of fear extinction [9,18]. Therefore, future
studies focusing on clinical correlates and predictors of fear extinction may be more likely
to find an effect during early extinction, where there is generally a greater variability.

Although intuitive, the higher likelihood of finding predictors when using startle
versus non-startle variables underscores two critical challenges for FPS studies of fear
extinction: (1) the importance of controlling for differences in general startle reactivity [57],
and (2) the difficulty in identifying consistent relationships across different measurement
methods [6]. For both early and late extinction, the startle variables met an average num-
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ber of 10 predictor criteria, while the non-startle variables (clinical, self-reported, and
demographic variables) met only 0.81 criteria. Across the 13 non-startle physiological
variables (i.e., heart rate, HRV, and SCR variables), none met more than 2 out of the
8 predictor criteria, indicating a lack of consistent physiological predictors that were not
startle variables. In contrast, the Lasso and ENR models for early and late extinction did
retain multiple non-startle physiological measures as predictors. Further, each modality
of psychophysiological measure examined (heart rate, HRV, and SCR) was retained in at
least one cross-validated machine learning model, suggesting that these measures may
still have contributed meaningfully to the variance in the FPS during extinction. Overall,
these observations are consistent with prior evidence that individual differences in fear
extinction may result from the combined effects of numerous individual difference vari-
ables, with small but meaningful individual impacts [6]. Furthermore, the finding that
most candidate predictors were only identified using a subset of criteria and modeling
approaches contributes to the growing evidence that methodological differences can lead
to inconsistent findings in fear extinction research [9,23,118,119].

4.4. Limitations and Future Directions

Our study’s limitations need to be considered when interpreting its results. Statistical
power has been a concern in psychophysiology research, especially when investigating
individual differences and conducting multiple comparisons [120,121]. Our study was
not well-powered for detecting small effects that may be reflected in the broader PTSD
population. As a result, although most variables examined in our study were not consistent
predictors of extinction, this does not mean that a consistent effect would not be found in a
larger sample. Thus, the small sample size limits the generalizability of the findings, which
will require replication in larger samples. Moreover, our sample was predominantly white
and female, limiting the generalizability of our findings to samples with different racial
and sex compositions. To address this limitation, replication with more diverse samples
remains an important future direction. Further, our limited statistical power precluded us
from examining modeling approaches that account for interaction effects [106]. Because the
relationships between fear extinction and many of the variables in our study are likely to
be complex and interactive [6], we propose that future studies with larger samples should
build on this work. For example, future studies may expand upon the methodological
framework employed in this study by including interaction effects within a penalized
regression framework and by exploring machine learning approaches, such as decision
trees, designed to identify these interactions. Furthermore, it is worth noting that, while
FPS is a promising translational measure of conditioned fear in PTSD samples [72], it
indexes only one facet of the fear response [73]. The variables that were not consistent
predictors of the FPS during extinction in our study may be consistent predictors of other
fear extinction measures, such as amygdala activity or subjective fear [73]. Thus, we propose
that future studies extend this work by applying penalized regressions with supplemental
univariate and multivariable regressions to identify the consistent predictors of other fear
extinction measures.

5. Conclusions

In summary, we conducted a series of cross-validated penalized regressions, cross-
validated OLS regressions, and multivariable- and univariate-regression-based significance
tests to identify the modeling approaches and participant characteristics that predict fear
extinction in traumatized adults with a continuum of PTSD symptoms. The penalized
regressions outperformed the conventional OLS regression during both the early and late
extinction of the FPS, as demonstrated in the training and holdout samples. We identified
two novel predictors of early extinction: dark-enhanced startle and trait depersonaliza-
tion/derealization. Additionally, we extended the previous findings that arousal-related
PTSD symptom severity may predict early extinction. Future studies are needed to replicate
and extend these findings, particularly regarding their clinical implications. Despite its
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limitations, our study demonstrates the effectiveness of penalized regressions and offers
valuable insights into predicting fear extinction in PTSD samples. In time, this line of
work may inform the development of precision extinction therapies for individuals with
post-traumatic stress.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/brainsci13081131/s1, Supplementary Background pro-
vides a more detailed literature review on factors predicting fear extinction. Supplementary Methods
provide more details regarding clinical and self-report measures included in this study. Supplemen-
tary Tables show beta weights and p-values from all univariate regression models. Supplementary
Figures display the distribution of FPS during early extinction and late extinction in the full, training,
and holdout samples. Supplementary Discussion provides more detailed interpretation of post
hoc analyses of PTSD symptoms using the PCL-5. Supplementary References that appear in the
supplement in addition to those in the manuscript [122–164].
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Appendix A

Table A1. Candidate predictors that met at least one criterion for early extinction.

Variable UN BF UN 0.05 Lasso ENR MV Lasso BF MV Lasso 0.05 MV ENR BF MV ENR 0.05

CAPS Avoidance X X
CAPS Hyperarousal X X X X X
White, Non-Hispanic X
Sex (Female) X X X
PCL Total X X
LEC Experienced + Witnessed X
CTQ Emotional Abuse X
CTQ Emotional Neglect X
CTQ Physical Neglect X X X
DES Total X X
DES Absorption X
DES Depersonalization X X X X X
ASI Total X X
STAI Trait Total X
BDI Total X
PSQI Total X X X
Baseline Startle X X X X
Dark-Enhanced Startle X X X X X X X X
FPS to CS+, Acq block 1 X X X X X
FPS to CS+, Acq block 2 X X X X
FPS to CS+, Acq block 3 X X X X X
FPS to CS−, Acq block 1 X
FPS to CS−, Acq block 2 X X X X
FPS to CS−, Acq block 3 X X X X
HR, Dark-Enhanced Startle X
HR, Acq X
RSA, Baseline X X

Note. BF = Bonferroni significant; 0.05 = Nominally significant at p < 0.05; UN = univariate; MV = multivariate; ENR = Elastic Net Ridge; CAPS-5 = Clinician-Administered PTSD
Scale for DMS-5; LEC = Life Events Checklist; CTQ = Childhood Trauma Questionnaire; DES = Dissociative Experiences Scale; FPS = Fear-Potentiated Startle; HR = Heart Rate;
RSA = Respiratory Sinus Arrhythmia; ASI = Anxiety Sensitivity Index; STAI = State-Trait Anxiety Inventory; BDI = Beck Depression Inventory; PSQI = Pittsburgh Sleep Quality
Index; and Acq = Acquisition. The p-value significance thresholds were as follows: BF UN = p < 0.001; UN 0.05 = p < 0.05; MV Lasso BF = p < 0.004; MV Lasso 0.05 = p < 0.05;
MV ENR BF = p < 0.002; and MV ENR 0.05 = p < 0.05.
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Table A2. Candidate predictors that met at least one criterion for late extinction.

Variable UN BF UN 0.05 Lasso ENR MV Lasso BF MV Lasso 0.05 MV ENR BF MV ENR 0.05

CAPS Intrusion X X
CAPS Avoidance X X X X
CAPS Hyperarousal X X
Age X X
White, Non-Hispanic X
LEC Experienced + Witnessed X X
CTQ total score X
CTQ Emotional Neglect X X
CTQ Physical Neglect X X X
BDI Total X X
PSQI Total X X
FSS Total X
Baseline Startle X X X X X X
Dark-Enhanced Startle X X X
FPS to CS+, Acq block 2 X X X X X
FPS to CS+, Acq block 3 X X
FPS to CS−, Acq block 1 X X X
FPS to CS−, Acq block 2 X X X
FPS to CS−, Acq block 3 X X X X X
Heart Rate, Acq X
RSA, Dark-Enhanced Startle X X
SCR Difference score
(CS+-CS−) Acq block 2 X X

Note. BF = Bonferroni significant; 0.05 = Nominally significant at p < 0.05; UN = univariate; MV = multivariate; ENR = Elastic Net Ridge; CAPS-5 = Clinician-Administered PTSD
Scale for DMS-5; LEC = Life Events Checklist; CTQ = Childhood Trauma Questionnaire; DES = Dissociative Experiences Scale; FPS = Fear-Potentiated Startle; HR = Heart Rate;
RSA = Respiratory Sinus Arrhythmia; ASI = Anxiety Sensitivity Index; STAI = State-Trait Anxiety Inventory; BDI = Beck Depression Inventory; PSQI = Pittsburgh Sleep Quality
Index; and Acq = Acquisition. The p-value significance thresholds were as follows: BF UN = p < 0.001; UN 0.05 = p < 0.05; MV Lasso BF = p < 0.004; MV Lasso 0.05 = p < 0.05;
MV ENR BF = p < 0.002; and MV ENR 0.05 = p < 0.05.
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