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Abstract: Background: Attachment theory offers an important framework for understanding interper-
sonal interaction experiences. In the present study, we examined the neural correlates of attachment
patterns and oxytocin in schizophrenic patients (SZP) compared to healthy controls (HC) using fMRI.
We assumed that male SZP shows a higher proportion of insecure attachment and an altered level
of oxytocin compared to HC. On a neural level, we hypothesized that SZP shows increased neural
activation in memory and self-related brain regions during the activation of the attachment system
compared to HC. Methods: We used an event-related design for the fMRI study based on stimuli
that were derived from the Adult Attachment Projective Picture System to examine attachment
representations and their neural and hormonal correlates in 20 male schizophrenic patients compared
to 20 male healthy controls. Results: A higher proportion of insecure attachment in schizophrenic
patients compared to HC could be confirmed. In line with our hypothesis, Oxytocin (OXT) levels
in SZP were significantly lower than in HC. We found increasing brain activations in SZP when
confronted with personal relevant sentences before attachment relevant pictures in the precuneus,
TPJ, insula, and frontal areas compared to HC. Moreover, we found positive correlations between
OXT and bilateral dlPFC, precuneus, and left ACC in SZP only. Conclusion: Despite the small
sample sizes, the patients’ response might be considered as a mode of dysregulation when confronted
with this kind of personalized attachment-related material. In the patient group, we found positive
correlations between OXT and three brain areas (bilateral dlPFC, precuneus, left ACC) and may
conclude that OXT might modulate within this neural network in SZP.

Keywords: attachment; interpersonal functioning; theory of mind; social cognition; social emotion;
oxytocin; schizophrenia; neuroimaging; fMRI

1. Introduction

Humans are highly social animals, and the ability to remember, imagine, share, and
predict feelings, emotions, and attitudes of selves and of other individuals is encouraged
by society. Social species’ brains do not exist in isolation. Relational neuroscience, a broad
term, draws on a range of experiential, neuroendocrine, and functional magnetic resonance
imaging evidence to illuminate how early key relationships affect the development of
brain architecture and functioning [1]. Attachment theory [2] demonstrates the role of
childhood experience in shaping adult life and the importance of security for affective
flexibility. Developmental and attachment research offers an important framework for
interpersonal interaction experiences that play a critical role in regulating affect, cognition,

Brain Sci. 2023, 13, 1125. https://doi.org/10.3390/brainsci13081125 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci13081125
https://doi.org/10.3390/brainsci13081125
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0009-0000-2708-9605
https://orcid.org/0000-0002-1339-5246
https://doi.org/10.3390/brainsci13081125
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci13081125?type=check_update&version=2


Brain Sci. 2023, 13, 1125 2 of 29

and interpersonal behavior and are also related to interpersonal functioning, resilience,
and mental symptoms [3–6]. According to the attachment theory, interactions with early
main caregivers are memorized and organized as schematic, or script-like internal work-
ing models [7,8], the developmental base of an individual’s attachment representations.
Attachment patterns reflect individual differences in beliefs about self and others, interper-
sonal functioning, and affect regulation, and are associated with specific neural activation
patterns in various studies [9,10].

One of the most prominent psychiatric diseases, schizophrenia, is associated with
severe cognitive and social impairment, leading to a loss of autonomy, professional and per-
sonal achievements, and insecure attachment relationships [11,12]. Accordingly, social func-
tioning has been identified as one of the most important outcome variables in schizophre-
nia [13,14]. There is also evidence to suggest that social functioning in schizophrenia is
linked with patients’ cognitive capacities [15]. Individuals who suffer from schizophre-
nia often show a stable impairment in many aspects of social cognition, such as emotion
recognition, social perception, attachment, and empathy [11,16–20]. These poor abilities are
consistent over time, apparent in the prodrome of psychosis [21–24], and seriously impede
social competence [25,26]. One possible way to access problems associated with impaired
functioning and poor outcome refers to studies that have examined concepts like social
cognition, metacognition, and attachment styles in patients with schizophrenia, e.g., [27].

With regard to attachment and attachment representations, several studies demon-
strated their central roles in the development of several psychiatric disorders, (see re-
views [28,29]). In particular, they show that disruption in early attachment relationships
by experiences of loss or trauma may influence later pathology by leading to a series of
disturbed mental representations that are elaborated and consolidated over the life span.

Although attachment theory has had a significant impact on theories and research
concerning the nature of human relationships [2], there is limited research investigating
its relevance to psychosis and schizophrenia using the established Adult Attachment
Interview (AAI) [30–32]. In general, study results using different attachment measures like
self-reports are pretty heterogeneous.

Dozier et al. [28] reported that schizophrenic patients had more insecure-dismissing
attachment representations using the AAI compared to patients with an affective disorder.
This finding was replicated by Tyrrell et al. [33], who showed that 89% of schizophrenic
patients were classified as insecure-dismissing. When including the “unresolved” cate-
gory (four-way analysis), 44% of the patients were classified as unresolved/disorganized.
Reviews on psychotic phenomenology and attachment by Sood et al. [34] and Korver-
Nieberg et al. [35] summarized that insecure individuals were more vulnerable to develop-
ing maladaptive coping strategies in recovering from psychosis. Gumley et al. [36] reported
in their systematic review on attachment and schizophrenic patients using self-report mea-
sures small to moderate associations between greater attachment insecurity—reflected in
an anxious and avoidant attachment—and poorer engagement with services, more inter-
personal problems, more avoidant coping strategies, more negative appraisals of parenting
experiences and more severe trauma. The authors also found small to modest associations
between attachment insecurity and more positive and negative symptoms as well as greater
affective symptom problems. Moreover, Sood et al. [34] assumed that insecure attachment
is likely to lead to paranoia via negative beliefs about self and others, cognitive fusion, and
the use of maladaptive emotion regulation strategies. Korver-Nieberg et al. [35] considered
that understanding the role of attachment in symptoms may help to gain insight into the
development or persistence of symptoms. The importance of attachment experiences for
processing social information, metacognitive skills, and developing social relationships,
including therapeutic relationships, in samples with psychosis should be highlighted in
future studies.

Attachment theory more generally has been shown to be important in understand-
ing psychosis [37], with studies showing associations between attachment avoidance and
voice-hearing (e.g., [4,38]) and paranoia [3]. Lavin et al. [12] found in a systematic review a
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correspondence between paranoid symptoms and an anxious-preoccupied attachment style.
In the largest study to date examining attachment profiles in psychosis, Bucci et al. [39]
found that unresolved/disorganized attachment was associated with a higher proportion
of sexual and physical abuse and more positive symptoms, such as delusions and halluci-
nations, compared with other attachment patterns, suggesting disorganized attachment
might be a more putative attachment pattern compared with other types of attachment
for positive psychotic symptoms. In sum, all studies on schizophrenia including paranoid
symptoms and attachment reported a high amount of insecure attachment however with
no clear association to a specific attachment pattern.

1.1. Neurobiology of Attachment and Mentalizing in Psychosis: A Developmental Perspective

Debbané et al. [29] identified at least five neurobiological pathways linking attachment
to risk for developing psychosis when trying to better understand the neurobiological
mechanisms through which insecure attachment may contribute to psychosis. Their review
considered neuroscientific and behavioral studies that underpin mentalization as a suite of
processes potentially moderating the risk to transition to psychotic disorders. They devel-
oped a model where embodied mentalization would lie at the core of a protective, resilient
response mitigating the adverse and potentially pathological influence of the neurodevel-
opmental cascade of risk for psychosis. Their review proposes an integrative model of
psychosis based on three key assumptions: (1) attachment security constitutes a non-specific
protective factor in individuals at increased risk for psychosis; (2) disturbed attachment can
impact at least five different neurobiological pathways implicated in sustaining self and
other mentalizing; and (3) embodied mentalizing may serve as a moderating factor in the
expression of psychosis. Debbané et al. [29] assumed at the interpersonal level, attachment
security is associated with help-seeking behavior and with more favorable outcomes in
individuals suffering from psychosis. At the psychological level, attachment security pro-
vides a key developmental context to acquire the building blocks for robust social cognition
and mentalizing. In some individuals, developmental adversity may promote the use of
anxious, avoidant, or even disorganized attachment strategies. While these strategies may
constitute adaptation attempts to adverse and hostile environments, they tend to under-
mine the development of the capacity to attend to one and others’ minds (mentalizing),
and they affect the unfolding of social cognitive skills. The process of mentalizing may help
the individual compensate for endophenotypic impairments in the integration of sensory
and metacognitive information.

Imaging studies have also revealed significant abnormalities regarding mentalization
in schizophrenia. In addition to the brain volumetric abnormalities in pre-frontal and
temporal areas [40–42], associated with deficient mentalization, studies using different
functional imaging procedures have undoubtedly described atypical neural activation
characterized by over- and under-activation in mentalizing regions [43]. According to a
meta-analysis, the mPFC, the left orbitofrontal cortex (OFC), and a small portion of the
left posterior TPJ are regularly found under-activated, while over-activation was reported
in the more dorsal part of the TPJ bilaterally, in the medial occipito-parietal cortex, right
premotor areas, left cingulate gyrus, and lingual gyrus [44]. Moreover, different activation
has been shown in high-risk patients in the right TPJ, right middle temporal gyrus (MTG),
and left precuneus [45], and also in clinically asymptomatic relatives in dorsolateral PFC,
dorsomedial PFC, and right inferior frontal gyrus [43,46]. Despite the extensive research on
mentalizing in schizophrenia, the majority of studies have been focused only on explicit
mentalizing. Relatively little is known about potential alterations of implicit mentalizing.
Based on the neurodevelopmental hypothesis of schizophrenia [47], implicit mentalizing
is assumed to be also impaired, as early neurodevelopmental abnormalities may affect
the neural networks responsible for implicit mentalizing, which in turn may influence the
development of later explicit mentalizing skills. It is suggested that the impaired early
embryonic and later adolescent maturation of the PFC is likely to play a role not just in
the development of behavioral, but also in cognitive symptoms of SZP [48]. Studies on
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childhood-onset schizophrenia emphasize the loss in parietofrontal and parietotemporal
areas as well [49]. The abnormal growth process of the cingulo-fronto-temporal module
development and disturbance of maturational trajectories were also reported, which affect
several neuronal networks repeatedly found impaired in mentalizing studies (right IFG,
triangular and opercular part; right medial orbital superior frontal gyrus; right gyrus rectus;
left posterior cingulate gyrus) [50–53].

Furthermore, from the neurodevelopmental perspective, there is a well-documented in-
fluence of attachment insecurity on the hypothalamic-pituitary-adrenal (HPA) axis [54–57]
and regions with a high density of glucocorticoid receptors (e.g., hippocampus and pre-
frontal cortex) as well as brain regions sensitive to repeated neuronal excitation (e.g., amyg-
dala) [58,59]. Functional and structural changes in these areas have an important influence
on the disruption of cognitive processes associated with psychosis. Chronic exposure to
stress can produce extensive structural alterations in the PFC, including the loss of dendritic
length, branching, and spine density [60].

Insecure attachment patterns may also contribute to neurodevelopmental risk through
the dopaminergic and oxytocinergic systems, as well as bear influence on neuroinflam-
mation and oxidative stress responses [61]. The prosocial effects of oxytocin have been
specifically attributed to its stress-regulating properties [62], also in schizophrenia [63–65].
Oxytocin (OXT) has repeatedly been shown to improve different facets of social cognition,
such as emotion recognition [66–70], empathy [71–73], and trust [74,75].

In schizophrenia, OXT was reported to improve emotion recognition among schizophrenic
patients [76], as well as theory of mind and social judgments [77]. Another study found
significant correlations between OXT and social cognitive bias in the control group and in
patients with delusions, but not in patients without delusions. Social cognitive capacity only
correlated significantly with OXT in patients with delusions in schizophrenic patients [78].

In schizophrenia, further studies have shown associations between reduced serum
levels of oxytocin and difficulties in facial emotion identification [79], reduced plasma lev-
els of oxytocin among patients during trust-dependent interactions with others [80], OXT
plasma levels associated with severe life events and fewer important attached persons as
well as related to negative symptoms of schizophrenia [81], as well as negative associations
between oxytocin levels and severity of psychotic psychopathology [63]. According to
Tas et al. [62], the oxytocinergic system affects social cognition by acting upon subcortical
structures (i.e., amygdala) responsible for basic social cognitive processes (i.e., facial emo-
tion recognition), which in turn affect cortical areas (i.e., PFC), responsible for higher order
metacognitive processes such as theory of mind (ToM). While interpersonal arousal in the
context of insecure attachment may lead to transient disruptions in cortical brain areas
responsible for metacognitive processing (i.e., mPFC, posterior cingulate cortex (PCC)),
in healthy subjects the oxytocinergic system modulates amygdala-based stress and pro-
motes mutually beneficial contingent relational responses [82]. The prosocial effects of
OXT appear to be particularly pertinent through their modulation of avoidant attachment
responses. In the context of a genetic diathesis for psychosis, attachment insecurity and
concomitant depletion of available OXT could, therefore, amplify the vulnerability to
dopamine dysregulation and heighten the vulnerability to aberrant salience and low-grade
psychotic symptoms. Several studies have linked variations in the OXTR gene expression
to schizophrenia [83–85]. The findings from humans and animals suggest that early life
stress may promote oxidative damage in the brain, which is shown to both alter processes
of neurodevelopment [86] and enhance processes of neurodegeneration [87] that lead to a
loss of neural connectivity in various brain regions, including the PFC [88]. Brent et al. [61]
consistently showed in resting-state fMRI studies that greater alterations of mPFC func-
tional connectivity among individuals at genetic high risk are associated with greater levels
of psychotic manifestations.
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1.2. Hypotheses

In our study, we examine for the first time the neural correlates of attachment and
OXT in schizophrenic patients (SZP) compared to healthy controls (HC) using fMRI.

Our first hypothesis is that SZP will show a higher proportion of insecure attachment
patterns compared to HC.

Our second assumption is that SZP will show altered plasma OXT levels compared to
HC (see [29,81,89]).

On a neural level, we assume that SZP show during stimulation of the attachment
system a significantly increased neural activation compared to HC in areas related to vivid
and affective autobiographical memory (amygdala, hippocampus, precuneus, PCC, TPJ,
and STS) on affect-related but also neutral stimuli.

We are also interested in the interplay of OXT and brain response. Here we do not
have any directed assumptions so far.

2. Materials and Methods
2.1. Sample Characteristics

Twenty male patients with schizophrenia participated in the study matched for mean
age, years of education, verbal IQ, and handedness with healthy male participants (see
Table 1). All included patients were recruited from the Psychiatric Department of the
Ludwig-Maximilians-University Hospital, Munich. They fulfilled the DSM-IV [90] criteria
for chronic schizophrenia (paranoid, N = 13; disorganized, N = 5; undifferentiated, N = 2)
as diagnosed by consensus of the current treating psychiatrists and psychologists and
verified by the Structural Clinical Interview for DSM-IV (SCID-I German version, [91]),
internal consistency, α ≥ 0.70). The mean duration of illness was 3.96 years (SD = 3.18).
Symptom ratings obtained 2 to 4 weeks prior to scanning by the Positive and Negative
Syndrome Scale (PANSS, [92]), internal consistency, α ≥ 0.70 ≤ 0.85) indicated that psy-
chotic symptom levels were in the mild to moderate range (mean PANSS-total-score = 55.9
(13.6)) according to Leucht et al. [93]—a level that was supposed to not interfere with the
ability to perform the task. There were no between-group differences in PANSS scores
assessed by a Kruskal-Wallis-Test or duration of illness assessed by an ANOVA with respect
to different types of diagnosis (see Table 2). Patients with current diagnoses or histories
of traumatic brain injury, epilepsy, neurologic conditions, or other severe psychiatric con-
ditions (including major depression, bipolar disorder, PTSD, and borderline personality
disorder) were excluded from the study, as were patients treated with benzodiazepines.
Nineteen patients had been taking atypical neuroleptics (mean dose: 500 ± 200 mg of
Clozapine, Risperidone, or equivalent). An additional five patients had been receiving
typical long-term neuroleptics administered at the standard dose (mean dose: 7 ± 3 mg
of Haloperidol or equivalent), further, five patients were also treated by antidepressive
medication (mean dose: 20 mg ± 10 mg of Citalopram, or equivalent). One patient was
free of medication. Twenty healthy male participants were recruited from the community.
For inclusion, they had neither current symptoms nor a history of alcoholism, drug abuse,
neurological or psychiatric illness. They were supposed to be free of medication.

The healthy participants had been recruited via a newspaper advertisement. Data
collection took place in parallel for patients and healthy control subjects. Study participants
(SZP and HCP) were recruited verbally or by phone and were informed in advance about
the contents, inclusion and exclusion criteria of the study, as well as risks associated with
participation and remuneration (€50.-). Only participants who agreed a priori to participate
in the study were recruited.

The healthy comparison group was a sample parallelized with respect to age, gen-
der, and schooling. Additional exclusion criteria concerning the healthy sample to those
mentioned above were the presence of a schizophrenic disorder, an addictive or anxiety
disorder, and the regular use of medication.
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Table 1. Description of the sample.

Patients (N = 20) Controls (N = 20) Statistics Significance

Age (Mean, SD) 24.3 (3.7) 25.3 (3.2)
0.8 2 0.370 (n.s.)(range: 18–30) (range: 19–30)

Years of
education 12.2 (1.5) 12.6 (1.6) 0.5 2 0.482 (n.s.)

Handedness
right:17 right:17

2.57 3 0.349 (n.s.)left: 1 left: 3
ambydexter: 2 ambydexter: 0

VIQ (WST) 106.3 (9.8) 111.3 (11.7) 2.2 2 0.150 (n.s.)

STAI-T 40.7 (11.2) 1 36.5 (8.2) 1 1.8 2 0.189 (n.s.)
STAI-S 39.4 (7.5) 1 40.1 (8.3) 1 0.1 2 0.781 (n.s.)

PANAS
PA 30.2 (6.3) 1 34.9 (4.8) 1 7.0 2 0.012 (*)
NA 19.6 (4.8) 1 18.8 (6.7) 1 0.2 2 0.666 (n.s.)

Note: all values are mean values and standard deviations in paratheses, no differences were found in working
memory and alertness. 1 raw scores, not standardized, 2 median or f-value with df1 = 1 and df2 = 38, 3 exact χ2

value, * significant between-group difference for α = 0.05

Table 2. Patient Diagnosis Classification.

Statistics (Between
Diagnosis Group

Difference)
Significance

Diagnosis/ paranoid: 13×
schizophrenia disorganized: 5×

subtype undifferentiated: 2×
Duration of illness since

1. SPA 3.96 (3.18) 0.4 1 0.701 (n. s.)

PANSS
total

positive
negative

55.9 (13.4)
9.75 (2.5)
18.6 (5.5)

3.95 2

3.84 2

2.19 2

0.139 (n. s.)
0.147 (n. s.)
0.334 (n. s.)

1 f-value with df1 = 2 and df2 = 1 × 7, 2 χ2-value.

The final sample consisted of 20 healthy male control subjects (age: M = 25.25,
SD = 3.23 years; school education: M = 12.55, SD = 1.61 years) and 20 schizophrenic patients
(age: M = 25.25, SD = 3.23 years; school education: M = 12.55, SD = 1.61 years). The two
groups did not differ significantly with respect to age and schooling (see Table 1). We
controlled for current partnership and current fatherhood.

2.2. Measures
2.2.1. Attachment Measure as the Basis for the fMRI Paradigm

Participants were administered with the fMRI-adapted version of the AAP [94] (test-
retest reliability: Pearson’s r = 0.70, p < 0.001); 84% of the retest sample was classified in the
same main categories). The AAP is a well-validated measure [32,95–98] that assesses adult
attachment mental representation. This measure was used in two ways. The first was to
determine participants’ attachment classifications and use the narratives to develop indi-
vidualized individual narratives. The second was to use this material in the experimental
fMRI paradigm (see below). The AAP is based on the analysis of “story” responses to a set
of theoretically derived attachment-related drawings of scenes depicting solitude, illness,
separation, death, and potential maltreatment. Drawings portray adults and children alone
(three monadic pictures, representing abandonment) as well as adult-adult/adult-child
dyads (four dyadic pictures, representing interpersonal distress) and one neutral picture.
Individuals are asked to tell a story about each picture following a standardized set of
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interview probes. The classification is derived by evaluating the response patterns for
the whole set of seven picture stimuli, each response of which is evaluated for content,
discourse, and defensive processes. Organized attachment is defined in the AAP, following
the attachment literature at large, as secure, and insecure-dismissing and preoccupied
classifications; any frightening or threatening material that appears in the story is contained
(e.g., desperately alone, death, attack, abuse)—note that not all stories contain this material.
Transcripts are judged unresolved when there is no evidence of representational contain-
ment of frightening elements in at least one story. The nuances of coding are beyond the
scope of this paper, and the reader is referred to George and West [36] for details. AAPs are
transcribed verbatim from audio recordings for analysis.

The AAP has demonstrated solid psychometric properties, including test-retest relia-
bility, inter-judge reliability, and convergent and discriminant validity [32,96,97,99].

2.2.2. Clinical Measures

The Beck Depression Inventory-II (BDI, [100,101], internal consistency, α = 0.9), the
State-Trait Anxiety Inventory (STAI, [102], internal consistency, α ≥ 86 ≤ 0.95), and the
Positive and Negative Affect Schedule (PANAS, [103], internal consistency, α ≥ 0.84) were
administered before scanning to assess depression, anxiety and mood in both groups.
Between-group differences were examined by an ANOVA. Patients and healthy control
participants showed no significant differences in state or trait anxiety as well as in negative
mood. There were significant differences in depression and positive mood, whereupon
patients had higher BDI-II and lower PANAS-PA scores. Although the difference in BDI-
scores was highly significant between both groups, a mean BDI-score of 8.6 (SD = 6.3) in
patients indicated that there were no clinically relevant depressive levels in the patient
group (Cut-Off ≤ 10, [104]; Cut-Off ≤ 13; [101]).

We used a small neuropsychological battery to test patients and controls for handed-
ness, attention, verbal IQ, and working memory capacity as differences in those cognitive
functions could possibly interfere with performance in our task. Premorbid verbal IQ was
assessed using the WST [104], internal consistency, α = 0.94. Handedness was determined
by a questionnaire designed by Chapman and Chapman [105]. One subtest of the TAP
(Testbatterie zur Aufmerksamkeitsprüfung, [106]; internal consistency, α = 0.70) “Alertness”
was administered to measure basal attention as well as one subtest of the WAIS-III (Wech-
sler Adult Intelligence Scale: German version by von Aster et al. [107], internal consistency,
α ≥ 0.73 ≤ 0.94), “Letter-Number-Span” to assess working memory performance. When
conducting an exact Chi2-Test for handedness and an ANOVA for all other neuropsycholog-
ical measurements no between-group differences in cognitive functioning could be found.
Results are partly included in Table 1.

After a complete description of the study to the subjects, written informed consent
was obtained. The protocol according to the Helsinki Declaration was approved by the
local institutional ethics committee.

2.2.3. Oxytocin Measurement

Blood samples were collected between 8 a.m. and 9 a.m. two to four weeks before fMRI
measurement using EDTA tubes containing aprotinin 400 IU/ml blood to avoid hormone
degradation. Samples were kept on ice for a maximum of 1 h until centrifugation at 4 ◦C at
1500× g for 15 min. Supernatants were collected and stored at −80 ◦C until being assayed
(maximum 6 weeks). Oxytocin was measured using a commercially available immunoassay
ELISA kit (Assay Design, Ann Arbor, MI, USA) according to the instructions of the supplier.
Briefly, the samples were five-fold diluted in order to avoid matrix effects, 100 µL was used
in the assay. Analyses were carried out in triplicates. The intra-assay coefficient of variation
(CV) was 14.9% and the inter-assay CV, determined across 10 separate runs was 18.95%.
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2.2.4. Experimental Design

We used an event-related design (see Figure 1) for the study adapted from Buchheim
and colleagues [94]. Stimuli were derived from the Adult Attachment Projective Picture
System (AAP, [32,95]), an established and validated interview to assess attachment patterns
in adults. The AAP consists of seven drawn picture stimuli, designed to activate the
attachment system [32]. Two to four weeks prior to our fMRI experiment, AAP interviews
were conducted by a trained investigator. The administration included asking participants
in a semi-structured format to describe the scene in the picture, including what could have
happened to cause the scene, what characters are thinking or feeling, and what they think
might happen next in the scene. Three “core sentences”, that represented the attachment
pattern of the participants were extracted from the audiotaped responses to each AAP
picture stimulus by two independent certified judges (e.g., “A girl is incarcerated in that
big room”, “A child with separated parents, one is leaving now”). These sentences were
paired with the respective pictures to constitute the “personally relevant” trials tailored
to each participant. The same pictures were paired to neutral, self-irrelevant sentences
matched for length and describing only environmental aspects of the depicted situation
(e.g. “There is a window with curtains on the left and right”, “in front of the window there
is a house with a chimney”) and constituted the “neutral” trials, which were identical for
all participants. Each trial consisted of the presentation of either the relevant or neutral
sentence for 4.5 s, the corresponding picture for 4.9 s followed by a fixation cross for 9.9 s
(see Figure 1). Participants were instructed to mentally engage with the attachment scene
in the picture and its textual description. To ensure that the participants stayed focused
on the task they were told to press a button with their right index finger after reading the
sentence. Stimuli were presented within two blocks of six trials each. Each block contained
three different sets of personally relevant sentences and neutral sentences for each picture
stimulus. Trials alternated between personally relevant and neutral in groups of seven
AAP picture stimuli. Pictures were presented in the same order as in the interview to
activate the attachment system. In total, there were 84 trials resulting in a scanning time
of about 28 min. After scanning, participants were asked by questionnaire to rate on a
seven-point Likert scale the degree of emotional arousal and autobiographical relevance
of personally related and neutral sentences. There were no significant differences in the
ratings of personal relevant sentences between patients and controls, except patients rated
neutral sentences as more emotionally arousing than controls (F [1,38] = 4.58, p < 0.039)
(see also Haralanova et al. [108]).

2.2.5. Data Aquisition

MRI data were obtained using a Philipps Achieva 3.0 T TX (Philips Medical Sys-
tems, Best, The Netherlands) scanner, equipped with a standard sense-8 head coil. High-
resolution T1*-weighted 3D fast-field echo (FFE) sequences were obtained for anatomi-
cal reference (160 slices, TR/TE shortest, FOV 230 mm × 230 mm × 115.5 mm, matrix
240 × 240, voxel size 1 mm × 1 mm × 1 mm, flip angle 8◦, sagittal acquisition order,
duration 5 min). A total of 880 Echo Planar Imaging (EPI) T2*-weighted whole brain
volumes were acquired (33 slices, TR/TE = 2000/35 ms, flip angle 90◦, FOV 230 mm ×
230 mm × 115.5 mm, matrix 76 × 77, voxel size 3 × 3 mm, slice thickness 3.5 mm, ascend
sequential acquisition order, standard AC-PC orientation) split in 2 functional runs of
440 volumes each.



Brain Sci. 2023, 13, 1125 9 of 29Brain Sci. 2023, 13, x FOR PEER REVIEW 9 of 29 
 

 
Figure 1. Stimuli were presented within two blocks of six trials each. Each block contained three 
different sets of personally relevant sentences and neutral sentences for each picture stimulus. Trials 
alternated between personally relevant and neutral in groups of seven AAP picture stimuli. Pictures 
were presented in the same order as in the interview to activate the aEachment system. In total, 
there were 84 trials resulting in a scanning time of about 28 min. One measurement consists of 2 
blocks of 6 single trials each with 440 scans for each functional run. After each trial started the sen-
tence and the picture were presented for a total of 9.4 s. This was followed by 9.9 s of fixation (inter-
stimulus interval). 

2.2.5. Data Aquisition 

MRI data were obtained using a Philipps Achieva 3.0 T TX (Philips Medical Systems, 
Best, The Netherlands) scanner, equipped with a standard sense-8 head coil. High-reso-
lution T1*-weighted 3D fast-field echo (FFE) sequences were obtained for anatomical ref-
erence (160 slices, TR/TE shortest, FOV 230 mm × 230 mm × 115.5 mm, matrix 240 × 240, 
voxel size 1 mm × 1 mm × 1 mm, flip angle 8°, sagiEal acquisition order, duration 5 min). 
A total of 880 Echo Planar Imaging (EPI) T2*-weighted whole brain volumes were ac-
quired (33 slices, TR/TE = 2000/35 ms, flip angle 90°, FOV 230 mm × 230 mm × 115.5 mm, 
matrix 76 × 77, voxel size 3 × 3 mm, slice thickness 3.5 mm, ascend sequential acquisition 
order, standard AC-PC orientation) split in 2 functional runs of 440 volumes each. 

2.2.6. Statistical Data Analysis 

All statistical analyses of behavioral data were done using SPSS 21 (SPSS Inc., Chi-
cago, IL, USA). Statistical analyses of fMRI data were carried out with SPM8 
(www.fil.ion.ucl.ac.uk, released April 2009, accessed 1 May 2009) and MATLAB R2012a 
(MathWorks, Natick, MA, USA). Functional volumes were realigned to the first volume. 
After realignment, a mean EPI image was created, which was together with the functional 
data co-registered to the corresponding structural T1 image as well as a T1-template of 
standard stereotactic space defined by Montreal Neurological Institute (MNI) provided 
with SPM8, to facilitate normalization. Subsequently, images were spatially normalized 
to standard stereotactic space defined by MNI. Functional images were then smoothed 
with a 3D isotropic 8-mm full-width/half-maximum (FWHM) Gaussian kernel. Low-fre-
quency noise was removed by applying a high-pass filter (cut-off 128 s) to the fMRI time 
series at each voxel. Statistical analysis was carried out using the general linear model 
with a delayed boxcar waveform to model blood oxygenation level-dependent (BOLD) 
signal changes of personal relevant trials to neutral trials for each individual. Thereby only 

Figure 1. Stimuli were presented within two blocks of six trials each. Each block contained three
different sets of personally relevant sentences and neutral sentences for each picture stimulus. Trials
alternated between personally relevant and neutral in groups of seven AAP picture stimuli. Pictures
were presented in the same order as in the interview to activate the attachment system. In total,
there were 84 trials resulting in a scanning time of about 28 min. One measurement consists of
2 blocks of 6 single trials each with 440 scans for each functional run. After each trial started the
sentence and the picture were presented for a total of 9.4 s. This was followed by 9.9 s of fixation
(inter-stimulus interval).

2.2.6. Statistical Data Analysis

All statistical analyses of behavioral data were done using SPSS 21 (SPSS Inc., Chicago,
IL, USA). Statistical analyses of fMRI data were carried out with SPM8 (www.fil.ion.ucl.ac.
uk, released April 2009, accessed 1 May 2009) and MATLAB R2012a (MathWorks, Natick,
MA, USA). Functional volumes were realigned to the first volume. After realignment, a
mean EPI image was created, which was together with the functional data co-registered
to the corresponding structural T1 image as well as a T1-template of standard stereotactic
space defined by Montreal Neurological Institute (MNI) provided with SPM8, to facilitate
normalization. Subsequently, images were spatially normalized to standard stereotactic
space defined by MNI. Functional images were then smoothed with a 3D isotropic 8-mm
full-width/half-maximum (FWHM) Gaussian kernel. Low-frequency noise was removed
by applying a high-pass filter (cut-off 128 s) to the fMRI time series at each voxel. Statistical
analysis was carried out using the general linear model with a delayed boxcar waveform
to model blood oxygenation level-dependent (BOLD) signal changes of personal relevant
trials to neutral trials for each individual. Thereby only pictures following relevant or
neutral sentences were included as separate regressors in the model. Sentences were
left out since we expected different kinds of neural responses to textual and imagery
stimuli. Motion-correction parameters as well as ratings of emotional arousal of the relevant
and neutral sentences were included in the model as parameters at the first level. For
every subject, two contrasts were calculated: “pic_ir” (picture after irrelevant sentence >
baseline); “pic_re” (picture after relevant sentence > baseline). Statistical parametric maps
for each contrast were calculated on a voxel-by-voxel basis for each subject. Goodness-
of-fit (beta) values for each contrast resulted in a contrast map for each individual. The
statistical parametric maps from each individual data set were entered into second-level,
random effects analyse accounting for subject-to-subject variability using a multi-subject
repeated measures ANOVA “flexible factorial” 2 × 2 design (group vs. task) with 1 main
effect and 1 interaction: main effect “task” (pic_ir/pic_re) and interaction (group/task).

www.fil.ion.ucl.ac.uk
www.fil.ion.ucl.ac.uk
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Additionally, BDI and PANAS positive affect scores were included as parameters to account
for confounding intersubject variability of no interest. A voxel was deemed significant if
its z-score was greater than 3.21 corresponding to p < 0.05 FDR-corrected. Additionally,
cluster correction < 0.05 FDR was applied.

For correlation analysis of MRI data and behavioral as well as neuroendocrinological
data, regions of interest (ROI) analysis was carried out focusing on the regions identified by
whole-brain analysis. Statistical maps were limited to grey matter areas derived from Wake
Forest University PickAtlas (www.fmri.wfubmc.edu, accessed 1 January 2008). The mean
activation for every ROI of every subject was calculated. The resulting contrast values as
measures of effect size were then correlated with oxytocin- and PANSS-scores as well as
the duration of illness since 1st SPA using SPSS 21 (SPSS Inc.).

3. Results
3.1. Attachment Classifications

The coding of the attachment interviews [32] by a certified reliable judge (AB) revealed
significant between-group differences in the distribution of the four attachment patterns
measured by the AAP (secure, dismissing, preoccupied, unresolved) using exact Chi2
statistic (χ2 = 19.55; p < 0.000, see Figure 2). As expected, the patient group enclosed no
secure individuals, while 60% (n = 12) of the control group showed secure attachment
representations (χ2 = 21.95; p < 0.000). Importantly, patients displayed in accordance
with Lavin et al. [12] a significantly higher percentage of an insecure-preoccupied pattern
of attachment compared to controls (χ2 = 6.53; p < 0.031). Differences concerning the
distribution of dismissing (χ2 = 0.63; p < 0.695) and unresolved (χ2 = 1.31; p < 0.451)
individuals did not reach significance, whereupon both attachment patterns occurred
prevalent in the patient group.
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Figure 2. Proportional distribution of attachment classifications of patients and healthy controls by
χ2-testing.

3.2. Endocrinological Data

When comparing endocrinological data between both groups, the Levene-Test for
homogeneity of variances revealed a significant result for both measurements of OXT
(LOxy1 = 4.82, p < 0.034; LOxy2 = 5.73, p < 0.022; LOxymean = 5.35, p < 0.026). Therefore,
non-parametric-rank-based Wilcoxon-Mann-Whitney-Tests were used to compare oxytocin
between patients and controls. According to our hypothesis, healthy controls showed
higher OXT scores compared to patients at both points of measurement. For results see
Table 3.

www.fmri.wfubmc.edu
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Table 3. Comparison of endocrinological data of both groups.

Patients (N = 20) Controls (N = 20) Statistics Significance

Oxytocin
(1st measurement)

266.5 (106.7)
pg/mL

386.6 (221.4)
pg/mL −2.0 1 0.043 (*)

Oxytocin
(2nd measurement)

258.1 (105.6)
pg/mL

385.8 (200.4)
pg/mL −2.2 1 0.028 (*)

Oxytocin
(mean)

262.3 (102.0)
pg/mL

386.2 (208.3)
pg/mL −2.1 1 0.033 (*)

1 z-value, * significant between-group difference for α = 0.05.

3.3. Neuroimaging Data

First, we assessed between-group differences of patients and healthy controls: pa-
tients (>healthy controls) revealed significantly higher activation when watching AAP
pictures following personally relevant sentences versus AAP pictures following neutral
sentences in the anterior and posterior cingulate cortex, insula, precuneus, temporoparietal
junction, left premotor cortex, right supplemental motor area and left claustrum (Table 4,
Figure 3). Participants of the control group did not show any higher activation compared
to the patients.

Table 4. Significant peak activations (Peak-level: p < 0.05, FDR-corrected, cluster level: p < 0.05,
FDR-corrected) SZP > HC: personally relevant > neutral, pictures only.

Brodmann Area Hemisphere Z-Scores Cluster-Size MNI-Coordinates (x,y,z)

Cingulate
gyrus

BA24

BA31

BA32

L 4.56

2129

−16 −10 38
R 4.10 6 10 34
L 5.18 −16 −18 38
R 3.80 18 −36 44
L 3.30 −10 20 32
R 3.85 4 22 28

Precuneus BA7
L 3.82

2129
−20 −52 48

R 3.10 12 −38 54

TPJ BA40
L 3.89 2129 −36 −46 48
R 3.21 565 54 −30 28

Precentral
gyrus

BA6 L 4.36
2129

−32 −10 38
BA4 L 4.16 −30 −14 40

Postcentral gyrus BA2 R 4.01 565 60 −18 26

Insula BA13
L 3.69 402 −48 −16 14
R 4.06 565 42 −32 20

Claustrum - L 4.57 2129 −38 −4 6

Second, we performed a conjunction analysis to reveal shared activations of patients
and healthy controls in the above contrast: one significant cluster located within the
posterior cingulate gyrus was detected (Table 5).

Third, to assess associations between imaging data and clinical data as well as en-
docrinological data we correlated contrast values of regions identified by whole brain
analysis (cingulate gyrus, insula, precuneus, TPJ) with PANSS-Scores (positive, negative),
duration of illness since first SPA in patients and with oxytocin-scores in both groups.
Correlation analysis gave evidence for a significant negative association between PANSS
positive scores and activation of the bilateral precunei (rlP = −0.458, p < 0.042; rrP = −0.468,
p < 0.037; see Figure 2) as well with the response of the left TPJ (rlTPJ = −0.450, p < 0.047).
Another significant negative correlation was found between activation of the bilateral insu-
lae and the duration of illness since 1st SPA (rlI = −0.481, p < 0.032; rrI = −0.562, p < 0.001,
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Figure 3). At last, there was a significant positive correlation between oxytocin scores and
activation of bilateral precunei (rlP = 0.501, p < 0.025; rrP = 0.520, p < 0.019) and bilateral TPJ
(rlTPJ = 0.462, p < 0.040; rrTPJ = 0.543, p < 0.013) in patients but not in healthy controls (see
Figure 4).
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Figure 4. Positive correlation between oxytocin scores and ROI activation of (rlP = 0.501, p < 0.025;
rrP = 0.520, p < 0.019) and bilateral TPJ (rlTPJ = 0.462, p < 0.040; rrTPJ = 0.543, p < 0.013; L = left, R = right)
in patients, statistical pictures showing the activation on a color scale from dark red to light yellow =
statistical with yellow symbolizing stronger activation and red symbolizing weaker activation.
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Finally, we wanted to explore differences in neuronal activations of organized and
disorganized attachment patterns in patients even though there was no significantly higher
percentage of unresolved individuals in the patient group than in controls. Because of
the reduced number of subjects in each group in the analysis, we lowered the significance
level to 0.001 (peak level) and an additional voxel threshold of 50 contiguous voxels (see
Figure 5).
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Figure 5. T-contrast personally relevant > neutral, activations disorganized/unresolved patients >
organized/resolved patients (Peak-level: p < 0.001, uncorrected, additional threshold: 50 voxels,
R = right, L = left; statistical pictures showing the activation on a color scale from dark red to
light yellow = statistical with yellow symbolizing stronger activation and red symbolizing weaker
activation).

Disorganized/unresolved patients showed significantly higher activation in one clus-
ter located in the right TPJ (Table 6). Organized/resolved patients displayed no higher
activation than disorganized ones.

Table 6. Significant peak activations (Peak-level: p < 0.001, uncorrected, cluster threshold: 5 voxels)
unresolved > resolved patient group personally relevant > neutral, pictures only.

Brodmann Area Hemisphere Z-Scores Cluster-Size MNI-Coordinates (x,y,z)

TPJ 40 R 3.98 92 50 −48 56

4. Discussion

With regard to our hypotheses, a higher proportion of insecure attachment in schizophrenic
patients compared to secure individuals could be confirmed. As expected OXT levels in SZP
were lower than in HC. On a neural level, we found increasing response in patients within
a social mentalizing network when confronted with personally relevant sentences (priming)
before ambiguous attachment-relevant pictures in self-reflection networks (precuneus, TPJ,
insula, frontal areas). In our study, the patients’ responses might be considered a mode
of dysregulation when triggered by this kind of personalized material. In the patient
group, we found positive correlations between OXT and three brain areas (bilateral dlPFC,
precuneus, left ACC). OXT might modulate within this network.
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4.1. Discussion on Oxytocin Level

As expected, we found a higher amount of insecure attachment in SZP, but lower OXT
concentration in the same patient sample. Both findings are in line with prior descriptions
of schizophrenia and research results. According to our hypothesis, SZP had a lower
OXT concentration in blood plasma than the HC at both measurement time points. These
results are consistent with those of Rubin and colleagues [63] and Keri and colleagues [80],
who also found a lower OXT concentration in the blood plasma of SZP. They contrast
with the findings of Walss-Bass and colleagues [78], who found higher levels of OXT in
their study in a relatively large group of SZP. They found the highest oxytocin levels in
patients with pronounced delusions. In our sample, however, the patients had relatively
few positive symptoms, which could be at least partly responsible for the difference. With
regard to our results, however, it must be noted that the oxytocin levels varied widely
between individuals, especially in the control group. This fact, however, is in line with the
literature [109,110] and might be the main reason for the unclear findings with regard to
OXT in SZP.

We also tested whether there was a linear negative correlative relationship between
the level of oxytocin and the expression of patients’ positive and negative symptomatology.
These hypotheses could not be confirmed. Similar findings were also reported by Goldman
and colleagues [79] and Rubin and colleagues [63] in male schizophrenic patients.

4.2. Discussion on Attachment Pattern in Relation to Oxytocin

As assumed, the number of insecure attachment representations in SZP was signif-
icantly higher than in HC who only showed secure attachment representations. This is
in line with previous meta-analyses [12,28,70]. We could not confirm a predominance of
avoidant/dismissing attachment in our study. However, we found a higher amount of
insecure-preoccupied attachment patterns was higher than the other insecure-attachment
groups. This is in line with the systematic review by Lavin et al. [12] using self-report
measures (anxious attachment style as the equivalent of preoccupied attachment). Preoc-
cupied attachment is defined by hyperactivation of the attachment system represented
by vagueness, topics of conflict, and anger in the attachment narratives. Moreover, our
results demonstrate a higher number of unresolved patterns compared to HC, confirming
the results by Bucci et al. [39], though they did not reach significance.

Our findings are in line with Abu-Akel [111] and Abu-Akel and Bailey [112] who
theorize that in schizophrenia there is a so-called hyper-theory-of-mind ([112], p. 735) or
hypermentalization ([113], p. 2979).

Hypermentalization means that schizophrenic patients are not only able to imagine
that other people have mental states such as thoughts and feelings that influence and guide
their actions (mentalizing, [114]), moreover, they are convinced that others are furthermore
aware of patients’ mental states such as thoughts or desires, or that others can influence
their thoughts and feelings. The theory of hypermentalization contradicts the common
view of a number of authors [115–117], who attribute the difficulties of schizophrenic
patients in mentalizing tasks [118] to a reduced ability to mentalize. In light of Abu-Akel’s
theory [111,112], it would be conceivable that hypermentalization in schizophrenia is
also associated with hyperactivation of the attachment and social mentalizing system, as
hypothesized for insecure-unresolved attachment. Individuals with insecure-unresolved at-
tachment have often experienced in their past that they are unable to face threats alone and
consequently have a pronounced fear of separation. Such an enhanced fear response to sep-
arations would be consistent with our finding that schizophrenic patients have lower OXT
levels than predominantly securely attached healthy subjects, given the fear-attenuating
effects of OXT. In parallel, Pierrehumbert and colleagues [119] found lower plasma OXT
concentrations under stress in individuals with insecure-unresolved attachment. This was
not evident for individuals with other attachment patterns.

If we follow De Dreus’ [120] assumption that OXT improves the ability to differentiate
between self and others, it would be conceivable that OXT improves the ability for social
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cognition and mentalization by sharpening the ability to differentiate between one’s own
self and others or between one’s own needs and thoughts and those that one assumes others
have. Evidence for this consideration is provided by a study by Colonnello et al. [121]:
They were able to show that intranasal OXT application improved the ability of healthy
males to distinguish their own face from other faces after it had been altered by morphing.
This has been already shown in psychosis [79].

Conversely, this implies that low oxytocin levels are associated with a poorer ability
to discriminate between one’s own ideas and thoughts and those of others. Abu-Akel’s
concept of hypermentalization in schizophrenia [111,112] corresponds to an extreme form
of confusing one’s own and others’ ideas or inside and outside and would possibly be
related to patients’ OXT levels as well as insecure-unresolved attachment styles.

4.3. Discussion on fMRI Data
4.3.1. Stimuli-Based Discussion of Brain Activation

As we used paradigm-inducing attachment-relevant social scenes we expect alter-
ations/differences in brain areas concerning neural networks of self-reflection and auto-
biographical memory and self-relevant decision making including the precuneus, insula,
TPJ, lateral and medial prefrontal cortex, limbic system, anterior cingulate gyrus (cognitive
decision if relevant form or not), posterior cingulate (emotional judgment). Compared to
the HC, the SZP showed an altered neuronal activation pattern when their binding system
was activated with autobiographically relevant stimuli (compared to neutral stimuli).

4.3.2. Group Comparison

In accordance with our hypotheses, we found significantly stronger neuronal activa-
tion in part of the brain areas associated with autobiographical memory processes, such
as the precuneus, the PCC, and the TPJ, when patients viewed the AAP images paired
with core sentences from their AAP interviews compared to viewing the images paired
with neutral sentences. Contrary to our hypothesis, we did not find enhanced activation in
the hippocampal area, the amygdala, or the STS. Furthermore, as hypothesized, patients
showed enhanced neuronal activation in areas that are important for emotion regulation
processes, such as the ACC and peripheral areas of the dlPFC. Finally, in line with our
hypothesis an increased neuronal activation in empathy-related areas such as the insula,
but not in the fusiform gyrus or the dmPFC, could be detected in the patients.

These brain regions, which are more activated in the patient group, are part of a
network that is referred to in the literature as the mentalizing theory of mind network
(or mentalization network [113,122]. Other brain regions in this network are the OFC,
the vmPFC, the dmPFC, the ILFC, the amygdala, the striatum, and the STS [113,122,123].
This network is of elemental importance when we think about ourselves in relation to
significant others. Abu-Akel and Shamay-Tsoory [113] hypothesize that the first distinction
of whether a stimulus should be processed as related to self or others occurs in the TPJ.
According to their model self-related mental states are processed in the precuneus and
the PCC, and other-related states are processed in the STS. Subsequently, the neuronal
signals are transmitted via the striatum and the amygdala to the ACC. Depending on
whether the ideas or representations of the stimulus are more cognitive or affective, further
mental processing follows one of two pathways: Cognitive representations follow a dorsal
processing path, and affective representations follow a ventral processing path. The final
resulting decision and evaluation processes of cognitive representations take place in the
dmPFC, those of affective representations in the vmPFC, and the OFC (see Figure 6).
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Together with the pPFC, the dlPFC plays an important role in attention control and
emotion regulation. Furthermore, together with the PCC, it seems to be significantly
involved in the inhibition of action tendencies [124] as well as in the establishment of
associative links between contents of long-term memory [125,126]. The insula plays an
important role in the processing of sensory and emotional stimuli, being significantly
involved in interoception, the awareness of bodily states ([127], p. 2). In the course of this,
it is also relevant for judging the self-consciousness of actions, i.e., whether or not a sensory
event is influenced by our own actions. In this way, it allows us to distinguish between
inside and outside at a relatively basal cognitive level [127–129]. In addition, the insula
plays a role in the perception of pain in oneself as well as in others [130,131]. The ventral
ACC also plays an important role in self- and emotion-regulatory processes [132] and in
relation to the perception and regulation of pain experience [133,134].

The ACC also has functional connections to the limbic system [135]. Furthermore, the
ACC is involved in social decision-making processes. Its task is to judge whether a stimulus
is a reliable predictor of certain events or whether a stimulus is actually followed by a
certain expected event. Apps et al. [136] showed that when a stimulus did not prove to be
a reliable predictor of an event related to the subject himself, ventral parts of the ACC were
activated. If, on the other hand, a stimulus was not a good predictor for an event related to
others, dorsal parts of the ACC showed increased neuronal activation. Thus, similar to the
insula, the ACC is involved in judging self- and other-reference to stimuli, but at a higher,
more complex level of processing. In a study by D’Argembeau and colleagues [137], the
dmPFC, the ACC, and the precuneus were found to be active in appraising oneself versus
another person in relation to complex social features such as sociability.
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In accordance, Sajonz and colleagues [138] described that the precuneus, as well as
the PCC, showed an enhanced neural response to self-referential versus other-referential
stimuli. Cavanna and Trimble [139] hypothesize that the task of the precuneus is to relate
to past experiences with other self-related biographic episodic memory contents. This
assumption is supported by the study of Sajonz and colleagues [138], as the precuneus was
activated during the retrieval of episodic memory content in addition to self-referential
stimuli, whereas the PCC was not. Brewer and colleagues [140] discuss the importance of
the PCC for arising the feeling “caught up” in something and being unable to mentally
detach from it. Thus, in addition to processing self-referential stimuli, the PCC plays an
important role in the context of addictive pressure [141], resting networks [142], and when
we mentally digress and think about our past or future [143,144]. At a basal level, its activity
is associated with a decrease in attention to external processes and poorer performance in
attention tasks in which one is expected to respond to external demands [145]. The results
of a study by Sowden and Catmur [146] suggest that the right TPJ also has a specific role
in the context of social cognition: the switching between self- and object representations
or the attribution of a stimulus as coming from within or from outside by activating one
perspective and inhibiting the other. Towards the background of these literature findings,
the results of the group comparison suggest first of all that in the SZP, compared to HC,
there is an increased activation of self-reference processes or hypermentalization in the
sense of an increased tendency to relate stimuli to oneself as soon as their attachment
system is activated.

In the group of HC, on the other hand, only an increased activation in the area of
the PCC was found when viewing the pictures combined with core sentences compared
to pictures with neutral sentences. This could be a correlate for a mental digression into
one’s own past and would be plausible due to the autobiographical relevance of the core
sentences. However, HC showed also a number of deactivations in the above-mentioned
mentalization network, predominantly left hemispheric in the area of TPJ and precuneus,
striatum, and thalamus as well as in frontal and orbitofrontal areas. Based on Abu-Akel
and Shamay-Tsoory’s model ([113], Figure 6), this can be interpreted to mean that there
is reduced self-referencing or inhibition of areas significant for establishing self-reference
in healthy individuals. This seems counterintuitive at first. Thus, one would assume that
activation of the binding system in HC would lead to increased self-referencing, but maybe
less effortful and less affect-laden as in SZP. In our study, however, it should be kept in
mind that the AAP interview not only aims to activate the attachment system but also to
put the interviewee under attachment stress, i.e., to evoke aversive feelings.

The insula and dmPFC are important areas known to be crucial for the development of
emotion. In a study by Ochsner and colleagues [130] on the perception of pain, the subjects
were either subjected to mild physical pain themselves in the form of thermal stimulation
or were shown videos of accidents of other persons. In both conditions, activation of
dmPFC, insula, thalamus, and PC occurred, with dmPFC and insula showing greater
activation when the pain was self-inflicted on the subject. The inhibition of self-referencing
processes could therefore represent a kind of regulatory strategy with the aim of regulating
an intensified immersion in unpleasant autobiographical attachment episodes. In this
way, the emergence of the unpleasant feelings associated with these episodes could be
modulated. Neuronally, this could in turn translate into inhibition of areas associated with
the perception of pain. Evidence for this interpretation is provided by a study by Nolte and
colleagues [147]: Healthy subjects processed a revised version of the eye-particle test in the
fMRI scanner. They had either to estimate the age of the presented persons on the basis of
their eye parts or to judge their mental state or affect according to the original test. Prior
to this, either attachment-related or non-attachment-related stress was induced in each
subject using an appropriate tape script tailored for them. The authors found decreased
activation in the left STS, left TPJ and left OFC in healthy subjects after the induction of
attachment-related stress versus non-attachment-related stress. In parallel with the present
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study, this may suggest that attachment-related stress or its anticipation is associated with
the inhibition of parts of the mentalization network.

In SZP when viewing APP images according to core sentences activation patterns of
brain areas associated with the development of emotions and the experience of pain, such
as dmPFC, amygdala, and insula [130,148,149] and PCC [150,151] were found. This could
mean that there was an increased occurrence of negative emotions related to attachment-
related autobiographical memory content in the patients. Furthermore, increased activation
of the OFC and the STS was evident within the patient group. In Abu-Akel and Shamay-
Tsoory’s [113] model, the OFC, the dmPFC, and the STS form a subnetwork for processing
the mental states of other individuals. Taken together, this could mean that activation
of the attachment system in schizophrenic patients may lead to increased emergence of
negative emotions and difficulty in mentalizing other minds due to dysfunctional early
attachment experiences.

On the behavioral level, this hyperactivation in the sense of Abu-Akel and Shamay-
Tsoory’s [113] concept of hypermentalization could lead to temporary impairments in the
ability to correctly distinguish between internal and external stimuli or to a tendency to
mistakenly interpret internal, self-referential stimuli as external, other-referential ones. This
would correspond to the positive symptoms of schizophrenic patients in the form of ego
disorders or hallucinations.

The conclusion that activation of the attachment system is accompanied by an activa-
tion of the mentalization network seems plausible towards the background of attachment
theory and AAP-based stimuli. The latter are designed in such a way that the viewer
can easily identify with the depicted figures and in this way, memory processes of attach-
ment episodes from the own past are stimulated. As already shown, other patient groups,
such as depressive patients [94] or patients with borderline personality disorder [152] also
show increased neuronal activation in parts of their attachment network compared to HC.
Inconsistent results due to different paradigms.

4.3.3. OXT-Based Discussion of Brain Activation

The assumption of a significant negative or positive correlative relationship between
brain activation and oxytocin levels could not be confirmed. However, a trend could be
observed that the higher the oxytocin levels of the patients, the higher the activation in
their bilateral TPJ as well as their left precuneus. In Abu-Akel and Shamay-Tsoory’s [113]
model, the TPJ takes is a mediator between self- and other-referential processing pathways:
it has structural connections to the thalamus, the limbic system, and visual, auditory, and
interoceptive brain regions, likely integrating information from these areas and relaying
it to temporal and prefrontal cortex areas. Accordingly, the TPJ forms a hub where both
signals from the external world and interoceptive percepts are integrated and play a central
role in the classification of stimuli into self-referential and other-referential. Evidence for
these considerations is provided by a meta-analysis by van Veluw and Chance [129]. The
authors demonstrated that the TPJ is activated both in tasks involving the processing of
stimuli that refer to other people and in tasks involving the processing of self-referential
stimuli. There is evidence that oxytocin intake in competitive situations reinforces the
tendency to classify others according to whether they belong to one’s own group or to a
foreign, competitive group. Goh and Lu [122] considered oxytocin as a potential predictor
of ToM and social functioning in patients with schizophrenia.

4.3.4. Attachment-Based Discussion of Brain Activation

An increased presence of insecure attachment styles is usually associated with un-
pleasant relationship experiences during childhood and adolescence. Our findings, hence,
could indicate a connection between the increased activity of the mentalization network
and negative relationship experiences in the past.

Our main finding of increased TPJ activation in SZP with unresolved attachment
patterns is consistent with previous findings in healthy subjects that the attachment style is
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predicting the involvement of TPJ [153]. Baskak and colleagues showed that developed
attachment styles do have an effect on the representation of ToM in terms of cortical activity
in late adolescence. In their study avoidant/dismissive attachment is represented by
lower activity in the right superior temporal cortex during ToM, which might be related
to weaker social need and habitual unwillingness for closeness among their investigated
group of adolescents. In contrast to Baskak and colleagues, we used attachment-related
individual stimuli and probably stimulated the attachment-related memory network of
aversive self-related critical life incidents that is reflected by an increased TPJ response
in SZP compared to healthy controls. Though SZPs normally make an effort to protect
themselves by avoiding stimulation of adverse memories and overwhelming self-related
emotions, former studies on neutral stimuli showed that SZPs are even responsive to
neutral stimuli by precepting them as aversive [108].

4.3.5. Psychosis-Based Discussion of Brain Activation

The altered neuronal activation pattern showed a significant correlative relationship to
the patients’ positive symptoms. A negative correlation was detected between the bilateral
insula activation of the patients and their disease duration. This means that insula activation
decreased with increasing disease duration. There is evidence in the literature for decreased
volumes of the insular region of schizophrenic patients These differences in volume exist
prior to illness onset and continue to increase as the illness progresses [154,155]. In addi-
tion, there is evidence of decreased cortical density in the insular region of schizophrenic
patients [156–158]. In their review, Wylie and Tregellas [127] discuss the hypothesis that
deficits in recognizing emotions in faces, in pain perception, and in the attribution of sensory
percepts are related to dysfunctions in the insula in SZP. Recently, several authors [158–161]
reviewed the relationship between insular and cognitive impairment and interoception
in SZP. In light of these literature findings, it is conceivable that activation of the binding
system due to pre-existing dysfunctions in the insula leads to hyperactivation of the insula,
as is also found in auditory hallucinations [162]. The compensatory hyperactivation cannot
be down-regulated and contributes, among other things, to an impairment of self-non-self-
differentiation on a sensory level [163]. With increasing disease duration, there may be
a decrease in this hyperactivation as we observed due to progressive structural changes
in the insular region. Furthermore, in parallel to our hypotheses, a significant correlation
between brain activation and positive symptomatology was found in the patient group
when looking at pictures according to core sentences: The higher the activation in the
bilateral precuneus was pronounced, the lower the positive symptomatology proved to be.
In the Abu-Akel and Shamay-Tsoorys [113] model, the network of precuneus, PCC, IPL,
and vmPFC serves predominantly to process self-referential stimuli. In light of our prior
considerations that schizophrenic patients respond to activation of their attachment system
with increased activation of other-referential areas, it seems plausible that such patients
who also responded to attachment stress with activation of self-referential areas such as the
precuneus had a lower tendency to confuse self- and other-reference or suffered from less
positive symptomatology.

In connection with considerations on the origin of the self as well as the results of no
systematic correlation between the thought disorders and the positive symptoms in SZP,
this can be interpreted as an indication of an attachment-related, intersubjectively related
to the origin of the disturbance of self-experience in schizophrenia.

4.3.6. General Discussion

According to contemporary conceptualizations, psychosis is a neurodevelopmental
disorder emerging during late adolescence and/or early adulthood and associated with
the final stages of brain maturation [29]. However, neuroscience research suggests on the
one hand that experiences of social adversity during early childhood, such as attachment-
related adverse experiences (alone during threatening situations) or trauma [164], may
also contribute to alterations of neural development and brain dysmaturational processes
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during adolescence/early adulthood in those who go on to have psychosis [65]. On the
other hand, Brent et al. [165], Brent and Fonagy [166], and Debbané et al. [29] provided
support for future research regarding two inter-related, early putative protective factors of
developing a psychosis: attachment security and mentalizing (a social cognitive capacity
fostered by attachment security), which may together heighten resilience to developmental
interpersonal stress and moderate the risk for psychosis onset.

4.4. Limitations

Our sample is characterized by some specific patterns:

(a) With regard to psychotic symptomatology: The mean PANSS total score was about
60 points, therefore the patient sample can be considered psychopathological stable.
According to Leucht and colleagues [93], scores between 43 and 61 correspond to a
clinical global impression (CGI, [167]) of three or mildly ill ([93], p. 234). The highest
value corresponded to a CGI of four, i.e., moderately ill ([93], p. 235), and the lowest
to a CGI of two, respectively on the borderline of mental illness ([93], p. 234).

(b) With regard to medication: The intake of atypical antipsychotic drugs might have
affected OXT plasma levels. With the exception of one patient, all patients were
medicated, so that, as expected, there was little positive symptomatology such as
hallucinations and delusions, but a certain degree of negative symptomatology such
as social and emotional withdrawal and flattening of affect. A point of criticism to
be discussed in this context is the fact that one patient was not receiving neuroleptic
medication at the time of data collection. This is a potential confounding variable.
However, the non-medicated patient in our sample did not show any abnormal results
compared to the other medicated patients with respect to his neuropsychological
functioning level or the pattern of his brain activation in the two fMRI paradigms.

(c) Sample characteristics: Our findings are limited by sample size, since in both groups
only 20 subjects could be finally included for statistical analysis. Further studies have
to be conducted to provide more evidence in larger samples and for differentiating
between different subtypes of psychosis and different states of disease and separating
by considering the endurance of the disease since the first episode. Our results might
be gender-related since we included only male patients and cannot be transferred to
female patients. The results therefore cannot be generalized to a general schizophrenic
population. Nevertheless, our findings indicate that an unresolved attachment style
in schizophrenia is related to less concentrated OXT and to a cluster of increased brain
activation within the mentalizing neural network.

(d) Since a cross-sectional design is used, behavioral and neurophysiological parameters
cannot be analyzed over time. To conclude cause- and effect relationships is difficult
because the data are based on a one-time measurement of both the alleged cause and
effect.

(e) With regard to attachment representations a limited generalizability can be assumed
and has to be addressed in further studies. However, we selected one of the most
widely accepted, well-validated methods of assessing individual differences in attach-
ment representations in adolescence and adulthood.

5. Conclusions
5.1. Conclusion with Regard to Developmentals Aspects

Research on the social complexity of rearing environments in rats suggests that en-
vironments rich in social and cognitive complexity are associated with significantly more
synapses per neuron throughout the visual cortex compared to simple socially paired
housing and individual housing [168]. These effects remained even after later environ-
ments were changed or reversed, suggesting that plastic changes associated with early
experiences are persistent. Throughout the earliest stages of attachment, at least two brain
structures, the locus coeruleus, and the amygdala, interact to facilitate the familiarity and
reinforcement associated with the caregiver in filial bonding.
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Parents and their infants are physiologically entrained, with patterns of heartbeat,
hypothalamic–pituitary–adrenal activation, and oxytocin levels mirroring and responding
to each other. Security-providing parents intuitively know and are rewarded by their
infants, skillfully regulating their needs and affects. For insecure caregivers, negative effects
in their own children and others evoke rejection and diminished oxytocin reward. Clinical
and animal models [169] show that attachment trauma and other adverse experiences in
early life influence the developing brain with long-term psychopathological consequences.

5.2. Conclusions with Regard to Prevention and Psychotherapy

Studies (see also Holmes and Slade [1]) of the physiology of therapist–client attach-
ment are rare, but it is likely that a form of biobehavioral synchronization also plays a
significant role in the success of psychotherapy, especially at mutative moments in sessions.
Therapists vary widely in their effectiveness [170]: therapists can, due to their attachment,
either react intrusively with overempathic responses or make cuttingly dismissive inter-
pretations, however seemingly accurate [171]. As a meta-model, attachment-informed
psychotherapy ([1,172], AIP) emphasizes the centrality, specificity, and continuity of rela-
tionships and the modulation of threat. Attachment skills of therapists include the ability
to recognize that threat triggers attachment behavior and is incompatible with emotional
exploration and the ability to co-regulate affective states of hyper- or hypo-arousal [173].
Psychotherapy typically helps people at times of transition as a preventive intervention.
Secure attachment makes the uncertainties of novelty tolerable, and resolvable with the
help of an attachment figure. In insecure attachment, agency is compromised, while rigid
prior probabilities are clung to, either by isolationism or over-dependency. In a long-term
therapeutic relationship, as therapists’ and clients’ oxytocin systems become entrained,
this cross-talks to the dopamine system. This could be preventive in high-risk-populations
or even in schizophrenic patients to regulate affective and arousing states in interper-
sonal relationships.

5.3. With Regard to a Key Contemporary Attachment Concept: Mentalising

Mentalizing as an attachment-related concept focuses on prefrontal cortex–amygdala
connectivity. In educational and psychotherapeutic contexts, arousal is managed with
the help of a trusted intimate other or secure base, enabling the individual to think
about thoughts and feelings, one’s own and those of others, and the interactions be-
tween them [174]. Hence, two brains are better than one for working on interaction and
binding. In SZP, however, deficits in explicit and implicit mentalizing are described by
Csulak et al. [175]. Based on the research results, systematic reviews, and meta-analyses,
the intention attribution of the patients is damaged [176–178]. Mentalizing impairments
are characteristic both in the acute and remission phases, and they can be detected in
first-degree, clinically asymptomatic relatives [46,118,179,180]. Mentalizing may be defi-
cient even before the onset of the disease, may predict psychotic conversion, and often
worsens before the first episode [118,181,182]. Long-term studies of social functionality
also suggest that functionality is already weaker in childhood and deteriorates markedly
further in adolescence, which in turn significantly predicts impaired functionality over
a 20-year period [183]. It may have even a therapeutic significance [184], as unaffected
implicit mentalizing skills may represent a significant base for remediating the impaired
explicit mentalizing skills. However, impaired implicit mentalizing can be a significant
limit in remediation. Recently, Langdon et al. [184] highlighted the therapeutic implication
of the differential effects of implicit and explicit aspects of mentalizing, as the remediation
of explicit mentalizing may require interventions to strengthen compensatory strategies,
while implicit mentalizing may require a more basic approach using techniques to improve
attentional processes to support a more efficacious detection of agency signals. This could
be true in SZP.

Even if it is important to note however that more studies are needed for a better
understanding of the relationship between oxytocin levels, mentalizing and attachment
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patterns and psychotic symptomatology, the contribution of this study is that it provides
important insight into the relationship between clinical, behavioral and neurophysiological
patterns. If we can assume that individuals do, in fact, develop relationships with others
in a way consistent with generalized representations of biographical experiences based
on mentalizing capabilities, a guide for prevention and interventions could be developed.
This might have an impact on the development and maintenance of psychotic symptoms
already during adolescence.
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