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Abstract: In today’s world, stress is a major factor for various diseases in modern societies which
affects the day-to-day activities of human beings. The measurement of stress is a contributing
factor for governments and societies that impacts the quality of daily lives. The strategy of stress
monitoring systems requires an accurate stress classification technique which is identified via the
reactions of the body to regulate itself to changes within the environment through mental and
emotional responses. Therefore, this research proposed a novel deep learning approach for the stress
classification system. In this paper, we presented an Enhanced Long Short-Term Memory(E-LSTM)
based on the feature attention mechanism that focuses on determining and categorizing the stress
polarity using sequential modeling and word-feature seizing. The proposed approach integrates
pre-feature attention in E-LSTM to identify the complicated relationship and extract the keywords
through an attention layer for stress classification. This research has been evaluated using a selected
dataset accessed from the sixth Korea National Health and Nutrition Examination Survey conducted
from 2013 to 2015 (KNHANES VI) to analyze health-related stress data. Statistical performance of the
developed approach was analyzed based on the nine features of stress detection, and we compared
the effectiveness of the developed approach with other different stress classification approaches. The
experimental results shown that the developed approach obtained accuracy, precision, recall and
a F1-score of 75.54%, 74.26%, 72.99% and 74.58%, respectively. The feature attention mechanism-
based E-LSTM approach demonstrated superior performance in stress detection classification when
compared to other classification methods including naïve Bayesian, SVM, deep belief network, and
standard LSTM. The results of this study demonstrated the efficiency of the proposed approach in
accurately classifying stress detection, particularly in stress monitoring systems where it is expected
to be effective for stress prediction.

Keywords: deep learning; long short-term memory; KNHANEs-VI; stress classification

1. Introduction

In the last decades, many researchers have observed that there are inextricable links
between the mental health of the individual and his/her physical condition [1]. Recently,
it has become an important and embedded part of our professional life, especially in
a severely competitive economy. Stress mostly occurs due to increased work pressure
which might occur in any form [2]. There are several analyses have been conducted by
different researchers to find the key source of increased stress levels [3]. In the workplace,
an individual must constantly face different situations, including but not limited to job
insecurity, work overload, lack of job satisfaction, and the pressure to stay up-to-date.
Stress is a critical factor in modern societies. It is increasing issue and it has become an
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unavoidable part of our daily lives. The continued presence of stress can lead to some bad
health effects, such as susceptibility to infections, high blood pressure, lack of sleep and
cardiovascular disease. All of these conditions result in mental stress which has become a
leading cause of several diseases. In addition, stress can be examined as s physiological and
psychological response of the body to adverse environmental situations. Consequently, the
effective and accurate detection of stress can lead to specific prevention and intervention
strategies in personal healthcare [4,5]. Thus, it is crucial to identify and control stress at an
early stage to prevent stress-related illnesses. Selye [6] introduced the terms “eustress” and
“distress” to differentiate between positive and negative stress, respectively. Eustress arises
from positive changes or demands that do not pose a problem for coping or adapting to
new situations. It can assist us in achieving our goals and enhancing productivity [7].

Stress detection is generally evaluated subjectively and measured by surveys; so far,
numerous studies have been conducted on the association between physical activity and
lifestyle, although the majority have been constrained to certain categories and factors. [8].
Figure 1 presents the conceptual design of our research study on different aspects of stress.
In this research, the significance of sleep, number of working hours, physical activity and
heart rate with regard to stress levels are analyzed. Episodic stress occurs when stressful
situations happen more commonly but intermittently. It is associated with a highly stressful
and disorganized life [9]. Lastly, chronic stress, which is the most damaging, occurs when
stressors are persistent and long-lasting, such as family issues, job strain, or poverty [7].
To prevent stress from reaching its highest level and to reduce associated risks [10], it is
essential to identify and address it during its early phases, specifically when it is still in the
form of acute or episodic stress.
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In Europe, stress ranks as the second most prevalent lifestyle health issue, trailing
behind musculoskeletal disorders which can sometimes manifest as stress symptoms [7,11].
The financial impact of lifestyle stress was significant in 2002, costing EU enterprises €20 bil-
lion [12]. Additionally, a considerable 22% of European workers experienced work-related
stress in 2005 [13]. A recent survey indicates that 51% of European workers acknowledge
the prevalence of stress in their workplaces, and work-related stress and psychosocial risks
account for approximately 50–60% of all lost working days in European companies [11].
Similarly, South Korea is also recognized as a country with a high incidence of heart dis-
ease, ranking second in terms of total deaths [14]. Common risk aspects for developing
coronary heart disease (CHD) include unhealthy habits such as physical inactivity, a poor
diet, drinking, smoking, and stress [15,16].

Therefore, the majority of people have used different variables to develop an effective
technique for evaluating an unspecified kind of stress. Stress classification and prediction
approaches using machine learning techniques, such as naïve Bayes (NB) and support
vector machine (SVM), have been studied to enhance their prediction or classification
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results [17,18]. Jawharali et al. [17] introduced a Fuzzy support vector machine to measure
perceived stress through EOG (ElectroOculoGraphy) technique, which can accurately
predict the stress level. This technique illustrates evaluation accuracy more accurately
than others conventional techniques without EOG. Similarly, Sani et al. [18] suggested an
approach for classifying stress patients using SVM along with redial kernel function to
achieve 83.29% classification accuracy based on electroencephalography signal.

The utilization of medical IT in conjunction with machine learning technologies has
significantly enhanced the accuracy of disease prediction. This is achieved through the
creation of predictive models using disease-related learning data have played a crucial
role in this advancement [19]. However, due to the complexity of the data being analyzed,
the application of deep learning techniques becomes necessary [20,21]. Several studies
have been applied in the field of cardiovascular disease, employing machine learning
methods. For instance, Khateb and Montezer [22] proposed a heart disease risk prediction
approach by employing the Dempster-Shafer evidence concept and manipulating a fuzzy
evidential hybrid inference mechanism. Another study by Krishnaieh et al. [23] introduced
a cardiovascular risk assessment model by utilizing fuzzy K-nearest neighbor (K-NN)
classifiers to handle uncertainty associated with measured values. Nevertheless, there is a
noticeable research gap when it comes to a prediction technique for domestic cardiovascular
disease [24,25]. In recent times, there has been an increasing amount of attention paid to
constructing prediction models based on big data and leveraging advancements in deep
learning technology.

Moreover, Bobade et al. [26] referred to the various deep learning and machine learning
approaches for stress monitoring systems on individuals utilizing multimodal datasets
acquired from physiological and motion sensors, which can avoid detecting a person from
different stress associated health issues. However, these approaches need complicated and
stochastic processing of physiological signals, which is unsuitable for the development of
big data prediction techniques and deep learning technologies.

Recently, stress classification approaches have been aided by artificial intelligence, and
numerous statistical and machine learning techniques have been developed for stress data
analysis in healthcare [27]. The Long Short-Term Memory (LSTM) model is a powerful
learning model in deep learning methods, with advanced technology and excellent perfor-
mance on sequential data [28]. It consists of a gated mechanism which controls the flow
of information and employs supervised learning via the backpropagation algorithm. The
LSTM is employed in several medical areas and is extensively applied in medical research
because of its superior performance [29,30].

In this study, we investigated the useful functionality of the conventional LSTM for
stress classification using stress-correlated physical activity and lifestyle data accessed from
the 2013–2015 Korea National Health and Nutrition Examination Survey (KNHANES VI)
database [31]. First, we studied whether the stress assessment was feasible by analyzing the
stress-related physical activity and lifestyle data and dividing the persons between the ages
of 18 to 75 years old into two groups: those who were frequently felt stressed and those
who did not. Second, we investigated an E-LSTM-based method for classifying stress that
was designed to incorporate features from physical activity and lifestyle data, which were
deemed essential for accurate stress evaluation. Furthermore, in order to select the most
informative features, our developed framework demonstrated further enhancement in the
conventional LSTM design based on the feature-attention mechanism, namely Enhanced
LSTM (E-LSTM) for stress classification. The primary goal of our study is to enhance the
conventional LSTM structure in order to increase stress classification accuracy and reduce
the information loss.

2. The Impact of Stress on Society and the Economy

Stress expresses the reactions of the human body and is increasing day by day in
advanced societies [32]. Office stress is caused by a mismatch between job expectations and
skills, as well as time pressure and heavy workloads. Family interrelated conflicts, disabilities,
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chronic injuries and mental difficulties are all examples of off-the-job stress factors. In Europe,
stress is the second most serious work-related health issue [33,34]. According to the American
Institute of Stress, the United States spends $300 billion annually on stress-related diseases,
http://www.who.int/occupational_health/topics/stressatwp/en/ (accessed on 29 April
2020). EU companies spent 25 billion euros on work-related stress in 2013 [35]. According
to a recent public survey [36], 51 percent of European employees are stressed at their
respective workplaces. In the European business sector, it has been estimated that 50–60%
of all missing workdays are due to work-related stress and psychosocial hazards [34].

A study conducted in 2015 utilized data from the National Health Interview Survey
to assess various risk factors in the US population [37]. The analysis involved 28,993 data
points, which were subjected to cluster analysis in order to examine the risk factors. In
order to maintain accuracy, any data with missing values were excluded from the analysis.
In 2016, Liu et al., conducted a study using the 2003–2004 National Health and Nutrition
Survey (NHANES) and physical activity data. They addressed missing data resulting
from device failure in accelerometer measurement by implementing various imputation
techniques known as additive regression, bootstrapping, and predictive mean matching
(ARBP). The researchers carefully selected the most precise ARBP approach, which was
then analyzed as the final model [12]. Additionally, in 2017, Beaulieu Jones and Moore [38]
explored electronic health records (EHRs) as a valuable source of patient status data, despite
the presence of extensive missing data.

As previously mentioned, stress has a significant impact on human health. Emo-
tional pain, muscle aches, tension, digestive tract problems, and hyper arousal are all
potential signs of acute stress. Some of the minor side effects of physical situations may
including heartburn, back pain, stomach ache, headaches, rapid heartbeat and elevated
blood pressure. However, it has a greater negative impact on human physical health.
It is a significant risk factor for hypertension, irritable bowel syndrome and coronary
disease [39], generalized anxiety disorder, gastro oesophageal reflux disease [40], and
depression (http://www.bmj.com/content/315/7107/530, accessed on 30 August 1997)).

Psychological reactions involve the amplification of powerful negative emotions, such
as anger, anxiety, irritation, or depression [41]. These responses can heighten our emotional
experiences, leading to heightened feelings of worry, frustration, and hostility, thereby
affecting our relationships [42]. From a physiological standpoint, increased activity in the
sympathetic nervous system (SNS) alters the body’s hormone levels and triggers reactions
such as increased sweating, elevated heart rate, and muscle activation [43]. Breathing
becomes more rapid, and blood pressure rises [44]. These physiological changes also affect
speech characteristics due to alterations in the muscles that regulate the respiratory system
and vocal tract. Additionally, there is a decrease in skin temperature, as well as in the
temperature of hands and feet [45]. The Heart Rate Variability (HRV) also decreases as a
result [46].

The economy is significantly impacted by these health issues, leading to absenteeism,
staff turnover, and tardiness among employees. Stress has also given rise to a widespread
phenomenon known as “presenteeism”, where employees are physically present at their
workstations but are not fully productive [32]. According to estimates, the cost of absen-
teeism and presenteeism in Europe is expected to be 269 billion euros annually, with an
additional 239 billion euros in productivity losses [35]. Given the long-term consequences
of stress, it is advisable to detect symptoms early on to prevent further damage.

The authors [47,48] conducted a comparison of various classification models, including
Decision Tree (DT), Naïve Bayes (NB), K-Nearest Neighbors (KNN), Neural Network (NN),
and Support Vector Machine (SVM). The findings of these studies revealed that the SVM
classifier exhibited the highest accuracy. However, Kim et al. (2015) achieved superior
accuracy (69.51%) than SVM by utilizing Fuzzy Logic and Decision Tree techniques on
the sixth Korea National Health and Nutrition Examination Survey (KNHANES) dataset.
On the other hand, [49,50] introduced DNN-based models for predicting Coronary Heart
Disease (CHD). Atkov et al. (2012) constructed ten distinct prediction models using various
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risk factors. These models consisted of two hidden layers with four neurons each, and they
achieved an accuracy of 93% using data from 487 patients at Central Clinical Hospital No.
2, of Russian. Furthermore, in [49,50], the authors performed feature correlation analysis
and connected the hidden layers of the DNN based on the correlation results. The DNN
model, integrated with feature correlation analysis, attained an accuracy of 83.9% and an
AUC score of 79.0% on the sixth KNHANES dataset.

3. Long Short-Term Memory

A Long Short-Term Memory (LSTM) network is a special variant of conventional RNN,
initially introduced by Sepp Hochraiter and Schmidhubar in 1997 [51]. LSTM networks
are used to incorporate with an inception module; they have gained popularity due to
their capability to examine the temporal relationship time-series data. Recently, the LSTM
model reported state-of-the-art performance in various fields including text classification,
speech recognition, machine translation and time series prediction. The capability of the
LSTM network lies in its ability to effectively learn long sequential data and to propagate
errors through all its layers. The standard LSTM was developed to address two major
drawbacks commonly found in existing RNNs, namely gradient vanishing and expansion.
LSTM included a gated mechanism and memory blocks that control the flow of information
with self-connections.

The architecture of the conventional LSTM which contains memory blocks shown in
Figure 2. As illustrated in Figure 2, the LSTM block provides a gating mechanism, which
consists the three gates: the it, ot, and ft, which are the input, output, and forget gate of
LSTM, respectively; ct refers to the memory cell state, ãt is the candidate state computed by
equation (4). xt, ht, and ht−1 are the input, final output of the LSTM. An update to the cell
state vector is calculated as in Equation (5). It is noted that these gate signals contain the
logistic nonlinearity, presented by the Sigm activation function, and their signals range is
between 0 and 1.
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In order to determine the hidden state (ht) of an LSTM, a computation involving
Equation (2) is performed on the output gate ot. This computation is then multiplied by
the cell state ct through the use of the tanh function in Equation (6). The weight matrix for
the input is denoted by Wxo, while the weight matrix for the hidden state is represented
by Uho. Additionally, a bias term is included in the computation, which is indicated by
b0. Finally, the sigmoid function is also utilized Sigm (x) = 1

1+e−x . The most important part
of the LSTM structure is ãt and ct. These functions retain the data for a long period. As a
result, this mechanism supports the long-term dependencies. The mathematical equations
of the LSTM memory block are summarized as follows:

it = Sigm(Wxixt + Uhiht−1 + bi) (1)

ot = Sigm(Wxoxt + Uhoht−1 + bo) (2)

ft = Sigm(Wx f xt + Uh f ht−1 + b f ) (3)

ãt = tanh
(
Wx“axt + Uh“aht−1 + b“a

)
(4)

ct = ft ∗ xt−1 + it ∗ ãt (5)

ht = Ot ∗ tanh (ct) (6)

All parameters of the LSTM network are presented in Equations (1)–(6); in terms of
weights and bias executed during the learning procedure, those processes involved are
Wi, Wo, Wf, W“a ∈ Rm × p, Ui, Uo, Uf, U“a ∈ Rm × m, bi, bo, bf, and b“a ∈ R m × 1. ∗ denotes
point-wise multiplication of two vectors. Here ‘tanh’ is an element-wise hyperbolic tangent
activation function.

4. Materials and Methods

In this study, we demonstrated the proposed framework which included enhanced
LSTM with the combination of feature attention mechanism. The research design of this
study is demonstrated in Figure 3. From the KNHANES VI dataset, this study considered
various stress-related features from physical activity and lifestyle data, including systolic
blood pressure, sleep time, body mass index, smoking, and drinking. The variables that were
considered important for stress evaluation were extracted using statistical analysis of the
selected data.

The major contribution of the developed approach is the extraction of the most signifi-
cant features into two key stages, such as pre-feature attention E-LSTM and post-feature
attention E-LSTM. As a feature, the statistical analysis data was incorporated into the
E-LSTM modeling. Furthermore, to evaluate the capability of the proposed E-LSTM
approach, we compared the stress classification outcomes, achieved by employing the
statistical analysis data with state-of-the-art techniques and the conventional LSTM model.
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5. Enhanced LSTM

LSTM networks are an advanced variant of traditional RNN, which was first devel-
oped by German authors Sepp Hochraiter et al., in 1997 [51], which are also followed by the
existing architecture of RNNs with minor modifications [52]. We have already described
the conventional LSTM network with a gating mechanism, which is depicted in Figure 2.
However, here we introduced the enhanced LSTM architecture with modified equations
that support the development of learning capabilities. The computational process of en-
hanced LSTM is not the same as the standard ones. In our enhancement, we used the
“peephole connections mechanism” which is one of the most well-known variations of the
LSTM architecture. Figure 4 presents the enhanced architecture of LSTM with peepholes.
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In this section, we applied an enhanced LSTM architecture, which allows the gate
layers to look at the cell state and adapt the peephole connection mechanism that completely
influences the gating mechanism referred as the following equations:

it = ϕ(Wxi × [ Ct−1, ht−1, xt] + bi) (7)

ft = ϕ(Wx f × [ Ct−1, ht−1, xt] + b f ) (8)

Ct = tanh(Wxc ∗ [ht−1, xt] + bc) (9)

Ct = ft ∗ Ct−1 + it ∗ Ct (10)

In these equations, the input of transition matrices presented by xt, the memory cell
Ct−1, while ∗ referred the element-wise multiplication, ht−1 denotes the hidden state vector
and ϕ shows the non-linearity sigmoid activation function. The output gate ot controls
the current hidden state value ht using the system nonlinearity to the contents of the
memory cell:

ot = ϕ(Wxo × [Ct, ht−1, xt] + bo) (11)

ht = ot ∗ tanh (Ct) (12)

In the next phases, the current time of the hidden state ht is employed to acquire ht+1.
Moreover, long short-term memory computes the internal hidden state ht, of the word
series sequentially at each time step. The final time step of hidden activations can be used
as the input to the layer that classifies stress by providing a semantic representation of the
whole sequence.

5.1. Sequential Mechanism by Pre-Feature Attention E-LSTM

In order to make full use of the unique sentiment resource information in the sentiment
analysis tasks, this study utilizes both pre-feature attention and post-feature attention
mechanisms incorporating with the E-LSTM model. Our methodology performs well
on computing feature-level and sentence-level attention, which is employed to integrate
information from both word and sentence proceeding through the pre-feature attention
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mechanism for stress identification. Usually, due to the longer length of the input series, it
is a challenging task for the conventional LSTM model to extract significant features during
the training process for stress prediction [53].

However, specific features perform an important role and contribute to building a
model that can accurately classify data. Similarly, our feature attention method is a vital
component of the improved E-LSTM architecture, which helps extract the most informative
features from challenging stress-related reviews to classify emotions based on word-level
presentation [54]. In addition, the LSTM utilizes a gating strategy to manage information
flow within memory, while the two-state LSTM structure combines information from
both preceding words within desirable contexts [55]. Furthermore, for accurate stress
identification, the forward and backward sub-states are included in the pre-feature attention
mechanism modeling.

The sub-states in the neural network are responsible for processing the input data. The
forward sub-state captures the words in sequence from the start of the input layer to the
end. Conversely, the backward sub-state performs computations in the reverse order, as the
forward sub-state performs computations in the forward direction. Typically, during a time
step t, the input feature xk, is used to initialize the forward and backward candidate states
→
h t−1 and

←
h t−1, which are then used in the pre-feature attention E-LSTM. The previous and

current states of the forward
→
C t and backward

←
C t sub-states are also considered in this

process and are referred to as follows:

Ct = tanh

−−→W(C)
x ∗ [

−−−−→
ht−1, xt] +

−−→
b(C)

 (13)

Ct = tanh

←−−W(C)
x ∗ [

←−−−−
ht−1, xt] +

←−−
b(C)

 (14)

C =

(
V

[−→
Ct :

←−
Ct

]
+ k

)
(15)

5.2. Feature Seizing by Attention Mechanism

After producing the final output by hidden state, we incorporated an attention mech-
anism into the feature-attention process to assist the architecture in identifying stress
detection by focusing on valuable information at the word-feature level. Our proposed
mechanism utilizes a detailed attention structure, which is depicted in Figure 5, while
Figure 5 illustrates the distribution of attention generated at a specific time step ok

t at kth by
the attention mechanism as follows:

ok
t =

exp(ek
t )

∑m
i=1 exp(ei

t)
(16)

where the score function for memory cell ct−1 at kth at a specific time step ek
t is denoted by

kth, and score function demonstrated by ek
t :

ek
t =

[
cT

t−1h1, cT
t−1h2, . . . , cT

t−1hm

]
(17)

where the pre-feature attention E-LSTM utilizes hk to represent its hidden unit. Subse-
quently, the score functions derived from it are employed by the post-feature attention
LSTM. The resulting attention output is then obtained through this process as follows:

ot = ∑m
k=1 ok

t hk (18)
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5.3. Post-Feature Attention LSTM

In this mechanism, the proposed approach utilizes a feature attention mechanism
to learn stress level information that is intentionally similar to human behavior. This is
achieved through a post-feature attention E-LSTM, which is followed by a word-feature
seizing mechanism. In the second phase of this approach, a post-feature attention E-LSTM
is used to imitate the decoded function. This step involves extracting predicted features that
have been generated by both the pre-feature attention E-LSTM and the attention mechanism
layer. The major equation used in the post-feature attention E-LSTM is equivalent to that of
a standard LSTM, as follows:

Ct = tanh
(

WC
x ∗ [ht−1, xt] + bC

)
(19)

The process of predicting stress levels in the KNHANES VI dataset involves trans-
forming the output features vector of post-feature attention E-LSTM into a sentence repre-
sentation through a dense layer, followed by the use of a sigmoid activation function for
final classification into “Low stress” or “High stress” categories. The accuracy of the model
is greatly impacted by the extraction and selection of features, which directly affects its
performance. As a result, we developed a feature attention enhanced LSTM mechanism
specifically for stress classification. The detailed architecture of this mechanism is depicted
in Figure 6.
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6. Experimental Design

This research simulations were conducted on a computer with an Intel “core-i7-
3770CPU @ 3.40 GHz” processor and 8 GB of RAM, running on the Windows 10 operating
system. Python 3.9 compiler and Anaconda were utilized as the development environment
for data pre-processing and analysis, along with TensorFlow 1.14 and Keras 2.3 as the
necessary libraries. Additionally, to optimize the developed mechanism, a brief descrip-
tion of the datasets and implementation hyperparameter settings were provided in the
following subsections.

6.1. Dataset

This research examined the records of adults aged 18–75 from the dataset attained
by the Health Questionnaire and Nutrition Survey conducted during the 2013–2015 KN-
HANES VI. In KNHANES VI (2013–2015), a set of domestic experiments were carried
out to establish the correlation between physical activity, lifestyle, and stress. The survey
responses were categorized into four stress groups to measure the stress levels of the partic-
ipants. To determine stress classification, a set of variables, including age, gender, sleeping
duration, pulse rate, body mass index (BMI), systolic and diastolic blood pressure (SBP and
DBP), height, weight, smoking and drinking habits were utilized as input parameters for
learning, while the output variables indicated whether the subjects were stressed or not.
There was a total of 22,898 experimental records from KNHANES VI (2013–2015)”. There
were 14,622 record totals, except the unknown (non-respondent, null value) respondents.
There were 651 people who felt extremely stressed out of 14,619 records, and 2529 people
who did not feel stressed. As a result, the insufficient number of people experiencing stress
led to the labeling of two groups: the group with low levels of stress was categorized as
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such because they did not feel stressed, while the group with high levels of stress was
labeled as such because they felt significantly stressed.

6.2. Deep Learning Environment

In this study, The E-LSTM model was developed using a Deep Learning (DL) en-
vironment based on the TensorFlow platform and Python for designing, training, and
distributing neural networks. Hyperparameters within the DL platform are variables that
play a crucial role in determining how a neural network learns through the use of Python
syntax. The configuration of visible and hidden layers, along with their corresponding
activation functions (such as tanh and sigmoid), can be declared and constructed using the
multilayer-configuration object to optimize the learning process. Generally, the algorith-
mic complexity of an algorithm is typically expressed as O(W), where W represents the
estimated number of parameters in the network. The calculation of W commonly involves
to considering two variables: the dimension of the input vector (m-dimension) and the
dimension of the hidden layer (n-dimension). Table 1 provides the estimated parameter
counts for various deep learning approaches, including NB, SVM, LSTM, DBN, Bi-LSTM,
and our proposed E-LSTM.

Table 1. Numbers of parameters of proposed and traditional approaches.

Approaches Numbers of Parameters

NB 2×
(
n2 + nm + n

)
SVM 2×

(
n2 + nm + n

)
GRU 3×

(
n2 + nm + n

)
LSTM 4×

(
n2 + nm + n

)
DBN 6×

(
n2 + nm + n

)
BiLSTM 8×

(
n2 + nm + n

)
Proposed E-LSTM 7×

(
n2 + nm + n

)
In comparison to the traditional LSTM, our proposed E-LSTM has a higher inner

complexity due to the involvement of a larger number of parameters. Consequently, the
execution of E-LSTM requires more time and resources compared to conventional NB,
SVM, DBN, and LSTM. However, when compared to the existing approach of Bi-LSTM, our
proposed mechanism is less complex, resulting in reduced execution time. Importantly, our
proposed feature attention mechanism has the capability to extract valuable information,
leading to a significant enhancement in stress classification accuracy.

6.3. Hyperparameter Setting

In a deep learning study, the effectiveness of a deep learning model is typically
dependent on various factors, including the quantity of hidden layers and nodes, as well
as the selection of appropriate hyperparameters. In this study, we experimented with
the number of layers, nodes and hyperparameters to develop an effective E-LSTM based
model for stress classification. Our experiment utilized the Adam optimizer with default
optimal parameter settings, including a learning rate of 0.0005 and a decay factor of 0.9. The
application of deep learning-based methods allows for the acquisition of an understanding
of intricate connections between inputs and outputs [56]. The term ‘learning rate’ refers to
the amount of time it takes to change the value of a parameter, whereas ‘momentum’ refers
to the ability to accelerate or decelerate parameter.

Additionally, in each training iteration we maintain a fixed batch size of 768, which
presents the grouping of multiple input data. To mitigate the risk of overfitting, we have
incorporated the dropout technique [57], with a dropout rate of 0.2 for the LSTM layer and
L2 regularization with 10−5 for the coefficient λr. ‘L2 regularization’ is a usually applied for
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normalization method to avoid the overfitting. Likewise, in this study, we employed binary
cross-entropy as the loss function along with L2 regularization, which is defined as follows:

J (w, b) = − 1
N ∑N

i=1[yi·logŷi + (1− yi)·log(1− ŷi)] (20)

where yi is the refer label; and classification probability is represented by ŷi. We set w = 0.001,
of Fresenius norm value by compressing L2, which is the coefficient for L2. In the training
phase, it was observed that utilizing L2 regularization and dropout techniques can enhance
performance by preventing overfitting. The optimal values of hyperparameters that were
utilized for training the proposed framework are presented in Table 2.

Table 2. Optimal hyperparameters of the proposed E-LSTM model.

Hyperparameters
E-LSTM

Model Configuration 1 Model Configuration 2

Activation Function Binary Cross-entropy Sigmoid
Number of input nodes 9 9
Number of output nodes 2 2
Learning Rate 0.0005 0.0003
Batch Size 768 1024
Dropout Rate 0.2 0.3
Epoch 150 100
Momentum 0.1 0
Regularizer L2 L2
Accuracy (%) 75.54 73.98

6.4. Evaluation Metrics

Various assessment measures have been employed to evaluate the efficacy of the
developed model in predicting stress-related issues when compared to other approaches.
These evaluation metrics included: accuracy, precision, recall, and F-measure.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(21)

Precision =
TP

(TP + FP )
(22)

Sensitivity = Recall =
TP

(TP + FN )
(23)

F1− Score = 2× Precision× Recall
Precision + Recall

(24)

where TP, TN, FP and FN are the True Positive, True Negative, False Positive and False
Negative, respectively.

7. Results and Discussion

The experimental results provide a concise summary of the simulation outcomes
obtained using the proposed E-LSTM approach, which is then compared to state-of-the-art
approaches using “KNHANES VI (2013–2015) datasets. The results are then examined
based on different evaluation metrics.

7.1. Statistical Analysis

Table 3 referred to the distribution of physical and lifestyle activities based on low-
and high-stress categories for 1280 stress records. In this study, two kinds of tests were
performed. A comparison was made between specific average age, sleep duration, pulse
rate, DBP, SBP, weight, height, and BMI between high-stress and low-stress classes; a t-test
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was also conducted. Meanwhile, a Chi-square test was used to investigate the relationship
among gender, smoking, drinking variables, and stress. Both the t-test and Chi-square test
used a significance level of p < 0.05 to determine the suitable variables for classifying stress.
There were nine variables identified as significantly associated with stress based on their
p-value less than 0.05. These variables were gender, age, sleep duration, pulse rate, SBP,
weight, height, drinking,” and smoking.

Table 3. Distribution of physical activity and lifestyle between low and high-stress.

Physical Activity and Lifestyles Low Stress High Stress p-Value

Gender 0.001

Man 289 228

Woman 351 405

Avg. age (year) 56.72 47.54 0.000

Avg. height (cm) 159.80 161.18 0.014

Avg. weight (kg) 63.12 64.07 0.049

Avg. sleep duration (hr) 6.50 6.15 0.000

Avg. pulse rate (bpm) 70.10 72.68 0.000

Avg. SBP (mmHg) 120.92 116.37 0.000

Avg. DBP (mmHg) 73.52 74.59 0.190

Avg. BMI (kg/m2) 24.08 24.16 0.670

Drinking
0.004No 338 287

Yes 290 341

Smoking
0.000No 542 474

Yes 98 162
DBP: diastolic blood pressure, SBP: systolic blood pressure, and BMI: body mass index.

The classification ability was assessed using a confusion matrix, which served as a
performance evaluation tool for the model. Specifically, in terms of accuracy, precision,
sensitivity, and F1-score were calculated as depicted in Figure 7, while confusion matrix
results are illustrated in Table 4. The matrix consisted of the classification results (low stress,
high stress) of the test dataset related to stress levels.
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Table 4. Confusion matrix results.

Models True Positive False Positive False Negative True Negative

NB 712 98 182 242

SVM 894 14 369 8

LSTM 902 20 348 16

DBN 840 46 178 86

BiLSTM 910 88 158 202

Proposed
E-LSTM 926 76 142 212

Figure 8 presents the loss function graph of the proposed approach in the term of
configuration; (A) configuration 1 and (B) configuration 2, for stress classification dataset.
On the graph, the epoch is displayed on the x-axis while the loss is depicted on the y-axis.
The loss function has been captured based on 100 and 150 epochs (the left side of Figure 8A
contains 150 epochs and the right-side of Figure 8B contains 100 epochs). However, the
proposed approach maintains their loss rate after 140 epochs in configuration 1, while in
the configuration 2, the model maintains their loss rate between 13 and 37 iterations. The
loss function is a mathematical expression that computes the difference between the real
and predicted outputs.
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In the experiment, the two model configurations were compared by adjusting different
parameters and scaling the graph of the loss function accordingly. Analyzing the results,
we observed that the model configuration 1 has the minimum loss value. Therefore,
in the terms of loss function and accuracy, we considered configuration 1 as the most
favorable model.

7.2. Accuracy and Comparison

In this study, we used physical activity and lifestyle data to classify stress based on
enhanced LSTM. We executed the implementation of our proposed E-LSTM model using
KNHANES VI (2013–2015) datasets with particular parameters. Model training was carried
out using stochastic gradient descent through considered batch size.

In our work, we assessed the stress analysis performance of the proposed E-LSTM
model with comparative approaches such as naïve Bayes (NB), support vector machine
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(SVM), deep belief network (DBN) and long short-term memory (LSTM). Our developed
E-LSTM model achieved excellent performance in the term of accuracy. Figure 9 shows
the evaluation results of the proposed model and state-of-the-art approaches using the
KNHANES-VI dataset.
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7.3. Model Performance in Terms of Precision, Recall and F1-Score

A thorough performance analysis was conducted on both the proposed and compara-
tive models, which involved to evaluate their performance using various metrics such as
precision, recall, and f-measure. Precision refers to the number of true positive observations
that are correctly classified as complete positive instances. Recall measures the ability to
accurately identify positive instances among all real class instances. To obtain the final
values of precision and recall, we separately calculated these steps and take the ratio of all
classes. Finally, f-measure was used to determine the test accuracy, which was computed
using the test precision and recall.

In this section, Figures 10 and 11 present the performance of the proposed E-LSTM
model and comparison with exiting approaches using KNHANES VI dataset. These figures
show that the proposed approach achieved higher classification accuracy than the existing
approaches, due to the efficient pre-processing and effective classification using the feature
attention mechanism.

Figure 12 illustrates the comparison results of the proposed model with state-of-the-art
approaches in the terms of accuracy, precision, recall and F1-score. The proposed E-LSTM
model obtained an accuracy of 75.54%, precision of 74.26%, recall of 72.99%, and F1-score
of 74.58%. Conversely, the E-LSTM model has the advantage of saving time as it allows
for the use of unlabeled training samples due to its supervised learning mechanism. As a
result, the E-LSTM model performs better in terms of human labelling time.



Brain Sci. 2023, 13, 994 17 of 21

Brain Sci. 2023, 13, 994 17 of 22 
 

of all classes. Finally, f-measure was used to determine the test accuracy, which was com-

puted using the test precision and recall. 

In this section, Figures 10 and 11 present the performance of the proposed E-LSTM 

model and comparison with exiting approaches using KNHANES VI dataset. These fig-

ures show that the proposed approach achieved higher classification accuracy than the 

existing approaches, due to the efficient pre-processing and effective classification using 

the feature attention mechanism. 

  

Figure 10. Precision and recall comparison of the proposed model with the existing approaches. 

 

Figure 11. F1-score comparison of proposed model with existing approaches. 

Figure 12 illustrates the comparison results of the proposed model with state-of-the-

art approaches in the terms of accuracy, precision, recall and F1-score. The proposed E-

LSTM model obtained an accuracy of 75.54%, precision of 74.26%, recall of 72.99%, and 

F1-score of 74.58%. Conversely, the E-LSTM model has the advantage of saving time as it 

allows for the use of unlabeled training samples due to its supervised learning mecha-

nism. As a result, the E-LSTM model performs better in terms of human labelling time. 

68.19
69.93 70.52

68.02

74.26

40

45

50

55

60

65

70

75

80

NB SVM LSTM DBN E-LSTM

P
re

ci
si

o
n

 (
%

)

70.03
68.19

69.94
67.41

72.99

40

45

50

55

60

65

70

75

80

NB SVM LSTM DBN E-LSTM

R
ec

al
l (

%
)

69.09 69.04
70.26

67.72

74.58

40

45

50

55

60

65

70

75

80

NB SVM LSTM DBN E-LSTM

F1
-S

co
re

 (
%

)

Figure 10. Precision and recall comparison of the proposed model with the existing approaches.

Brain Sci. 2023, 13, 994 17 of 22 
 

of all classes. Finally, f-measure was used to determine the test accuracy, which was com-

puted using the test precision and recall. 

In this section, Figures 10 and 11 present the performance of the proposed E-LSTM 

model and comparison with exiting approaches using KNHANES VI dataset. These fig-

ures show that the proposed approach achieved higher classification accuracy than the 

existing approaches, due to the efficient pre-processing and effective classification using 

the feature attention mechanism. 

  

Figure 10. Precision and recall comparison of the proposed model with the existing approaches. 

 

Figure 11. F1-score comparison of proposed model with existing approaches. 

Figure 12 illustrates the comparison results of the proposed model with state-of-the-

art approaches in the terms of accuracy, precision, recall and F1-score. The proposed E-

LSTM model obtained an accuracy of 75.54%, precision of 74.26%, recall of 72.99%, and 

F1-score of 74.58%. Conversely, the E-LSTM model has the advantage of saving time as it 

allows for the use of unlabeled training samples due to its supervised learning mecha-

nism. As a result, the E-LSTM model performs better in terms of human labelling time. 

68.19
69.93 70.52

68.02

74.26

40

45

50

55

60

65

70

75

80

NB SVM LSTM DBN E-LSTM

P
re

ci
si

o
n

 (
%

)

70.03
68.19

69.94
67.41

72.99

40

45

50

55

60

65

70

75

80

NB SVM LSTM DBN E-LSTM
R

ec
al

l (
%

)

69.09 69.04
70.26

67.72

74.58

40

45

50

55

60

65

70

75

80

NB SVM LSTM DBN E-LSTM

F1
-S

co
re

 (
%

)

Figure 11. F1-score comparison of proposed model with existing approaches.

Brain Sci. 2023, 13, 994 18 of 22 
 

 

Figure 12. Comparison performance of the model with state-of-the-art approaches. 

7.4. Discussion 

In this study, we explored the classification of daily life stress using Enhanced LSTM 

(E-LSTM) based on the feature attention mechanism that focuses on determining and cat-

egorizing the stress polarity using sequential modelling and word-feature seizing. The 

goal was to develop a model that could accurately predict the level of stress individuals 

experience in their day-to-day lives. The results of our experiments demonstrate the po-

tential of E-LSTM models for stress classification and offer valuable insights into the fac-

tors influencing stress levels. 

Our findings indicate that the E-LSTM approach can effectively capture the temporal 

dependencies present in daily life stress data. By considering the sequential nature of 

stress experiences, E-LSTM networks can learn patterns and relationships across time, 

which are crucial for accurate stress classification. This is particularly relevant in the con-

text of stress, as stressors often occur in succession and can have cumulative effects. Fur-

thermore, we investigated the useful functionality of the conventional LSTM for stress 

classification using stress-correlated physical activity and lifestyle data accessed from the 

2013–2015 Korea National Health and Nutrition Examination Survey (KNHANES VI) da-

tabase [31]. First, we studied the stress assessment was feasible by analyzing the stress 

related physical activity and lifestyle data and divide the persons between the ages of 18 

to 75 years old into two groups: those who were frequently felt stressed and those who 

did not. This dataset (KNHANES-VI) consists of 14,620 experimental records. By analyz-

ing the statistical data, we confirmed that our proposed E-LSTM model performed suc-

cessfully on stress classification data. 

We compared the performance of our developed enhanced (E-LSTM) approach with 

several baseline approaches, including naïve Bayes, support vector machine, long short-

term memory, deep brief network and bidirectional LSTM. Our experimental results 

demonstrate that the proposed (E-LSTM) approach outperformed the baseline models in 

terms of stress classification accuracy. The LSTM model achieved accuracy, precision, re-

call and F1-scores of 75.54%, 74.26%, 72.99% and 74.58%, respectively. This improvement 

in accuracy highlights the efficacy of proposed approach for stress classification and their 

ability to capture the complex dynamics of stress experiences. 

Moreover, in our proposed study, we explored some pros and cons of using the en-

hanced LSTM (E-LSTM) approach for daily life stress classification. Our findings shed 

light on the potential benefits and limitations of employing E-LSTM model. It is worth 

Figure 12. Comparison performance of the model with state-of-the-art approaches.



Brain Sci. 2023, 13, 994 18 of 21

7.4. Discussion

In this study, we explored the classification of daily life stress using Enhanced LSTM
(E-LSTM) based on the feature attention mechanism that focuses on determining and
categorizing the stress polarity using sequential modelling and word-feature seizing. The
goal was to develop a model that could accurately predict the level of stress individuals
experience in their day-to-day lives. The results of our experiments demonstrate the
potential of E-LSTM models for stress classification and offer valuable insights into the
factors influencing stress levels.

Our findings indicate that the E-LSTM approach can effectively capture the temporal
dependencies present in daily life stress data. By considering the sequential nature of stress
experiences, E-LSTM networks can learn patterns and relationships across time, which
are crucial for accurate stress classification. This is particularly relevant in the context of
stress, as stressors often occur in succession and can have cumulative effects. Furthermore,
we investigated the useful functionality of the conventional LSTM for stress classification
using stress-correlated physical activity and lifestyle data accessed from the 2013–2015
Korea National Health and Nutrition Examination Survey (KNHANES VI) database [31].
First, we studied the stress assessment was feasible by analyzing the stress related physical
activity and lifestyle data and divide the persons between the ages of 18 to 75 years old
into two groups: those who were frequently felt stressed and those who did not. This
dataset (KNHANES-VI) consists of 14,620 experimental records. By analyzing the statistical
data, we confirmed that our proposed E-LSTM model performed successfully on stress
classification data.

We compared the performance of our developed enhanced (E-LSTM) approach with
several baseline approaches, including naïve Bayes, support vector machine, long short-
term memory, deep brief network and bidirectional LSTM. Our experimental results demon-
strate that the proposed (E-LSTM) approach outperformed the baseline models in terms
of stress classification accuracy. The LSTM model achieved accuracy, precision, recall
and F1-scores of 75.54%, 74.26%, 72.99% and 74.58%, respectively. This improvement in
accuracy highlights the efficacy of proposed approach for stress classification and their
ability to capture the complex dynamics of stress experiences.

Moreover, in our proposed study, we explored some pros and cons of using the
enhanced LSTM (E-LSTM) approach for daily life stress classification. Our findings shed
light on the potential benefits and limitations of employing E-LSTM model. It is worth
noting that our study has a few limitations. Firstly, in comparison to the traditional LSTM,
our proposed E-LSTM has a higher inner complexity due to the involvement of a larger
number of parameters. Consequently, the execution of E-LSTM requires more time and
resources compared to conventional NB, SVM, DBN, and LSTM. However, when compared
to the existing approach of Bi-LSTM, our proposed mechanism is less complex, resulting in
reduced execution time. Importantly, our proposed feature attention mechanism has the
capability to extract valuable information, leading to a significant enhancement in stress
classification accuracy. Secondly, the stress classification model used in this study was
unable to determine the degree of stress in the two subcategories of stress. Therefore, a
more in-depth analysis of the degree of stress is required to design a more reliable stress
classification system that can thoroughly examine the degree of stress.

In conclusion, our study demonstrates the effectiveness of E-LSTM approach for use
in stress monitoring systems for stress prediction. The results highlight the ability of the
E-LSTM model to capture temporal dependencies and learn patterns in stress data, leading
to improved stress classification accuracy. The insights gained from feature importance
analysis provide a better understanding of the factors influencing stress levels. Regarding
the direction of future study, future research should focus on addressing the limitations of
this study and further exploring the potential of E-LSTM models for stress classification in
various real-world applications.
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8. Conclusions and Future Scope

This paper has presented an effective stress classification model using a deep learning
method by integrating the Enhanced LSTM (E-LSTM) model through a feature-attention
mechanism. Our study involved the development of a new feature-attention mechanism
that utilizes both pre- and post-feature attention layers to obtain more comprehensive
feature representation. By implementing this mechanism, we were able to construct an
efficient stress classification model that was evaluated using stress-related health data
obtained from the KNHANES VI (2013–2015) dataset, consisting of 14,620 experimental
records. By analyzing the statistical data, we confirmed that our proposed E-LSTM model
performed successfully on stress classification data. The experimental results showed
that the proposed feature-attention E-LSTM framework achieved excellent results with
an accuracy of 75.54%, precision of 74.26%, and recall of 72.99%, respectively. The pro-
posed E-LSTM model performed better than other state-of-the-art classification approaches,
namely, naïve Bayes, SVM, deep belief network and LSTM. This research demonstrated the
effectiveness of the proposed method in identifying stress detection, indicating its potential
for use in stress monitoring systems for stress prediction.

However, there are some limitations that need to be acknowledged in this study.
Specifically, the stress classification model used in this study was unable to determine the
degree of stress in the two subcategories of stress. Therefore, a more in-depth analysis of
the degree of stress is required to design a more reliable stress classification system that can
thoroughly examine the degree of stress.
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