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Abstract: Development is a complex process involving precise regulation. Developmental regulation
may vary in tissues and individuals, and is often altered in disorders. Currently, the regulation
of developmental timing across neocortical areas and developmental changes in Down syndrome
(DS) brains remain unclear. The changes in regulation are often accompanied by changes in the
gene expression trajectories, which can be divided into two scenarios: (1) changes of gene expres-
sion trajectory shape that reflect changes in cell type composition or altered molecular machinery;
(2) temporal shift of gene expression trajectories that indicate different regulation of developmental
timing. Therefore, we developed an R package TempShift to separates these two scenarios and
demonstrated that TempShift can distinguish temporal shift from different shape (DiffShape) of
expression trajectories, and can accurately estimate the time difference between multiple trajectories.
We applied TempShift to identify sequential gene expression across 11 neocortical areas, which
suggested sequential occurrence of synapse formation and axon guidance, as well as reconstructed
interneuron migration pathways within neocortex. Comparison between healthy and DS brains
revealed increased microglia, shortened neuronal migration process, and delayed synaptogenesis and
myelination in DS. These applications also demonstrate the potential of TempShift in understanding
gene expression temporal dynamics during different biological processes.

Keywords: cortical development; synaptogenesis; Down syndrome; temporal dynamics

1. Introduction

Gene expression has been observed to be dynamically regulated across development
in many organisms. The temporal dynamics are often associated with the occurrence of
developmental processes, such as generating new cells, responding to internal or external
signals, and so on. While some of the developmental processes are universal, some others
are distinct to species, tissues or disorders, which are accompanied by different temporal
gene expression patterns. The differences during development can be categorized into
two scenarios: (1) different shape (DiffShape) of gene expression trajectories may reflect
increase or decrease in certain cell types, and disrupted or altered molecular machinery of
developmental processes; (2) temporal shift of gene expression trajectories reflect different
regulation of developmental timing.

Development of the cerebral neocortex is an example. The neocortex is organized
into structurally similar but functionally distinct areas. Development of neocortical areas
involves in common processes, such as neurogenesis, neuron differentiation, synaptoge-
nesis, myelination, and so on, but the maturation rate of distinct neocortical areas has
been found different. Furthermore, these neurodevelopmental disorders have been ob-
served impaired in neurodevelopmental disorders, such as Down syndrome (DS). DS,
also known as trisomy 21, is a genetic disorder caused by the presence of all or part of a
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third copy of chromosome 21. As the most common neurodevelopmental disorder, the
estimated prevalence of DS is as high as 13.65 per 10,000 live births [1]. DS is typically
characterized by delays of physical growth and intellectual disabilities. Morphometric and
cellular studies in human and functional studies in mouse models have indicated defects in
neurogenesis, neuronal differentiation, synaptic plasticity and myelination [2–4]. However,
understanding the regulation of developmental timing across neocortical areas and defects
in DS remains challenging.

The time-series design of transcriptome analyses provides a unique opportunity to
detect the two scenarios of developmental changes in a high-throughput way. To date,
multiple approaches have been developed for differential expression analysis, cluster-
ing and alignment of time-series data [5]. A Gaussian process-based model, TempShift
(Appendix A) has been proposed to distinguish the above two scenarios in our previous
study on spatiotemporal transcriptomic divergence across human and macaque brain de-
velopment [6]. TempShift divided the genes into three categories: DiffShape genes—these
genes follow different shapes of expression trajectories under different conditions, shift
genes—these genes express at different times without changing the expression trajectories
over time under different conditions, and no-shift genes—these genes express at the same
time and follow the same expression trajectories under different conditions (Figure 1).
TempShift used Gaussian process [7] to model the gene expression trajectories so that it
has the following advantages [8,9]: (1) it explicitly addresses the dependencies between
consecutive measurements and thus can deal with non-matched time-point sampling in
different groups; (2) it can handle an arbitrary number of replicates; (3) it provides a statis-
tical framework to distinguish DiffShape genes from shift genes and no-shift genes, and to
infer the time shift between groups; (4) it can be used to analyze two or more groups.

Figure 1. Workflow of TempShift. Different colors (red and blue) indicate the time-series data of gene
expression under different conditions.

Here, we programmed TempShift into an R package. The performance of TempShift
was tested using different types of simulated data first. Then, we applied TempShift
to human brain transcriptome data including 11 neocortical areas, revealing the gradual
development of the human neocortex. Further application to a DS dataset demonstrated the
ability of TempShift in handling data with unmatched age and revealed increased microglia
and skewed developmental timing of neuronal and oligodendrocyte development in DS.
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2. Materials and Methods
2.1. TempShift: A Statistical Model to Detect Global Temporal Shift between Multiple Time Series

TempShift is a statistical model designed for two goals: (1) distinguishing DiffShape,
shift and no-shift genes, and (2) for shift genes, estimating the time shift between groups.
To achieve the above goals, it builds three temporal expression models based on Gaus-
sian process regression: independence model, shift model and no-shift model (Figure 1;
Appendix A). The DiffShape genes are first separated from genes with the same shape of
trajectories (shift and no-shift genes) by comparing the independence model with the shift
model, and the shift genes are then selected by comparing the shift model with the no-shift
model. These comparisons are based on the log likelihood ratio of the shift model versus
the independence model (LLRshape) and the log likelihood ratio of the shift model versus
the no-shift model (LLRshi f t), respectively (Appendix A). Genes with LLRshape smaller than
a threshold Λshape are selected as DiffShape genes; genes with LLRshape greater than Λshape
and LLRshi f t greater and Λshi f t are selected as shift genes, and the rest genes are no-shift
genes. The time shift (∆t) with respect to the reference group is estimated in the shift model.

2.2. Simulation
2.2.1. Gaussian Process

For group i , the time vectors xi consist of 100 points randomly sampled from the
uniform distribution between 5 and 15. For each model, we generated 100 genes with
rmvnorm function in the mvtnorm R package [10], using their corresponding covariance
matrix. The length of each gene expression vector is 100, corresponding to 100 time points
of expression. The following parameters were used in the Gaussian kernel: the amplitude
σf = 5 and the length scale l = 3. The σf determines the average distance of the function
away from its mean. For two-group data, ∆t between two groups were fixed to 2. For
three-group data, the first group was considered as the reference group, and the time shifts
of the other two groups with respect to the reference group were randomly sampled from
Gaussian distribution N (2, 1) or N (−2, 1).

2.2.2. Periodic Data

The sine function sin(·) is a well-known periodic function, so we can simulate periodic
data based on the sine function. For group i, the time vectors xi consists of 100 points
randomly sampled from the uniform distribution between 5 and 15. For both the no-
shift model and the shift model, we simulated 100 genes each. The length of each gene
expression vector is 100, corresponding to 100 time points of expression. Two-group and
three-group data were simulated. For the no-shift model, the gene expression of each
group was modeled as yi = sin

(
2πxi

10

)
+ εi, with each element of the error vector εi

following independent and identically distributed N (0, 0.3). For the shift model, the
first group (i = 1) was considered as the reference group, and was modeled by the same
function as the no-shift model. For group i (i 6= 1), the gene expression was modeled as

yi = sin

(
2π(xi−∆ti

→
1ni )

10

)
+ εi. ∆ti is the time shift between group i and the reference group;

→
1ni is a vector of all ones with length of ni, the sample size of group i; εi is the error vector
with all elements following independent and identically distributed Gaussian distribution
N (0, 0.3).

2.2.3. Polynomial Data

For each group, the time vectors xi were generated in the same way as in the Gaussian
process and periodic data. Two-group and three-group data were simulated. For the no-
shift model, gene expression was modeled as yi = a + b× (xi − 10) + c× (xi − 10)2 + εi,
for group i. The elements of εi follow independent and identically distributed N (0, 3). For
the shift model, gene expression of the reference group was simulated by the same formula
as in the no-shift model, and gene expression of other groups (i 6= 1) was generated by
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yi = a + b×
(
(xi − ∆ti

→
1ni )− 10

)
+ c×

(
(xi − ∆ti

→
1ni )− 10

)2
+ εi, where ∆ti is the time

shift between group i and the reference group, and εi is the error vector with all elements
following independent and identically distributed Gaussian distribution N (0, 3).

2.3. Identifying Developmental Sequences in the Human Neocortex

Normalized human brain microarray data were downloaded from GSE25219 [11]. Sam-
ples from 11 neocortical areas were used for analysis. The samples used in the analysis were
listed in Supplementary Table S1. Genes with temporal dynamics were pre-selected by cubic
regression gene expression ∼ 1 + age + age2 + age3, where age = log2 (postconceptual days).
A total of 4153 genes with variance explained by the cubic model R2 > 0.5 were selected for
further analysis by TempShift. The R2 of cubic model measures the relationship between
gene expression and developmental time. The larger the R2, the greater the change in
gene expression with developmental time. Therefore, we selected the genes with R2 > 0.5
as input temporal dynamics genes to the downstream analysis with TempShift. Next,
temporally shifted genes were selected with LLR threshold Λshape > 50 and Λshi f t > 50. En-
richment analysis was performed by PANTHER Overrepresentation Test (release 20160321)
(http://pantherdb.org/, accessed on 18 April 2016 ) [12].

2.4. Identifying Developmental Changes in the Down Syndrome
2.4.1. Gene Selection

Microarray data of DS samples were downloaded from GSE59630 [13]. DFC samples
were used and combined with the human DFC samples from GSE25219 in the above
section. No obvious batch effect was observed between two data sets, as the same platform
and normalization methods were applied. All 17,542 genes were analyzed by TempShift.
DiffShape genes were selected with LLRshape below two standard deviations below the
mean and shift genes were selected with LLRshape above mean and LLRshi f t above 10.

2.4.2. Cell Type Enrichment

Single cell RNA-seq of human neocortex were downloaded from GSE67835 [14]. Log2-
RPM (reads per million mapped reads) were used to measure expression. To assign cell
types, we first reduced the dimension of the data by tSNE and then performed k-means
clustering. The cell type of a cluster of cells is determined by the expression of cell-type
markers. We identified two clusters of prenatal single cells, representing progenitors and
neurons, respectively, and six clusters of adult single cells, including pyramidal neuron,
interneurons (two clusters), oligodendrocytes, astrocytes and microglia. For each gene,
cell type enrichment was calculated by one-way ANOVA followed by post hoc Tukey’s
honest significant difference (HSD) test. A gene is enriched in cell type A, if ANOVA
p < 0.01 and Tukey’s HSD test p < 0.01 for comparison between cell type A and at least
6 other cell types. The enrichment of cell type-enriched in DiffShape genes and shift genes
was tested by Fisher’s exact test.

3. Results
3.1. Testing TempShift by Simulation

To test the performance of TempShift [6] (https://github.com/YingZhuLab/TempShift,
accessed on 31 May 2023) implemented in R, we applied it to different types of simulated
data with known time shift, including Gaussian process data, periodic data, and polynomial
data. The specific principles of data simulation are described in Section 2.

3.1.1. Gaussian Process Data

We first tested the performance of our model on two-group and three-group simulated
data generated from Gaussian process. We generated 100 genes following the independence
model (Figure 2a, Equation (A1)), the no-shift model (Figure 2b, Equation (A2)), and the

http://pantherdb.org/
https://github.com/YingZhuLab/TempShift
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shift model (Figure 2c, Equation (A3)), respectively (Appendix A), with noise term σ = 0.5.
The x-axis is the simulation time and the y-axis is the simulated gene expression.

Figure 2. Application of TempShift to data simulated from Gaussian process. (a) An example of
genes following the independence model in the two-group simulated data. The solid lines show the
true trajectories. (b) An example of simulated genes following the no-shift model in the two-group
simulated data. (c) An example of simulated genes following the shift model in the two-group
simulated data (Left: before shifting; right: after shifting). (d,e) Simulated results of two-group
data. σ = 0.5. (d) The LLRshape and LLRshi f t of all two-group simulated genes. The LLRshi f t is in
logarithmic scale. The genes following the independence model are in blue; genes following the no-
shift model are in green and genes following the shift model are in red. (e) The histogram of estimated
∆t. The no-shift model is in green and the shift model is in red. The dashed lines show the true ∆t of
the no-shift (∆t = 0) and the shift model (∆t = 2). (f,g) Simulated results of three-group data. σ = 0.5.
(f) The LLRshape and LLRshi f t of all three-group simulated genes. The LLRshi f t is in logarithmic scale.
(g) The true ∆t vs. the estimated ∆t of group 2 (black) and group 3 (grey) compared with the reference
group (group 1). The red line represents the line of estimated ∆t = true ∆t. (h,i) Simulated results of
two-group data. σ = 1. (h) LLRshape and LLRshi f t of all two-group simulated genes with high noise.
The LLRshi f t is plotted in logarithmic scale. (i) The histogram of estimated ∆t. The no-shift model
is in green and the shift model is in red. The dashed lines show the true ∆t of the no-shift (∆t = 0)
and the shift model (∆t = 2). (j) LLRshi f t reduces with the increase in noise. (k) The prediction error
increases with the increase in noise.
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In both the two-group and the three-group data, we observed clear separation between
genes following the independence model and genes following the no-shift or shift model
by LLRshape and further separation between shift genes and no-shift gene by LLRshi f t
(Figure 2d,f). Therefore, based on LLRshape and LLRshi f t, we can achieve the purpose of
screening out DiffShape, no-shift and shift genes. Furthermore, our model accurately
predicted the time shift in the shift model, with small mean squared prediction error (MSPE;
two-group MSPE = 0.0061; three group MSPE = 0.0039 for group 2 and MSPE = 0.0027 for
group 3; Figure 2e,g). The mean squared prediction error measures the expected squared
distance between our estimated time shift and the true time shift.

Next, we analyze the robustness of the TempShift to noise. Residual variance refers
to the variance in a model that cannot be explained by the variables in the model. The
higher the residual variance of a model, the higher the noise level. In the above two-group
data with σ = 0.5, the residual variance constituted 0.3–65.2% total variance in the no-
shift model (6.4 ± 9.8%) and 0.4–30.5% (5.7 ± 5.5%) in the shift model, where TempShift
successfully distinguished all shift genes from no-shift genes under this noise level. To
further explore the effects of noise level, we then increased the residual variance by setting
σ = 1, which resulted in the residual variance constituting 2.1–67.2% total variance in the
no-shift model (16.7± 14.8%) and 1.7–76.4% (11.9 ± 10.8%) in the shift model. In this case,
TempShift is also able to distinguish most temporally-shifted genes from no-shift genes,
except one gene with 76.4% noise (Figure 2h,i ). In general, LLRshi f t decreases and the
prediction error increases with the level of noise (Figure 2j,k), and TempShift is robust
to noise.

3.1.2. Periodic Data

We then assessed whether TempShift could be applied to data generated from other
models. TempShift was first applied to simulated periodic data, the expression changes
associated with periodic processes, such as cell cycle or circadian rhythm. The residual
variance constituted approximately 15% of the total variance in the simulated datasets.
This percentage of noise is selected according to previous estimation in the microarray
experiments [15]. For two-group data, we generated 100 no-shift genes (∆t = 0) and
100 shift genes (∆t = 2; Figure 3a), and for three-group data, we generated 100 no-shift
genes (∆t = 0) and 100 shift genes with the randomly sampled time shift (∆t) (Appendix A;
Figure 2d). In both settings, TempShift successfully distinguished the shift genes from
no-shift genes by LLRshi f t, and accurately estimated ∆t (two-group data MSPE = 0.0095;
three-group data MSPE = 0.0085 for ∆t1 and 0.0097 for ∆t2) (Figure 3b,c,e,f).

3.1.3. Polynomial Data

The non-periodic data representing gene expression changes across development were
simulated with a residual variance accounting for approximately 10%. Then, TempShift was
applied to the simulated non-periodic data with two-group and three-group, respectively.
Again, TempShift successfully distinguished the shift genes from no-shift genes with
LLRshi f t and accurately estimated ∆t using both two-group (MSPE = 0.012) and three-
group data sets (MSPE = 0.0052 for ∆t1 and MSPE = 0.0065 for ∆t2) (Figure 3h,i,k,l).

In summary, the simulation results demonstrated that TempShift is able to identify
temporally shifted genes and accurately estimate time shift between groups even with
high noise.
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Figure 3. Application of TempShift to periodic and quadratic data. (a–f) Data simulated from sine
function. (a–c) Two-group model. (a) An example of two-group shift gene. The solid lines show the
trajectories of the sine function that generate the data. Left: before shifting and right: after shifting.
(b) The LLRshape and LLRshi f t of all two-group simulated periodic genes. The LLRshi f t was plotted in
logarithmic scale. The shift genes are in green and the no-shift genes are in red. (c) The histogram of
estimated ∆t. The no-shift model is in green and the shift model is in red. The dashed lines showed
the true ∆t of the no-shift (∆t = 0) and the shift model (∆t = 2). (d–f) Three-group model. (d) An
example of three-group shift genes. The solid lines show the trajectories of the sine function that
generate the data. Left: before shifting and right: after shifting. (e) The LLRshape and LLRshi f t of all
three-group simulated periodic genes. The LLRshi f t is plotted in logarithmic scale. The no-shift genes
are in green and the shift genes are in red. (f) The true ∆t vs. the estimated ∆t of group 2 (black)
and group 3 (grey) compared with the reference group (group 1). The red line represents the line
of estimated ∆t = true ∆t. (g–l) Data simulated from quadratic function. (g–i) Two-group model.
(g) A representative two-group shift gene simulated from quadratic model. The solid lines show
the trajectories of the quadratic function that generate the data. Left: before shifting and right: after
shifting. (g) The LLRshape and LLRshi f t of all two-group simulated non-periodic genes. The LLRshi f t
is plotted in logarithmic scale. The no-shift genes are in green and the shift genes are in red. (i) The
histogram of estimated ∆t. The no-shift model is in green and the shift model is in red. The dashed
lines showed the true ∆t of the no-shift (∆t = 0) and the shift model (∆t = 2). (j–l) Three-group model.
(j) A representative three-group shift gene. The solid lines show the trajectories of the quadratic
function that generate the data. Left: before shifting and right: after shifting. (k) The LLRshape and
LLRshi f t of all three-group simulated non-periodic genes. The LLRshi f t is plotted in logarithmic
scale. The no-shift genes are in green and the shift genes are in red. (l) The true ∆t vs. the estimated
∆t of group 2 (black) and group 3 (grey) compared with the reference group (group 1). The red line
represented the line of estimated ∆t = true ∆t.
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3.2. Identifying Developmental Sequences in the Human Neocortex

We then applied TempShift to investigate the developmental sequences in the human
neocortex. The developmental sequences represent the order in which changes in structure
or function occur during the process of development of an organism. The cerebral neocortex
consists of functionally distinct sensory, motor and association areas. Previous studies have
suggested differential gene expression and maturation rates of different neocortical areas.
To explore the developmental sequences in the human neocortex, we applied TempShift to
a previously published microarray data set, including samples from 11 neocortical areas
(Supplementary Table S1) across prenatal and postnatal development and adulthood [11].
Temporal dynamic genes were pre-selected by fitting a cubic regression model combining
all regions (Details see Section 2). The 4153 selected genes were then used as input to
TempShift. The dorsolateral prefrontal cortex (DFC) was used as the reference area (∆t = 0).
Since the pre-selection step is prone to select genes with the same shape, the majority of the
genes (4111 genes) passed the shape selection Λshape = 50. Among these genes, 366 genes
were selected as multi-area temporally shifted genes with threshold Λshi f t = 50 (Figure 4a;
Supplementary Table S2). On average, the selected temporally shifted genes showed
delayed development in the prefrontal cortex (MFC, OFC, DFC and VFC) (Figure 4b),
inferring the hierarchical development within neocortex [16,17]. The development of the
primary visual cortex (V1C), the only area located in the occipital lobe in our data, is also
delayed, but with higher variation. Gene enrichment analysis showed that the temporally
shifted genes are enriched in synaptic transmission and neuron differentiation (Figure 4c).

3.3. Sequential Expression of Neurotransmitter Receptors and Axon Guidance Molecules

In the synaptic transmission group, we found multiple glutamate receptor genes
(GRIA4, GRIK1 and GRIK4) (Figures 4d and A1a) and GABA receptor genes (GABRA1,
GABRA4, GABRB2 and GABRG1) (Figures 4e and A1b). GRIA4 gene encodes GluR4
subunit of AMPA receptor, which is the main subunit expressed in the late postnatal and
adult. This gene demonstrated delayed expression in the prefrontal cortex and the primary
visual cortex (V1C). On the other hand, GRIK1 and GRIK4 encode Kainate receptor GluR5
and KA-1 subunits, respectively. The expression of GRIK1 started from the temporal lobe
(ITC, A1C, and STC), while GRIK4 started its expression sporadically from ITC, VFC and
MFC to other areas. The GABA receptor genes we identified encode subunits of GABAA
receptors. Among them, GABARA1, GABRB2, and GABRG1 exhibited a developmental
sequence that started from ITC and then spread through the temporal lobe to other neo-
cortical areas. In contrast, GABRA4 started from the prefrontal cortex (OFC, VFC, and
DFC) and was delayed in ITC. In the neuron differentiation group, we found four genes
involved in the PANTHER pathway: axon guidance mediated by Slit/Robo [12]. One way
that Slit/Robo signaling mediates repulsion from the midline is by silencing the receptor of
the attractive guidance cue netrin-1, netrin-2 and DCC [18]. While all four genes exhibit
delayed expression in the prefrontal cortex, ROBO1 displays opposite medial-lateral tem-
poral patterns of NTNG1, NTNT2 and DCC. ROBO1 demonstrates the medial-to-lateral
pattern, with earlier expression in V1C, S1C, IPC, M1C and A1C, while NTNG1, NTNG2
and DCC demonstrate the lateral-to-medial expression (Figures 4f and A1c).
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Figure 4. Developmental sequences in the human neocortex. (a) 2D density plot of LLRshape and
LLRshi f t. LLRshi f t is in logarithmic scale. The cutoff is set to 50 for both LLRshi f t and LLRshape (red
dashed lines). (b) Violin plot showing the distribution of ∆t of 366 temporally-shifted genes in each
neocortical area. (c) GO terms enriched with temporally shifted genes (p < 0.05). (d) Sequential
expression of glutamate receptor genes. (e) Sequential expression of GABA receptor genes. (f) Se-
quential expression of axon guidance molecules. The color from red to blue shows the expression
order from early to late. The ∆t plotted is centered to mean. Fp—Frontal pole; DFC—Dorsolateral pre-
frontal cortex; OFC—Orbital prefrontal cortex; VFC—Ventrolateral prefrontal cortex; MFC—Medial
prefrontal cortex; M1C—Primary motor (M1) cortex; S1C—Primary somatosensory (S1) cortex;
A1C—Primary auditory (A1) cortex; ITC—Inferior temporal cortex; IPC—Posterior inferior parietal
cortex; STC—Superior temporal cortex; Op—Occipital pole; V1C—Primary visual (V1) cortex.
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3.4. Expression of Marker Genes Predicts the Interneuron Migration Pathway

In the above analysis, we also identified GAD1, a synthetic enzyme of interneuron
neurotransmitter GABA [19], as a temporally shifted gene. The expression of GAD1,
like GABA receptor genes GABRA1, GABRB2, and GABRG1, started from ITC and then
spread from the temporal lobe to other neocortical areas. Unlike cortical projection neurons
that derive from the dorsal telencephalon and migrate radically to the cortical plates [20],
despite the existence of an additional subset of neocortex-originated neocortical GABAergic
interneurons in primates, cortical interneurons mostly arise from the ventral telencephalon
and migrate tangentially to the neocortex [21–23]. Therefore, we investigated the expression
trajectories of markers of GABAergic interneurons (GAD1, GAD2) [19] and their progenitors
(DLX1, DLX2) [24] to explore whether the migratory pathway of interneurons is reflected
by a temporal shift in the gene expression. DLX1 and DLX2, transcription factors required
for interneuron differentiation and migration [24], peaked in mid-fetal brains and were
expressed until infancy (Figure 5a). On the other hand, GAD1 and GAD2, markers of pan
GABA interneurons, reached highest expression in infancy following the peak of DLX1 and
DLX2 expression in all neocortical areas (Figure 5a). Application of TempShift suggested
that DLX1, DLX2, GAD1 and GAD2 exhibit the same temporal shift pattern of expression
trajectories across neocortical areas. All four genes demonstrated sequential expression
from ventrolateral to dorsomedial areas (Figure 5b,c), indicating the migratory streams of
interneurons from ganglionic eminence to neocortex in humans (Figure 5d).

Figure 5. Revealing interneuron migratory streams using interneuron markers. (a) The expression
trajectories of interneuron progenitor (DLX1, DLX2) and mature cell (GAD1, GAD2) markers. (b) Tem-
poral shift of the interneuron markers in the neocortex (∆t is centered by mean). (c) The pattern of
temporal shift is consistent across the interneuron markers. (d) The schematic migratory streams of
cortical interneurons from ventral telencephalon.
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3.5. Identifying Developmental Changes in the Down Syndrome

To further explore the changes in neurodevelopmental processes and related genes
in DS, we applied TempShift to a published data set including complementary DS sam-
ples [13]. The original study combined this data set with the human brain development
set in the previous section and only used the age-matched controls for differential expres-
sion analysis. In this section, we analyzed samples from dorsal prefrontal cortex (DFC;
Supplementary Table S5) and demonstrated that TempShift is able to include all control
samples by comparing gene expression trajectories inferred from age-unmatched sam-
ples and to identify DiffShape and shift genes that indicate disrupted and time-shifted
biological processes.

3.5.1. Increased Microglia Gene Expression in DS

We first selected DiffShape genes based on LLRshape and 260 genes were selected as
DiffShape genes with LLRshape below two standard deviations below the mean (Figure A2a
and Supplementary Table S3). By integrating with single-cell RNA-seq [14], we found that
the DiffShape genes are enriched in microglia (Fisher’s exact test p < 0.05; Figure 6a). All
15 microglia-enriched genes show higher expression in DS than controls (Figure A2c) and
this difference increases with development (Figure 6b).

3.5.2. Delayed Expression of Oligodendrocyte Genes

We identified 66 shift genes with criteria LLRshape above mean and LLRshi f t greater
than 10 (Figure A2b and Supplementary Table S4). Shift genes identified are enriched
in oligodendrocytes (Figher’s exact test p < 0.05; Figure 6a). All three genes enriched in
oligodendrocytes (Figure 6d) demonstrated delayed expression in DS (Figure 6c,d,g). The
detected shift genes include myelin basic protein (MBP; ∆t = 0.43), transmembrane protein
144 (TMEM144; ∆t = 0.7), and solute carrier family 5 member 11 (SLC5A11; ∆t = 2.5).
The original study selected candidate genes based on paired t-test and gene co-expression
network analysis. Only MBP were identified by gene co-expression network analysis,
while no statistics were available for quantification. None of the genes were detected as
differentially expressed based on paired t-test combining all samples.

Another cell type found to be enriched with shift genes is interneuron 2 (Figure 6a).
This cluster of interneurons is enriched with genes involved in synapses. The shift genes
enriched in this cell type include vesicle-associated membrane protein 1 (VAMP1; ∆t = 1.3)
and regulator of calcineurin 2 (RCAN2; ∆t = 0.4), both of which exhibited obvious delayed
expression in DS (Figure 6e,g). VAMP1, also known as synaptobrevin 1, is a member
of the synaptobrevin family and is involved in the docking and/or fusion of synaptic
vesicles with the presynaptic membrane. RCAN2, also known as DS Candidate Region
1-Like 1 (DSCR1L1), binds to the atalytic domain of calcineurin A and has been previously
associated with DS. Another shift gene enriched in interneuron 2 is DMKN; however, since
the estimated expression trajectory of this gene is linear, it is indistinguishable whether this
gene is upregulated or shifted leftward in DS (Figure 6e).

Furthermore, additional shift genes playing critical roles in cortical development fur-
ther implied delayed development in oligodendrocytes generation, neuronal migration,
neurite growth and synaptogenesis (Figure 6c,g). CNTN6, also named NB-3, encodes the
neural cell adhesion molecule contactin-6 and has been found to be delayed (∆t = 0.43)
in expression in DS. Contactin 6 has been implicated as an autism risk gene. It interacts
with NOTCH1 and promotes oligodendrocyte generation [25]. CNTN6 also interacts with
cell adhesion molecule L1-like (CHL1) to regulate oriented growth of apical dendrites in
the mouse neocortex [26]. Similarly, cerebellin 2 (CBLN2), a gene found to be involved
in synaptogenesis induced by neurexin–neuroligin signaling [27], and synaptotagmin-2
(SYT2), a gene functioning as a Ca2+ sensor for fast neurotransmitter release, are both
delayed in DS, suggesting delayed synaptogenesis in the DS. In addition, ASTN1 encodes
astrotactin, a neuron-glial adhesion molecule that mediates glial-guided neuronal migra-
tion [27]. The expression of ASTN1 decreases earlier in the DS (∆t = −4.2), indicating a
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shortened neuronal migration process in the DS, which may explain the reduced brain size
and altered cortical lamination in DS [28].

Figure 6. Transcriptional changes in the developmental DS brains. (a) Enrichment of cell type-
enriched genes in DiffShape (left ) and shift genes (right). (b) Average difference between DS and
control microglia genes across development (solid). Dashed lines show standard deviation. (c) The
time shift between DS and control of genes associated with oligodendrocyte, synaptogenesis and
neuronal migration. (d–f) Expression trajectories of genes enriched in oligodendrocytes (d) and
interneurons (e) and genes with known functions in neuronal development (f). The lines show the
trajectories estimated from the shift model. (g) The expression pattern of genes in d and e in single
cell clusters.
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4. Conclusions

TempShift is a framework that provides flexible modeling of global temporal shift of
time-series data which can deal with an arbitrary number of replicates, does not require
matched time points across conditions, and can be used for two or more conditions. For
ease of use, we implemented TempShift into an open-source R package (https://github.
com/YingZhuLab/TempShift, accessed on 31 May 2023) in this study. At first, we validated
that TempShift works well for both periodic and non-periodic data and is robust to noise
through simulation. We adopted the Gaussian kernel to fit the gene expression trajectories
in this study, but it can be replaced with other kernels according to the properties of
the data. As we maximize likelihood using a Quasi-Newton method, which finds local
maxima, we would suggest using a larger Initial value of the length scale l of the Gaussian
kernel to avoid overfitting. Otherwise, multiple Initial values can be tried to get the best
fit. In summary, TempShift provides a framework that can be applied broadly to study
temporal differences across different conditions, such as different tissue types, disease
status and species. It can be applied not only to gene expression data, but also to other
time-series measurements.

The implementation of TempShift to human brain transcriptome data demonstrated
the capability of TempShift in identifying shift genes and estimating temporal shift between
as many as 11 neocortical areas at the same time. In addition to comparing multiple groups,
Tempshift is able to detect developmental sequences of multiple biological processes in a
high-throughput way. In the above application, we found that shift genes are enriched in
synaptic transmission and neuron differentiation, and reconstructed the migratory streams
of interneurons in the human neocortex.

Using the DS data, we demonstrated the application of TempShift to analyze groups
of time-series data with unmatched ages. Using TempShift, we selected DiffShape genes
and shift genes, each of which respectively suggested increased microglia, and altered
regulation of developmental timing in the DS, including delayed development of oligoden-
drocytes, neurite outgrowth, synaptogenesis and shortened period of neuronal migration.
Anatomical changes observed in DS include reduced brain size, altered cortical lamination,
reduced dendritic ramifications, diminished synaptic formation, and delayed myelina-
tion [28]. TempShift successfully detected changes in these processes and provided a list of
candidate genes associated with these changes in the developmental processes for future
functional studies.

The TempShift detects shape difference and global shift of gene expression trajectories
currently. For further studies, other models can be developed to identify more transforma-
tion of trajectories, or to refine the time interval, during which the trajectories are different
in shape or temporally shifted.

In summary, we believe that not only can TempShift be used for transcriptome data
analysis of the human brain, but that it also has great potential for understanding the
temporal dynamics of gene expression in other biological processes.
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OFC orbital prefrontal cortex
Fp frontal pole
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DFC dorsolateral prefrontal cortex
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STC superior temporal cortex
ITC inferior temporal cortex
V1C primary visual (V1) cortex
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Appendix A. The Mathematical Principle of Tempshift
In our previous study on spatiotemporal transcriptomic divergence across human

and macaque brain development [6], we proposed TempShift to distinguish DiffShape
genes, shift genes and no-shift genes across groups and to estimate the corresponding
time difference for shift genes. This is accomplished through the following procedure. We
consider one gene at a time in our analysis. Assume we have a total of m groups, and
there are ni samples in the ith group. The total sample size of all m groups is n = ∑m

i=0 ni.
In group i, the time vector of length ni is denoted as xi, and the corresponding gene
expression vector is denoted as yi. The combined time vector across all the samples is
x =

(
xT

1 , xT
2 , . . . , xT

m
)T and the combined expression vector is y =

(
yT

1 , yT
2 , . . . , yT

m
)T ,

where “T” denotes transpose. We consider the following three models: independence
model (Equation (A1)), no-shift model (Equation (A2)) and shift model (Equation (A3)),
where y follows a multivariate Gaussian distribution with different covariance matrices for
these three models:
Independence model:

y ∼ N

0,


K(x1, x1) · · · 0

...
. . .

...
0 · · · K(xm, xm)


+ σ2 In, (A1)
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No -shift model:

y ∼ N

0,


K(x1, x1) · · · K(x1, xm)

...
. . .

...
K(xm, x1) · · · K(xm, xm)


+ σ2 In, (A2)

Shift model:

y ∼ N


0,



K(x1, x1) . . . K
(

x1, xj − ∆tj
→
1nj

)
. . . K

(
x1, xm − ∆tm

→
1nm

)
...

...
...

...
...

K
(

xi − ∆ti
→
1ni , x1

)
. . . K

(
xi − ∆ti

→
1ni , xj − ∆tj

→
1nj

)
. . . K

(
xi − ∆ti

→
1ni , xm − ∆tm

→
1nm

)
...

...
...

...
...

K
(

xm − ∆tm
→

1nm , x1

)
. . . K

(
xm − ∆tm

→
1nm , xj − ∆tj

→
1nj

)
. . . K

(
xm − ∆tm

→
1nm , xm − ∆tm

→
1nm

)




+ σ2 In, (A3)

where K(xi, xj) is a covariance function or kernel between groups i and j, with ni rows

and nj columns. In this study, we adopted Gaussian kernel K
(
xi, xj

)
= σ2

f exp(− (xi−xj)
2

2l2 ),

where l denotes the length scale and σ2
f denotes the amplitude, which determines the aver-

age distance of the function away from its mean. Other kernel functions can be incorporated
in the framework if they provide better fit to the data.

For the independence model, the between-group covariance matrix is set to a zero
matrix 0 (Equation (A1)). Each position of the covariance matrix represents the correlation
between the horizontal and vertical elements, and if the covariance is a diagonal matrix,
then each component of the multivariate Gaussian distribution is independent of each
other. For the no-shift model, all groups are combined into one group (Equation (A2)).
For the shift model, the first group is set as the reference group, and for group i (i 6= 1),

the time shift is ∆ti and the shifted time vector is xi − ∆ti
→
1ni ;

→
1ni is a vector of all ones of

length ni. The covariance matrix of the shift model is defined by combining the shifted
time vectors into one group (Equation (A3)). The σ2 is the variance of noise, and In is the
n× n identity matrix. Therefore, the no-shift model can be considered as a special case of
the shift model when ∆t = 0 for all groups.

We evaluated whether a gene shows temporal shifts across groups in two steps: (1) we
compared the shift model with the independence model to identify genes following the
same trajectory across groups based on log-likelihood ratio LLRshape (Equation (A4)); we
then compared the shift model with the no-shift model to identify genes with temporal
shift by calculating log-likelihood ratio LLRshi f t (Equation (A5)).

LLRshape = log(
max

{
L
(

∆t, θshi f t

∣∣∣x, y
)}

max
{

L
(

θindependence

∣∣∣x, y
)} ), (A4)

LLRshi f t = log(
max

{
L
(
∆t, θshi f t

∣∣x, y
)}

L
(
∆t = 0, θshi f t

∣∣x, y
) ), (A5)

where ∆t is the vector of time shift from the reference group, θshi f t and θindependence are the
other parameters in the shift and independence models, respectively. L(·) is the likelihood
function. The parameters were estimated using optim function in R.

θindependence = argmax L
(

θindependence

∣∣∣x, y
)

, (A6)

(∆t, θshi f t) = argmax L
(

∆t, θshi f t

∣∣∣x, y
)

. (A7)
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The likelihood function L(·) measures the likelihood that the time-series data formed
by the time vector x and the corresponding gene expression vector y follow independent
model or shift model. Thus, we are able to filter Diffshape genes by comparing the values
of LLRshape and and select shift genes by comparing the value of LLRshi f t.

Appendix B. Appendix Figures

Figure A1. Sequential expression of selected genes. (a) Sequential expression of glutamate recep-
tor genes. (b) Sequential expression of GABA receptor genes. (c) Sequential expression of axon
guidance molecules.

Figure A2. Identifying developmental changes in DS brains. (a) Selected DiffShape genes. (b) Selected
shift genes. (c) Sequential expression of glutamate receptor genes.
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