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Abstract: A variety of subjective measures have traditionally been used to assess the perception
of physical exertion at work and related body responses. However, the current understanding
of physical comfort experienced at work is very limited. The main objective of this study was
first to investigate the magnitude of isometric arm forces exerted by females at different levels of
physical comfort measured on a new comfort scale and, second, to assess their corresponding neural
signatures expressed in terms of power spectral density (PSD). The study assessed PSDs of four major
electroencephalography (EEG) frequency bands, focusing on the brain regions controlling motor
and perceptual processing. The results showed statistically significant differences in exerted arm
forces and the rate of perceived exertion at the various levels of comfort. Significant differences in
power spectrum density at different physical comfort levels were found for the beta EEG band. Such
knowledge can be useful in incorporating female users’ force requirements in the design of consumer
products, including tablets, laptops, and other hand-held information technology devices, as well as
various industrial processes and work systems.

Keywords: physical exertions; arm; physical comfort; work design; EEG; power spectral density;
neural signatures

1. Introduction
1.1. Comfort at Work

Recently, increasing attention in the field of human factors and ergonomics has been
given to the theoretical models and practical meaning of comfort at work [1,2]. It has
been observed that many ergonomic investigations have considered negative aspects of
work, such as physical discomfort, illness, or musculoskeletal disorders [3]. Therefore, a
novel perspective on positive constructs, such as comfort and productivity, was proposed.
The perception of comfort can be used as an effective design parameter for developing
productive and efficient work environments [3].

Human perception of comfort is a complex subjective construct determined by an
intricate interplay among psychological, spiritual, physical, social, and environmental
factors [4]. The importance of investigating the perception of occupational tasks with
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consideration of cognitive aspects has been shown [5]. Because the voluntary control of
muscle movements and motor activities is a crucial function of the brain, many studies
have focused on the cerebral cortex, which is involved in controlling muscle activation pro-
cesses [6]. A useful method for assessing brain activity at work is electroencephalography
(EEG) [7]. In this study, we focus on the neural signatures of physical comfort.

A few published studies focus on the neural signatures of comfort related to working
environments. Most of these studies investigated EEG signatures of comfort influenced by
some element of the environment, e.g., the effect of clothing, outside temperature, exposure
to light, driving a vehicle, etc., while participants were at rest or performing simple mental
activities (see Table 1).

Table 1. Key findings of electroencephalography (EEG)-based studies of perceived comfort.

Comfort Type Key Finding(s)

Visual comfort • EEG power related to the comfort of stereoscopic vision [8].
• Level of illumination affected by EEG visual evoked potential [9].

Thermal comfort
• Increase in theta and alpha power, decrease in beta power, and the presence of sensorimotor rhythm in a cool,

comfortable indoor sitting environment [10].
• Thermal comfort of sleep and its quality related to changes in EEG signals [11].

Wear comfort • Increased somatosensory activity in the brain’s frontal, parietal, and occipital regions with the pressure of a clothing
girdle. Low alpha power at low comfort conditions [12].

Riding comfort • Correlation between EEG and subjective evaluation features in car riding comfort for different types of roads and tires
[13].

Furthermore, studies on EEG signatures when participants engage in a physically
demanding task are rather limited. Because the current research focuses on the EEG-based
brain signatures of physical activity, relevant EEG-based investigations on isometric exer-
tions with the upper limbs, such as hands, fingers, wrists, arms, and elbows, have also been
reviewed. A summary of the key findings of these studies is presented in Table 2.

Table 2. Key findings of EEG-based studies on isometric exertion with upper extremities.

Isometric Exertion Task Key Finding(s)

Gripping or grasping

• High levels of EEG activity during the preparation and onset of force exertion [14].
• Decrease in the power of all EEG frequencies with muscle fatigue during the sustained exertion phase [15].
• No effect of fatigue due to prolonged maximum voluntary contraction (MVC) on overall brain activation for controlling muscle

movement [16].
• Increase in theta and beta frequencies in different cortical regions during a gripping task with a dynamometer [17].
• Increase in beta power at the start of the cue and a decrease in beta power during the preparation and task performance [18].
• EEG signatures correlated with handgrip force levels [19].

Finger movement • Increased cortical activity in beta and gamma bands in the sensorimotor area with finger movement [20].

Wrist flexion and
extension

• Gamma band power allowed for the detection of motor circuit activation during rest or whilst performing tasks [21].
• Lower peak beta cortico-muscular coherence and perceived difficulty for wrist flexion. Opposite results for wrist extension [22].

Elbow flexion • Significant decrease in EEG-EMG coherence in the beta band despite increased power [23].

Arm exertion • Lower alpha power for 1 kg and 3 kg loading in forearm exertions than under no load conditions. No significant differences
between load levels. Significantly greater alpha power when tired than in the absence of fatigue [24].

1.2. Perception of Exertion and Comfort during Isometric Tasks

The perception of physical effort is subject to the psychophysical power law
(Stevens, 1957) [25], which defines the relationship between the perceived intensity and the

stimulus strength [5]. Accordingly, many studies have assessed the rate of physical exertion,
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on the basis of Borg’s scales [26]. For example, several studies have reported that movement
related cortical potential (MRCP) correlates with force levels, force rate, fatigue, and muscle
movement [27]. In another review, the role of emotion and fatigue along with other factors
play a role in motor planning and execution [28]. In non-fatigued participants asked to
perceive their level of physical effort, greater activity was observed in the prefrontal areas
in addition to the motor cortex [29]. Similar results were reported by [30], in which the
MRCP amplitudes correlated with perceived physical exertion, demonstrating central and
peripheral muscle fatigue.

Other major findings included greater perceived exertion and physiological stress after
the assigned leg exercise. After a leg-resistance exercise with cognitive tasks, a decrease
in EEG oscillations and beta cortico-muscular coherence was observed [31]. Furthermore,
an increase in theta power and a more active frontal region was reported by combining
both physical and cognitive tasks; the perception of exertion significantly increased with
the intensity of physical exercise [32]. Some of these investigations can be interpreted
as indicating that a high level of physical comfort resulting from relaxing, low-intensity
exercise is associated with an increase in alpha and theta spectral power [33,34]. However,
a direct assessment of EEG signatures associated with isometric forces at different levels of
physical comfort and their perception remains an unexplored area.

1.3. Rationale for a Female-Centric Study

The sex of participants is an important factor that should be considered in studies
at all levels of neuroscience. Several factors influence the differences between human
male and female brains, including aging, functionality, hormone response, and wiring [35].
Based on the analyses of over 6000 participants’ EEG data collected during two different
tasks in an uncontrolled environment, robust sex differences in several EEG measures
were reported [36]. They also discussed how the age-related shifts in EEG activity differ
between males and females. Notably, a deep learning algorithm demonstrated sex-specific
differences in human brain signals [37]. Recently, Cave et al. (2021) reported significant
differences in neuronal activity measured by resting EEG between young adult females
and males and concluded that future EEG research should consider sex as a potential
confounding variable [38]. On the physical side of human performance, significant gender
differences were found to exist in EEG recorded during hand movement [39]. Specifically,
they reported greater power decreases for females in all analyzed EEG frequency bands in
topographic maps located in the centro-parietal brain area compared to males.

Beyond the brain, significant differences exist in physical strength, perception, and
judgment between males and females [40,41]. Furthermore, prior literature surveys have
revealed a substantial data gap in investigations of EEG indices for physical activity and
the overall published scientific research on the female population [42,43]. Therefore, this
study focuses on female subjects only. We note that some EEG studies utilizing only female
participants have also been reported in the past. For instance, EEG correlates of working
memory performance were investigated in females only [44]. However, we would like to
note that our subsequent study explores the same research questions in male participants.

1.4. Objectives

Presently, the understanding of physical comfort experienced at work is rather limited.
The main objective of this study was first to investigate the levels of isometric arm forces
exerted by females at different levels of physical comfort and second to assess their cor-
responding neural signatures expressed in EEG power spectral density (PSD). The study
examined the PSDs of four major EEG frequency bands in the brain regions controlling
motor and perceptual processing. We hypothesized that differences would exist in the
forces exerted by females and the corresponding EEG indices of brain activity, owing to
the different levels of voluntary isometric arm exertion exhibited by the participants at
different predefined physical comfort levels, ranging from very low to very high.
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2. Methods and Procedures
2.1. Participants

Eight healthy female adults (27.5 ± 7.7 years old; body weight: 58.1 ± 10.9 kg; and
body height 162.6 ± 6.44 cm) participated in this study. It should be noted that other
similar EEG studies have included fewer than eight participants [45,46]. The participation
exclusion criteria were any history of cardiovascular disease; neural or psychological
disorders; polycystic ovarian syndrome; back pain; or any other serious illnesses and
injuries. None of the participants were pregnant at the time of the experiment. The
experimental procedures were approved by the Institutional Review Board (IRB) at the
University of Central Florida. Written informed consent from all participants was obtained
before the experiment. The participants were familiarized with the experimental procedures
before the trials began.

2.2. Experimental Design

The experimental protocol included isometric arm exertions at different levels of
physical comfort [47]. To assess the level of maximum voluntary contraction (MVC),
we asked the participants to increase the exerted force to the maximum possible level
without jerking and to maintain the exertion for 3 s [48]. An average of three MVC
trials were recorded. Next, the participants performed isometric arm exertion in the
same posture (see Figure 1) at five predefined levels of physical comfort: very low (VL),
fair (F), moderate (M), high (HH), and very high (VH). In each experimental set, the comfort
levels were applied in random order to minimize learning effects. Thirty seconds of
rest was applied between all experimental sessions. The assigned levels of comfort were
selected from the proposed 11-point unipolar rating of the perceived physical comfort scale
(see Table A1 in the Appendix A). This scale was developed based on the assumption that
the level of physical comfort is associated with a corresponding magnitude of physical
exertion [49]. For each exertion, the exerted force was measured with a TorbalTM FC 5k
series force meter (Scientific Industries, Inc., Bohemia, NY, USA). After each exertion, the
participants were also asked to assess their physical effort on Borg’s scale of RPE [26]. The
detailed study protocol is shown in Figure 2.
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flow diagram depicting the experimental timeline of isometric arm exertion. There are two stages: 
maximum voluntary contraction (MVC) and level of physical comfort. MVC includes 3 trials of 3 s 
with 30 s rest. Level of physical comfort has 5 trials of 3 s with 30 s rest in between. This is repeated 
three times, and they are a 120 s rest period apart. 

2.3. EEG Data Acquisition 
Brain activity during isometric exertion was recorded with a Cognionics Data Acqui-

sition Software Suite and 64 channel Cognionics Mobile-64 device (CGX, San Diego, CA, 
USA). Conductive AgCl gel was used to create an electrical connection with the scalp. The 
device electrodes were arranged in a 10–10 configuration. The electrode contact imped-
ance was carefully monitored and maintained at the lowest level possible, i.e., 20 k Ohm 
or less [50]. Before the experiment, the participants were trained in how to minimize 

Figure 1. (a) Schematic diagram of the side and front views of an isometric arm exertion by us-
ing the Jackson strength evaluation system [47]. (b) Photograph from an experimental session.
Figure 1a. Alt text: An illustration depicting the participants’ standing posture illustrating how the
arm exertions were performed in the laboratory. Part (a) is a schematic diagram of an isometric arm
exertion’s side and front views. Part (b) is a photograph showing the subject with the electroen-
cephalography (EEG) cap on his head during the experimental session.
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Figure 2. Experimental protocol for isometric arm exertion. Figure 2. Alt text: An illustration with a
flow diagram depicting the experimental timeline of isometric arm exertion. There are two stages:
maximum voluntary contraction (MVC) and level of physical comfort. MVC includes 3 trials of 3 s
with 30 s rest. Level of physical comfort has 5 trials of 3 s with 30 s rest in between. This is repeated
three times, and they are a 120 s rest period apart.

2.3. EEG Data Acquisition

Brain activity during isometric exertion was recorded with a Cognionics Data Acquisi-
tion Software Suite and 64 channel Cognionics Mobile-64 device (CGX, San Diego, CA, USA).
Conductive AgCl gel was used to create an electrical connection with the scalp. The device
electrodes were arranged in a 10–10 configuration. The electrode contact impedance was
carefully monitored and maintained at the lowest level possible, i.e., 20 k Ohm or less [50].
Before the experiment, the participants were trained in how to minimize artifacts such as
eye blinking, tongue movement, and any other facial movements. They were also shown
how these activities affect EEG recordings. Before recording, a cap in the most fitted size
available was placed on each participant’s head, and gel was applied through syringes to
each electrode. The impedance was then decreased for each electrode individually via a cir-
cular movement with a sterilized blunt needle tip. The entire process lasted approximately
30–40 min. After the desired impedance level was reached, EEG signals were recorded at a
sampling rate of 500/s.

2.4. EEG Data Preprocessing

EEG data processing was performed in the EEGLAB toolbox of MATLAB
(The MathWorks, Inc., Natick, MA, USA) an open-source processing tool [51]. The ac-
quired EEG data were resampled and band-pass filtered from 1 to 50 Hz. In the next step,
clean_rawdata and artifact subspace reconstruction algorithms were applied to reject bad
channels and correct continuous data, respectively [51,52]. The channels were also verified
manually and removed if necessary, according to channel power spectra plots. The removed
channels were interpolated, and average referencing was then applied. The continuous
data were epoched between −1 and 4 s of the exertion performed. Epoch rejection tools,
using an amplitude threshold from −500 to 500 µV, and improbability tests (6 SD for single
channels, 2 SD for all channels) were applied. Adaptive mixture independent component
analysis was used to separate independent components of the data that indicated better
results than other ICA algorithms [53]. Finally, the IClabel plugin was applied to label
and remove the artifactual components [54]. For all steps in data preprocessing, Makoto’s
preprocessing guidelines and EEGLAB tutorials were used as guidelines [55].
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2.5. EEG Data Analysis

Because cognition, motor planning, attention, and perception are executed in the
frontal, central motor, and parietal cortices [56], we selected 41 channels covering these
regions for potential analysis. The analyzed EEG band frequencies were theta (4–8 Hz),
alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz) [57]. Alpha waves are inversely
associated with cortical activation and represent a relaxed state [58]. Theta, beta, and
gamma bands are primarily associated with motivational processes, memory, and emotion;
sensorimotor behavior; and attention and object representation, respectively [59]. Although
EEG has a high temporal resolution, the selected channels have typically been used in
prior research for the investigation of the brain motor cortex and cognitive functions [60].
The region-based classification of the channels used in this study is illustrated in Figure 3.
The PSD for all major brain wave frequencies was computed with MATLAB. PSD is an
estimate of total power distribution over the frequency [61]. Thus, the PSD, or power
spectra, measures the power of a signal for a certain frequency domain.
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Figure 3. Categorization of selected channels from a Cognionics Mobile-64 headset: frontal (AFz,
AF3–F4; Fz; F1–F6), central (FCz, FC1–FC6; Cz, C1–C6; CPz, CP1–CP6), and parietal (Pz; P1–P6)
channels (adapted from Cognionics Inc.). Figure 3. Alt text: This brain map illustrates the loca-
tion of all EEG electrodes from a Cognionics Mobile-64 headset according to the brain regions.
Red, green, and blue correspond to frontal (AFz, AF3–F4; Fz; F1–F6), central (FCz, FC1–FC6;
Cz, C1–C6; CPz, CP1–CP6), and parietal (Pz; P1–P6) channels, respectively.

2.6. Statistical Analysis

Analysis of variance (ANOVA) and boxplots assessed the differences in RPE scores and
exerted arm forces for different comfort levels. The correlation between arm forces and EEG
PSD values at different levels of comfort has also been investigated. These analyses were
performed for theta, alpha, beta, and gamma power. Since the observed EEG signatures
were not normally distributed, non-parametric tests were applied to assess the changes in
brain activation related to arm isometric exertions, both the relative and normalized PSD of
all four EEG frequency bands.

3. Results
3.1. MVC and Forces Exerted at Different Levels of Physical Comfort

The overall mean, standard deviation, and range (min–max) of the maximum volun-
tary contraction [N] for arm flexion for all participants were 119.5, 52.86, and 37-204 [N],
respectively. The means (and standard deviations) of the exerted forces [N] were as follows:
68.07 (28.58) for very low comfort, 32.77 (9.66) for fair comfort, 34.7 (11.04) for moderate
comfort, 20.83 (7.97) for high comfort, and 14.99 (7.02) for the very high level of physical
comfort (see Table 3 and Figure 4). As hypothesized, the ANOVA (see Table 4) revealed
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that the isometric arm forces exerted at different levels of physical comfort significantly
differed (F = 19.57; p < 0.001). The effect size of 0.177 for “subject” indicates that individual
differences among subjects explain only about 17.7% of the variation in the exerted forces.
On the other hand, the effect size of 0.606 for “Comfort Level” suggests that the different
comfort levels explain approximately 60.6% of the variation in force, making comfort level
a strong predictor of force in this analysis. Tukey’s pairwise comparison of the means
with a 95% confidence level confirmed the significant differences between forces exerted at
very low and all other comfort levels, between fair and very high, and between moderate and
very high comfort levels.

Table 3. Isometric arm forces generated (and % MVC) at different levels of physical comfort.

Predefined
Comfort Level

Arm Force (N)

Mean SD
Range % MVC

Min Max Mean Minimum Maximum

Very low comfort 68.08 28.58 19 117 56.97 15.89 97.9

Moderate comfort 34.70 11.04 11 51 29.04 9.21 42.68

Fair comfort 32.78 9.66 17 52 27.43 14.23 43.51

High comfort 20.84 9.79 6 44 17.44 5.02 36.82

Very high comfort 14.99 7.02 6 33 12.54 5.02 27.62
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Figure 4. Isometrically generated arm forces at different levels of physical comfort (VL, F, M, HH,
and VH correspond to very low, fair, moderate, high, and very high, respectively). Figure 4. Alt text:
Force at different levels of physical comfort across all participants.

Table 4. ANOVA table of the effect of the comfort level on the exerted arm forces in newton [N].

Source df Adj SS Adj MS F-Value p-Value

Subject 7 3964 566.3 3.26 0.0120

Comfort level 4 13,580 3394.9 19.57 <0.001

Error 28 4858 173.5

Total 39 22,402
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3.2. Rate of Perceived Exertion at Different Levels of Physical Comfort

The ANOVA revealed that the rate of perceived exertion (RPE) at different levels
of predefined physical comfort significantly differed (see Table 5). The means (and stan-
dard deviations) of the RPE scores were as follows: 15.46 (1.79) for very low comfort,
10.00 (1.77) for fair comfort, 12.08 (1.53) for moderate comfort, 7.04 (0.86) for high comfort,
and 6.46 (0.59) for the very high level of physical comfort. Tukey’s pairwise comparison
confirmed differences between RPE scores for all comfort levels with a 95% confidence
level, except for high and very high levels, which did not statistically differ. It should be
noted that for both the arm forces and the RPE scores, the moderate comfort category was
higher than the fair comfort category, thus indicating that the participants perceived and
applied more effort for the moderate than the fair physical comfort level (see Figure 5).

Table 5. ANOVA for the effect of comfort level on the RPE scores.

Source df Adj SS Adj MS F-Value p-Value

Subject 7 12.20 1.742 3.17 0.013

Comfort level 4 441.69 110.424 201.13 <0.001

Error 28 15.37 0.549

Total 39 469.26
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4. Neural Signatures of Force Exertion
4.1. Brain Topographic Map

Figure 6 below illustrates the topographic head mapping, representing EEG power
spectrum density distributions at the maximum voluntary contraction level (MVC) and
different levels of physical comfort. The columns represent MVC and physical comfort
levels, whereas the rows denote the EEG power at different frequency bands. In these
examples, theta and alpha power differ in the frontal and parietal areas, while beta and
gamma power show differences in the frontal area, parts of the central area, and the parietal
brain areas.
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4.2. PSD–Force Correlation Analysis

Pearson correlation coefficients of the EEG PSD values and arm forces at different
levels of physical comfort across all channels and all participants were calculated. The
alpha power significantly (p < 0.05) correlated with force at a high comfort level. Beta
power and force were significantly correlated at very low and moderate comfort levels.
The theta power significantly (p < 0.05) correlated with force when the comfort levels
were moderate and high. Finally, gamma power was significantly (p < 0.05) correlated
with force at very low, moderate, and high comfort levels. Furthermore, the following
significant correlations (p < 0.05) between the PSD values and arm forces at different
levels of physical comfort were found. At the very low physical comfort level, both beta
power (FC4: r = 0. 871) and gamma power (FC4: r = 0.921) correlated with the exerted
forces in the central brain region. At the moderate level of physical comfort, beta power
(P5: r = 0.774) and theta power (P5: r = 0.707) were correlated with the exerted forces in the
parietal region. In addition, gamma power was correlated with force (CP4: r = 0.752) in
the central region, and theta power was correlated with force (AF3: r = 0.733) in the frontal
brain region. At the high level of physical comfort, alpha power was correlated with force
in the central (CP5: r = 0.712) and parietal brain regions (P3: r = 0.724 and P5: r = 0.792),
while gamma power was correlated with force in the frontal region (F5: r = 0.727) as well
as the parietal region (P1: r = 0.717 and P5: r = 0.821). Finally, theta power was correlated
with force in the frontal (AF3: r = 0.721) and parietal regions (P3: r = 0.775; P5: r = 0.708;
and P6: r = 0.704).

The above results are in general agreement with findings from other studies reporting
that EEG signatures were correlated with force level [19,27]. At very low comfort, the exerted
force correlated with the beta and gamma power in the central channel, thus reflecting
motor activity [21,62]. In our study, at the moderate comfort level, a positive correlation
coefficient was found with theta power in the frontal region, theta and beta power in the



Brain Sci. 2023, 13, 1027 10 of 19

parietal region, and gamma power in the central channels. Therefore, moderate comfort
resulted in more attentional, sensorimotor, and perceptual effort along with force [63,64].
Finally, when the comfort level was high, theta power significantly correlated with force in
the frontal and parietal areas, alpha power in the central and parietal areas, and gamma
power in the frontal and parietal channels. Furthermore, the parietal channels showed
significant force–EEG power correlation at the high and moderate comfort levels. Because the
parietal region is responsible for attention, perception, and awareness, these correlations
appear valid [56].

4.3. Relative and Normalized Power Spectrum Density

As proposed in the subject literature, relative PSD, defined as the PSD ratio of the
specific frequency band of the analysis target with that of the total frequency band, was
used [65]. Application of the relative PSD values allows for a reduction in the inter-subject
variability associated with absolute EEG signal power. The relative PSD changes of the EEG
band were used to reduce inter-subject variance [66]. The change in relative PSD (RPSD)
for each EEG channel was calculated using equation (1):

RPSDfi = PSDfi/PSDTotal f (A+B+G+T) (1)

where fi indicates specific frequency band (i) (A = alpha, B = beta; G = gamma, and T = theta)
and Totalf indicates the sum of PSD values over all frequency bands. The total RPSDfi value
for the whole brain was defined as the sum across all EEG channels.

As discussed by [65], since the relative PSD reflects changes in only one frequency
band, as opposed to a totality of the effect of all frequency bands, it can be less accurate to
assess the overall changes in the brain. Therefore, for the purpose of this study, we have
also introduced the normalized PSD index. This was also to control for differences in the
arm strength of all participants, and the potential effect of MVC on neural brain responses
at the maximum voluntary contraction MVC level. The normalized PSD index (NPSD) for
each EEG channel (electrode) was defined as a ratio of specific PSDfi values divided by the
PSD corresponding to the maximum voluntary contraction (MVC), denoted as PSDfi MAX
for each subject using the following Equation (2):

NPSDfi = PSDfi/PSDfi MAX (2)

This MVC-normalized index (NPSDfi) was also used to control for differences in the
arm strength of all participants and the potential effect on neural brain responses at the
maximum voluntary contraction MVC level. It should be noted that the above index is
analog to normalization of the exerted forces which are commonly expressed as the % of
the corresponding MVC values [67].

4.3.1. Relative PSD Analysis

To compare the effects of different levels of physical comfort on brain neural activ-
ity, we first compared the medians of the RPSD index of neural responses for all EEG
channels (electrodes). The non-parametric Kruskal–Wallis (KW) test was chosen since
the collected EEG data do not satisfy the normality assumption. Using the KW test, we
could make valid statistical inferences without the need for normally distributed data. The
KW test showed that the medians of different comfort groups significantly differed for beta
PSD (H statistic = 15.58; p-value < 0.0037). The subsequent pairwise medians comparisons
with grouping information were carried out using Dunn’s test [68] at a 95% confidence level.
Python package scikit-posthocs version 0.7.0 was used to implement this test to compare
the RPSD medians at different levels of physical comfort (see Figure 7). The median RPSD
values for the beta PSD for very low–moderate and very low–very high levels of comfort were
significantly different (p-values 0.017, and 0.0001, respectively) as per Dunn’s pairwise
comparison test with a 95% confidence level.
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Figure 7. Grand average values of RPSD beta power at different levels of physical
comfort. Figure 7. Alt text: This is a bar chart depicting the grand average values of the relative
beta power with vertical bars at different levels of physical comfort.

4.3.2. MVC-Normalized PSD Analysis

Next, we analyzed the MVC-normalized power (NPSDfi ) index of neural responses at
different comfort levels across all EEG channels (electrodes). As before, the non-parametric
Kruskal–Wallis (KW) was applied. The test showed that the medians of different comfort
groups were significantly different for alpha PSD (H statistic = 18.63; p-value < 0.00093) and
beta PSD (H statistic = 69.71; p-value ≈ 0). The subsequent pairwise medians comparisons
with grouping information using Dunn’s test at a 95% confidence level were used to
compare the NPSD medians at different levels of physical comfort (see Figure 8). The
median NPSD value for the beta PSD was very low and was different from all the rest
of the comfort levels (p-values < 0.00005) as per Dunn’s pairwise comparison test with a
95% confidence. Similarly, the median NPSD value for the alpha PSD for very low comfort
differed from the high comfort level (p-value < 0.0098) as per Dunn’s pairwise comparison
test with a 95% confidence level.
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We also ran a regression analysis between the mean forces and total NPSD for all EEG
channels. The obtained linear regression demonstrated statistical significance (F = 18.61;
p < 0.022) and accounted for 81% of the variance in the data (refer to Figure 9). To ensure the
fulfillment of underlying regression assumptions, we conducted tests for the normality of
residuals, heteroscedasticity, and multicollinearity. Considering the limited sample size, we
examined the skewness and kurtosis of the beta PSD data used in the regression, resulting
in values of −0.4 and 2.4, respectively.
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These findings alleviated our concerns about the adequacy and validity of the data,
aligning with our commitment to ensure its reliability. Furthermore, the regression analysis
for the gamma PSD exhibited a favorable fit (adjusted R-squared value of 63%), with
skewness and kurtosis values of 0.76 and 2.5 for the PSD, respectively. However, the
regression models for the other two bands did not yield statistically significant results.

4.4. MVC-Normalized PSD Analysis for the Motor Cortex

Since the motor cortex plays a significant role in controlling human exertion, even
though EEG has a low spatial resolution, we also investigated the activity of those channels
that have been associated with the motor cortex [69]. Assuming that the primary motor
cortex lies anterior to the central sulcus that divides the frontal and parietal lobes [70], for the
purpose of this study, we proposed that motor activity could be monitored predominantly
by the following fifteen channels: C3, Cz, C4, C5, C6, CP3, CP5, CP6, Cz, FC3, FC4, FC5,
FC6, FCz, and Pz according to the international modified 10–20 international system [71]. It
should be noted that some of these channels have been used in the past to assess changes in
upper extremity function and dynamic changes in EEG power [65,72]. The KW tests showed
that the medians of different comfort groups were significantly different for alpha PSD
(H statistic = 13.46; p-value < 0.0092) and beta PSD (H statistic = 46.96, p-value ≈ 0) when
only the motor cortex region was chosen. The subsequent pairwise medians comparisons
with grouping information using Dunn’s test at a 95% confidence level were used to
compare the NPSD medians at different levels of physical comfort (see Figure 10). The
median NPSD value for the beta PSD for very low was different from all of the rest of
the comfort levels (p-values < 0.00029) as per Dunn’s pairwise comparison test with a
95% confidence level. However, upon conducting pairwise comparisons using Dunn’s
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method for alpha PSD, none of the comfort levels were found to be statistically significant
at a 95% confidence level.
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5. Discussion

The main aim of this study was to assess the level of isometric arm forces exerted
at predetermined levels of physical comfort. A proposed scale of physical comfort was
applied for this purpose [49]. In addition, the neural signatures, as measured by EEG power
spectrum density, at different comfort levels have been investigated. The results based on a
limited number of participants suggest the presence of differences in exerted arm forces
and RPE scores at the various levels of physical comfort. The isometric exertions applied in
this study can be categorized as muscular activity with low mobility [43]. Previous research
has also suggested that beta and gamma bands are higher during such physical activity,
thus indicating motor circuit activation [21,62].

In general, frontal, central motor, and parietal beta rhythms have been associated
with stimulus assessment, sensorimotor and movement control, and working memory
accumulation, respectively [73,74]. The beta band frequency can also influence overall
motor control [17,75]. While beta band activity has been investigated during simple and
static muscular contractions [76], no previous studies have focused on neural correlates of
physical comfort at the time of isometric exertion.

Some of the prior studies reported significant relationships between EEG and the
perception of effort, force levels, or exercise intensity [77,78]. Other studies found no
significant changes in cortical activity with differing exercise intensity or force levels. The
results of our study suggest no significant changes in alpha power at different levels of
comfort in agreement with previous studies [24,79]. It should be pointed out that in our
study, the participants were unaware of the level of comfort at which they would be asked
to exert corresponding forces before any trial. This experimental design aimed to minimize
the learning effect [80,81]. In addition, the current study’s short duration of isometric
exertions might have caused a relatively low level of muscular fatigue [82]. The higher beta
power observed in our study is consistent with the findings of other studies on physical
exertion and physical activities requiring precision and decision-making [20]. The above
also suggests that greater sensorimotor performance appears necessary to exert higher
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forces. Finally, it is also interesting to note that sex differences exist in every major part of
the brain, and the sex of the participants is an important factor that should be considered
in studies at all levels of neuroscience [83]. Furthermore, human scalp EEG recordings
contain sex-specific information [37], and male brain rhythms may have more pronounced
beta power than females. It is also plausible that females are more judicial when assessing
load heaviness or postural discomfort at work than males [41,84].

Further investigations regarding neural signatures of the physical comfort of human
behavior are needed to improve our understanding of the interrelationships between
the biomechanical, physiological, psychological, and neural aspects of human physical
performance at work [6,85]. Such knowledge can be very useful in workplace design
that optimizes human physical and mental wellness at work. Future research should also
include laboratory experiments involving many consecutive trials at the same physical
comfort level to assess the effects of muscular fatigue. Comparisons among different
age groups, fitness levels, sexes, and isometric tasks involving other body parts, e.g.,
the legs and torso, as well as isokinetic tasks, should be investigated. Finally, because
the human brain is a very complex structure [86], nonlinear and functional connectivity
analyses considering neural signatures of physical comfort and related force exertions
should also be undertaken. While this small-scale research suggests that EEG power
spectra indices can distinguish the isometric arm forces exerted at a “very low” level
of physical comfort, it should be noted that the relationship between brain activity and
force might be nonlinear [87,88]. Therefore, this study’s results are preliminary only and
insufficient to fully assess the nature of neural signatures of human physical exertions at
different levels of physical comfort at work.

6. Study Limitations

There are several important limitations of the study. First, this study employed a very
small number of participants who were female only. Therefore, the presented results should
be considered preliminary only and subject to confirmation in future research. We want
to note that we have recently completed a follow-up study with a larger cohort of male
participants. Second, we chose the sample size based on resource constraints regarding
the limited number of available female participants for our laboratory experiments during
the COVID-19 pandemic [89]. Third, although we minimized the potential learning effects
in each participant by administering the different comfort levels in a random sequence
unknown to the participants, the effects of potential learning effects have yet to be inves-
tigated. It should also be noted here that people may perform the same physical tasks
repeatedly at work and in everyday life. Brain plasticity can affect neural signatures of
body responses to such tasks [90,91]. Lastly, our laboratory study could have produced
somewhat different results if a control condition with no force applied first was used. How-
ever, a substitute for the control provision was the application of the maximum voluntary
contraction (MVC), which can be considered equivalent to a control condition. This is
because, at first, each subject was asked to exert the maximum force to the best of her ability
without stipulating any physical comfort level or other influence. Future studies should
ruminate on the above considerations when investigating the neural signatures of physical
exertions and the associated comfort of such exertions.

7. Conclusions

This study investigated changes in forces during isometric arm exertion and the
perception of effort at different predefined physical comfort levels and their corresponding
neural signatures expressed in EEG power spectrum density (PSD). To our knowledge, this
is the first study considering physical comfort level as a factor in muscular activity. Given
the significant study limitations, the current results indicated the presence of differences in
exerted arm forces and RPE scores at the various physical comfort levels. The results also
revealed higher beta activity at greater force exertions associated with the ‘very low’ level of
physical comfort, indicating greater perceptual and sensorimotor efforts. Furthermore, we
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note that EEG signatures of isometric forces exerted at different levels of physical comfort
can be affected by the compounded effects of psychological, sex-specific, and experimental
factors. In addition to force, the perception of physical comfort at work can be influenced by
many other factors [92,93]. The assessment of EEG correlates of force exertions should also
consider the effects of perceptual and cognitive processes [94]. Moreover, we acknowledge
that the reported EEG results could be partially affected by high individual differences
among the participants and the limitations of power spectra density measures [95]. Future
studies should include a much larger study of male and female populations to increase the
power of the investigated relationships between the exerted forces, physical comfort, and
their EEG signatures.
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Appendix A

Table A1. Rate of perceived physical comfort scale [49].

0 No Physical Comfort
1 Very low physical comfort
2
3 Fair physical comfort
4
5 Moderate physical comfort
6 More than moderate physical comfort
7
8 High physical comfort
9
10 Very high physical comfort
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