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Abstract: Can digital technologies provide a passive unobtrusive means to observe and study cogni-
tion outside of the laboratory? Previously, cognitive assessments and monitoring were conducted
in a laboratory or clinical setting, allowing for a cross-sectional glimpse of cognitive states. In the
last decade, researchers have been utilizing technological advances and devices to explore ways
of assessing cognition in the real world. We propose that the virtual keyboard of smartphones,
an increasingly ubiquitous digital device, can provide the ideal conduit for passive data collection
to study cognition. Passive data collection occurs without the active engagement of a participant
and allows for near-continuous, objective data collection. Most importantly, this data collection
can occur in the real world, capturing authentic datapoints. This method of data collection and its
analyses provide a more comprehensive and potentially more suitable insight into cognitive states, as
intra-individual cognitive fluctuations over time have shown to be an early manifestation of cognitive
decline. We review different ways passive data, centered around keystroke dynamics, collected from
smartphones, have been used to assess and evaluate cognition. We also discuss gaps in the literature
where future directions of utilizing passive data can continue to provide inferences into cognition
and elaborate on the importance of digital data privacy and consent.

Keywords: smartphone; digital technologies; passive data collection; cognition; keystroke dynamics

1. Introduction

In 2021, 97% of Americans owned a phone, with 85% of them owning a smartphone [1].
In the developing world, 45% of people have smartphones, with the number growing
daily [1]. Until recently, cognitive testing has been conducted within a laboratory or clinical
setting, but with the advent of technological advances, smartphones and other wearable
technologies have provided new tools for remote cognitive testing in the real world. As
more smartphones are used and become truly ubiquitous devices worldwide, the research
potential for longitudinal active and passive data collection increases proportionally. Active
data collection is when participants are prompted to perform a task, whereas passive
data are collected unobtrusively with participants being unaware of the data collection;
definitions and examples for both active and passive data are given in Table 1. Ecological
momentary assessments (EMAs) are an example of active data collection and have gained
considerable traction within the last decade with the administration of EMAs via smart-
phones. Participants receive notifications on their smartphones at specified times during
the day to complete surveys and other tasks. EMAs offer researchers a method to assess
participants (e.g., their thoughts and feelings, motor/cognitive/mood assessments) in real
time and in their natural environment, which decreases the probability of recall bias [2].
However, active participation needed for EMAs may gradually yield less data over time as
participants eventually stop using or have low participation rates for application-based ac-
tivities and interventions [3]. To augment research capabilities of smartphones, researchers
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have turned to passive data collection, which increases the amount of information ac-
quired while decreasing burdens on participants. Passive data collection is when data
from smartphone sensors (e.g., GPS, accelerometer, keystroke dynamics) are acquired from
participants unobtrusively, yet consensually, and thus goes unnoticed by participants. Cur-
rent smartphone sensors can include precision dual-frequency global positioning system
(GPS), digital compass, iBeacon microlocation, barometer, high dynamic range gyro, high g
accelerometer, proximity sensors, dual ambient light sensors, and temperature sensors [4].
Figure 1 depicts the types of passive data that can be collected via a smartphone and its sen-
sors. Using smartphone applications that can passively register activity in the background
during usage but not record the content itself provides researchers with unparalleled access
to data while still allowing for privacy. Additionally, it allows for objective data collection,
as some self-reported measures have been shown to be less accurate when compared to
passively collected data [5]. Passive data, because of its unobtrusive, longitudinal, objective
and near-continuous collection, can provide researchers with insights into cognition and
cognitive fluctuations outside of a laboratory setting and can reveal potential biomarkers
for neuropsychiatric disorders. Moreover, keystroke dynamics and other passive data may
provide better insights into cognition as cognitive tests in a laboratory setting provide
limited insight—“snapshots” per se of cognition—compared to a more complete picture
outside of a laboratory setting. For example, some cognitive tests focus on speed and
reaction time, which may not realistically reflect how different cognitive processes relate to
or modulate one another in real life. During these types of tests, participants are placed
in a controlled environment devoid of usual day-to-day distractions, while at the same
time, are cognizant of being observed and have the additional stress of needing to perform
well [6,7]. In addition, patients who participate in clinical research may have required
periodic testing to monitor disease course, or they may wish to participate in research but
are hindered by the number of visits. Using smartphones to monitor disease progression
and conduct research would decrease this burden. Passive data collection via smartphones
provides a way to circumvent this barrier to long-term participation and makes research
more accessible to a greater number of participants.

Table 1. Definitions of passive and active data collection along with examples.

Type Definition Examples Implementable Digital Devices

Active Data Collection

Data acquisition from
participants requiring active
participation, allowing for

subjective data measurements

Ecological momentary
assessments,

mood/cognitive/motor
self-reported assessments

Smartphones, tablets, smartwatches

Passive Data Collection

Unobtrusive data acquisition
from participants from digital

technology, where
participants are unaware of

collection, allowing for
objective data measurements

Keystroke dynamics,
accelerometer, GPS, screen

time, temperature,
phone-checking frequency,

physical activity, number of
text messages and emails,
duration and frequency of

phone calls made

Smartphones, tablets, smartwatches,
sleep monitors, fitness trackers

Within the last decade, researchers have used passive data collection via smartphones
to investigate cognition. Preliminary results have shown that passive data collection can
possibly be used in lieu of laboratory-based neuropsychology assessments [8]. Currently,
bedside clinical screening tools for cognitive assessment may include the mini mental
state examination (MMSE) [9], the abbreviated mental test [10], the mental status question-
naire [11], the short portable mental status questionnaire [12], and the Montreal cognitive
assessment [13]. These rapid assessments are meant to be quick, cost-effective evaluations
of cognition, but can be limited in their specificity. These clinical screening tools would
then lead to additional in-depth neuropsychological assessments which require in-person
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assessments and yield only a cross-sectional view of cognition at the time of assessment.
Smartphones would allow for not only accessible, longitudinal remote monitoring and
assessments of intra-individual cognitive fluctuations, but also passive unobtrusive data
collection, where participants are unaware that objective data are being collected.
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One of the primary ways users actively interact with their smartphone (instead of
merely passively browsing) is through keypresses and related keyboard dynamics (simply
referred to as keystroke dynamics hereafter) that are passively collected via a modern smart-
phone’s virtual keyboard. Keystroke dynamics refer to keypress-related metadata (e.g.,
general category of the keypress, corresponding timing information of key down press and
release time, incidences of autocorrect, etc.) on the smartphone keyboard but not the actual
text. Intuitively, typing on a smartphone keyboard utilizes multiple cognitive domains.
Articulating thoughts by typing on a smartphone keyboard requires awareness of both
psychomotor and visuospatial processes [14]. Given the necessary cognitive and motor
processes that must be engaged to type efficiently on a smartphone keyboard, it is plausible
that cognitive deficits or dysfunction could be detectable via keystroke dynamics. In addi-
tion, fine, individualized motor movements can be sampled by triggering the accelerometer
and/or gyroscope, thus opening up possibilities of detecting any subtle motor anomalies
before any clinically diagnosable symptoms arise [15] and may provide important digital
biomarkers to serve as advanced warnings of brain dysfunction. Moreover, quantitatively
characterizing cognitive processes is particularly important given how their dysfunction is
the basis of a plethora of disorders. With smartphones being increasingly used in data col-
lection and research, we sought to summarize current research using keystroke dynamics
to elucidate processes within the cognitive domain, as defined by the Research Domain
Criteria (RDoC), as well as discuss future directions and the ethicality of using passive data
collected from smartphones and other wearable technologies.

1.1. Defining Cognition and Its Domains

There are a multitude of ways to consider, study, and understand cognition. Relevant
to this review, the National Institute of Mental Health created a research framework to col-
lectively understand neuropsychiatric disorders: the Research Domain Criteria (RDoC) [16].
RDoC introduces one way of understanding cognition, where cognition consists of six
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domains: attention, working memory, declarative memory, language, cognitive control, and
perception [17]. Attention refers to “a range of processes that regulate access to capacity-
limited systems, such as awareness, higher perceptual processes, and motor action” [16],
and perception is defined as the intake of sensory information which can then guide ac-
tion [16]. Articulating thoughts by typing on a smartphone keyboard requires awareness
of both psychomotor and visuospatial processes [14]. Neurodegenerative disorders have
been shown to have both non-spatial and spatial deficits of visual attention and percep-
tion [18,19], and neuropsychiatric disorders have been shown to have some perception
deficits [20,21] and attentional deficits in general [22]. Additionally, language is equally
important to type coherently on a smartphone keyboard. Language is defined as “a sys-
tem of shared symbolic representations of the world, the self and abstract concepts that
supports thought and communication” [16]. The ability to communicate and to express
desires and thoughts is vital for both physical and mental well-being. Given the complex
networks within the brain that facilitate communication, language is an important marker
of cognitive functioning, with semantic dysfunction manifesting earlier in certain neurode-
generative disorders than other symptoms [23–25]. Cognitive control is also important to
cognition as it regulates the operation of cognitive and emotional systems to accomplish
goals [16]. Neurodegenerative disorders can be distinguished by a progressive decline
in gross and fine motor control and cognitive control, with evidence indicating distur-
bances in cognitive processes associating with motor deficits [26], which may be evident
via changes in keystroke dynamics on smartphones. Lastly, declarative memory refers
to the obtainment, consolidation, and retrieval of facts and events [16], while working
memory is defined as “the active maintenance and flexible updating of goal/task relevant
information (items, goals, strategies, etc.) in a form that has limited capacity and resists
interference” [16]. Working memory is required when multitasking to keep certain tasks
in mind (e.g., switching between smartphone applications for multiple tasks). Deficits
of both types of memory have been shown in neuropsychiatric and neurodegenerative
disorders [27,28]. Executing a series of keypresses efficiently and without errors may utilize
all cognitive domains. For example, someone navigating public transit on the way to work
while simultaneously trying to type long complex sentences with difficult-to-spell words
would likely employ all six cognitive domains to accomplish their task. As motor and
cognitive deficits increase in certain disorders, smartphone measurements can potentially
monitor symptoms and provide information regarding the state of cognitive domains.

1.2. Intraindividual Variability

Intraindividual variability (IIV) refers to fluctuations in cognitive performance for
tasks repeated over time. IIV consists of two categories: (1) inconsistency, the variability
of cognitive performance in a single task over a short period of time, and (2) dispersion,
the variability of cognitive performance across different tasks over time [29]. Reaction
time, finger tapping, and memory capacity can be measured from these assessments and
compared longitudinally. Previous research has shown possible links between IIV and
neurological dysfunction, with IIV being a potential earlier marker for the initial cognitive
changes associated with the onset of neurodegenerative diseases, such as Alzheimer’s
disease [30,31], multiple sclerosis [32–36], as well as mild cognitive impairment [37–39]. IIV
is also more sensitive during prodromal stages of neurodegenerative disorders and is a
strong predictor of progressive cognitive decline [40–42]. Previously, smartphones have
been used to measure cognition and IIV in participants with neurodegenerative disorders
using EMAs [43–45], with some participants being asked up to six times a day to complete
assessments and with varying adherence rates. By using keystroke dynamics to measure
IIV and infer cognitive states, researchers would lessen any burdens which active data
collection would place on participants and be able to obtain data from all participants,
given the nature of passive data collection.
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2. Methods
2.1. Search Strategy, Eligibility Criteria, and Selection Process

We conducted a number of searches to identify studies that used keystroke dynamics
and other passive data types to assess neurocognitive functioning following the Preferred
Reporting Items for System Reviews and Meta-Analyses guided (PRISMA) guidelines,
with a flow diagram depicted in Figure 2. We initialized the search using these terms:
“passive data” AND “cognition” AND/OR “smartphone” AND/OR “keystroke dynamics”
AND/OR “keyboard dynamics” AND/OR “accelerometer” on PubMed and Embase with
no filters. Google Scholar was additionally utilized. Searches were conducted until April
2023. Only studies written in English were included in this review. Studies were only
included if they fulfilled the following criteria: (1) collected and analyzed passive data,
specifically keystroke dynamics; (2) used smartphones to collect data; and (3) assessed
cognitive functioning. Studies were then excluded if they: (1) did not assess cognition
as defined by RDoC; (2) evaluated cognition but did not employ keystroke dynamics;
and (3) used non-smartphones to collect keyboard dynamics. We analyzed all search
results systematically by title, abstract, and keywords initially for relevancy and eligibility,
followed by a full-text evaluation.
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Figure 2. PRISMA flow diagram of search and selection process.

2.2. Data Extraction

The search yielded ten studies that met the inclusion criteria, which are summarized
in Table 2. The following data were extracted from these studies into Microsoft Excel and
Word tables: types of active and passive data collected, digital technologies used, overall
findings, and types of analyses conducted.
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Table 2. Summary of study characteristics and findings.

Study N Participants
Digital

Technologies
Implemented

Data Collected Findings Statistical
Analysis

Machine Learning
Models and
Validation

Metrics

Chen, R. et al.,
2019 [46]

24 people with
mild cognitive

impairment (MCI),
7 people with mild
AD dementia, 84
healthy controls

iPhone 7 Plus,
Apple Watch
Series 2, 10.5”
iPad Pro with

a smart
keyboard,

Beddit sleep
monitoring

device

Passive: Number
of text messages

sent and received,
time duration to

send a text
message, typing

speeds,
accelerometer,

gyroscope, stairs
climbed, stand
hours, workout
sessions, heart

rate, sleep sensors,
application usage

time, phone
unlocks, breathe

sessions

Active: Daily
energy surveys,

tapping task,
dragging task,

typed narrative
task, verbal

narrative task,
video, and audio

bi-weekly

Symptomatic
participants (with MCI

or with mild AD
dementia) typed
slower, had a less

regular routine
(measured via first and

last phone
acceleration), took

their first steps of the
day later (measured

via phone’s
pedometer), sent and

received fewer text
messages, relied more

on applications
suggested by Siri, and

had worse survey
compliance than
healthy controls

Not Applicable
(N/A)

Model: Extreme
gradient boosting

algorithm

Validation:
training/testing:

70/30

Results:

demographics
AUROC: 0.757;

device-derived
features AUROC:

0.771 (±0.016, 95%
CI);

demographics +
device derived
features = 0.804

(±0.015, 95% CI);

age-matched
demographics
AUROC: 0.519

(±0.018, 95% CI);

age-matched
device features
AUROC: 0.726

(±0.021, 95% CI);

age-matched
demographics +
device features
AUROC: 0.725

(±0.022, 95% CI)

Ntracha, A. et al.,
2020 [47]

11 people with
MCI, 12 healthy

controls

Android
smartphones

Passive: Keystroke
dynamics

(timestamps of
keypresses and

releases,
backspace, pauses,

number of
characters typed,

typing session
duration)

Active: PHQ-9
Questionnaire,

written
assignments for

natural language
processing (typing

up to four
paragraphs on a

given topic)

Participants with mild
cognitive impairment
(MCI) were able to be

distinguished from
healthy controls using
passive and active data

in natural learning
processing models,

keystroke models, and
fused models.

Participants with MCI
had bradykinesia and
rigidity detected from

their keystroke
dynamics when

compared to healthy
controls

N/A

Models: k-Nearest
Neighbors (k-NN),

logistical
regression (LR),
random forest,

ensemble method

Validation: leave
one subject out

method for
training and

testing

Results:
Keystroke features

with kNN
classifier: AUC:
0.78 (0.68–0.88,
95% CI), speci-

ficity/sensitivity:
0.64/0.92

Natural Language
Processing (NLP)
features with LR
classifier: AUC:
0.76 (0.65–0.85,
95% CI), speci-

ficity/sensitivity:
0.80/0.71

Ensemble model
fusion of

keystroke and
NLP features:

AUC: 0.75
(0.63–0.86, 95% CI),

speci-
ficity/sensitivity:

0.90/0.60
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Table 2. Cont.

Study N Participants
Digital

Technologies
Implemented

Data Collected Findings Statistical Analysis

Machine
Learning

Models and
Validation

Metrics

Chen, M. et al.,
2022 [48]

16 people with
multiple sclerosis
(MS), 10 healthy

controls

iOS and
Android

smartphones

Passive: Keystroke
dynamics (keypress

type, timestamp,
relative distance

between consecutive
keystrokes, distance

between the
keystroke and the

center of the
keyboard),

accelerometer

Active: Digital
neuropsychological
tests (symbol digit

modalities test, digit
span, trail-making
test, Delis–Kaplan
executive function
system (D-KEFS)

color-word
interference test,

controlled oral word
association test or

D-KEFS verbal
fluency test,

California verbal
learning test, Rey
auditory verbal
learning test, or
Hopkins verbal

learning
test-revised),

symptom rating
scales (modified

fatigue impact scale,
Chicago multiscale

depression
inventory, state-trait
anxiety inventory)

Participants with
MS with less

severe symptoms
had higher uses of
the backspace key
and a faster typing

speed. Faster
typing speed was
associated with

better
performance on

measures of
processing speed,

attention, and
executive

functioning as
well as having less

impact from
fatigue and having
less severe anxiety

symptoms

Method: Multilevel
models (level 1:

keystroke dynamics
within typing session;

level 2: subjects)

Significant results:
Features evaluated
using Welch’s t-test:

number of days of data
collection (mean
number): −1.86,

p = 0.076

proportion of time
spent using one hand

to type (%): 542.70,
p < 0.001

number of characters
per typing session

(mean): 0.01, p < 0.107

median inter-key delay
(typing speed) per
session (seconds):
−1.45, p < 0.001

inter-key delay median
absolute deviation per
session (seconds): 0.11,

p = 0.032

N/A

Lam, K.H. et al.,
2020 [49]

102 people with
MS, 24 healthy

controls

iOS and
Android

smartphones

Passive: Keypress
dynamics (type of

keypress
(alphanumeric,

backspace, space key,
punctuation), time

and date of
keypresses,

successive keypress
latencies and

releases

Active: Assessments,
including expanded

disability status
scale, nine-hole peg

test, symbol digit
modalities test

(SDMT)

Participants with
MS had higher

keypress latencies,
release latencies,

flight time,
post-punctuation

pause,
pre-correction and

post-correction
slowing compared
to healthy controls

Method: Pearson’s
correlation coefficient

Significant results:
SDMT with:

press-press latency:
−0.525, p > 0.01

release-release latency
−0.553, p < 0.01

hold time: −0.286,
p < 0.01

flight time: −0.525,
p < 0.01

pre-correction slowing:
−0.300, p < 0.01

post-correction
slowing −0.444,

p < 0.01

correction duration:
−0.162, p < 0.05

after punctuation
pause: −0.317, p < 0.01

N/A
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Table 2. Cont.

Study N Participants
Digital

Technologies
Implemented

Data Collected Findings Statistical
Analysis

Machine Learning
Models and
Validation

Metrics

Lam, K.H. et al.,
2022 [50]

102 people with
MS

iOS and Android
smartphones

Passive: Keypress
dynamics (type of

keypress
(alphanumeric,

backspace, space
key, punctuation),
time and date of

keypresses,
successive

keypress latencies
and releases

Active:
Assessments,

including
expanded

disability status
scale, nine-hole
peg test, symbol
digit modalities

test (SDMT)

Participants with
MS with worse

arm function had
higher latency

between
keypresses and

participants with
worse processing

speed
corresponded with

higher latency
using punctuation

and backspace
keys

Method: Linear
mixed-models

Significant results:
cognitive score

cluster associated
with SDMT: −8.57
(−12.02 to −5.12,
95% CI), p < 0.001,

random effect
variance: 82.7%,

explained
variance: 25.4%;

cognitive score
cluster and

covariances (age,
sex, level of

education): −5.02
(−9.02 to −1.02),
p = 0.02, random
effect variance:

77.1%, explained
variance: 30.4%;

hybrid model
(including
covariates):

between subjects:
−11.25 (−17.28 to
−5.21), p < 0.001;
within subjects:
−0.35 (−5.60 to

4.89), p = 0.9

N/A

Hoeijmakers, A.
et al., 2023 [51]

102 people with
multiple sclerosis
(MS), 24 healthy

controls

iOS and Android
smartphones

Passive: Keypress
dynamics (type of

keypress
(alphanumeric,

backspace, space
key, punctuation),
time and date of

keypresses,
successive

keypress latencies
and releases

Active:
Assessments,

including
expanded

disability status
scale, nine-hole
peg test, symbol
digit modalities

test

Participants with
MS could be

discerned from
healthy controls by

using clinical
outcome measures

as targets for
machine learning
(ML) techniques,

with ML
techniques being
able to estimate
level of disease

severity, manual
dexterity, and

cognitive
capabilities

N/A

Models: Binary
classifications:
random forest,

logistical
regression,
k-nearest

neighbors, support
vector machine,
Gaussian naive

Bayes

Validation:
training/testing:

80/20

Results from
cross-validation:

AUC = 0.762
(0.677–0.828, 95%

CI)

AUC-ROC = 0.726,
sensitiv-

ity/specificity/
accuracy:

0.750/0.429/0.48

estimating level of
fine motor skills
AUROC: 0.753
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Table 2. Cont.

Study N Participants
Digital

Technologies
Implemented

Data Collected Findings Statistical
Analysis

Machine Learning
Models and
Validation

Metrics

Ning, E. et al.,
2023 [52]

64 participants
with mood

disorders (major
depressive

disorder, bipolar
I/II, persistent

depressive
disorder, or

cyclothymia), 26
healthy controls

iOS and Android
smartphones

Passive: Keystroke
dynamics

(category of
keypress (i.e.,
alphanumeric,

backspace,
punctuation),

associated
timestamps,

autocorrection
events),

accelerometer,
gyroscope

Active: Digital
trail-making tests

part B

Participants with
mood disorders
showed lower

cognitive
performance on
the trail-making
test. There were

also diurnal
pattern differences

between
participant with
mood disorders

and healthy
controls, where

individuals with
higher cognitive

performances had
faster keypresses

and were less
sensitive to the

time of day

Method:
longitudinal
mixed effects

Significant results:
aging effect:

typing slowed
~20 ms/7 years;

sessions with
lower accuracy

had shorter IKDs
~10 ms, b = −0.89,

p < 0.001;
more variable IKD

within a session
has slower session
typing, b = 434.57,

p < 0.001;
more typing, faster
typing, b = −4.35,

p < 0.001

N/A

Ross, M. et al.,
2021 [53]

11 people with BP,
8 healthy controls

Samsung Galaxy
Note 4 Android

smartphone

Passive: Keystroke
dynamics

(category of
keypress (i.e.,
alphanumeric,

backspace,
punctuation),

associated
timestamps,

autocorrection
events)

Active: Digital
trail-making tests
part B (dTMT-B)

Participants with
mood disorders
had significantly

different keystroke
dynamics from
healthy controls

when compared to
depression ratings

and the
trail-making test

Method:
longitudinal
mixed effects

Significant results:
subject-centered
HDRS-17 score

predicting
dTMT-B: b = 0.038,

p = 0.004;

subject-centered
typing speed

predicting
dTMT-B: b = 0.032,

p = 0.004;

faster grand mean
centered typing

speed suggesting
faster dTMT-B

completion time:
b = 0.189, p < 0.001

N/A

Zulueta, J. et al.,
2018 [54]

9 people with
bipolar disorder

(BP) (5 with BP I, 4
with BP II)

Samsung Galaxy
Note 4 Android

smartphones

Passive: Keystroke
dynamics

(keystroke entry
date and time,

duration of
keypress, latency

between
keypresses,

distance from last
key along two

axes, and
autocorrection,

backspace, space
switching-

keyboard, and
other behaviors),

accelerometer

Active: Hamilton
depression rating

scale, Young
mania rating scale

Participants with
bipolar disorder
who were in a

potentially more
manic state (had

higher mania
symptoms) used

the backspace key
less and while in a
potentially more
depressive state

had an increase in
autocorrection

rates

Method: mixed
effects regression

Significant results:
average

accelerometer
displacement with
HDRS: 3.20 (1.20
to 5.21, 95% CI),

p = 0.0017;
average

accelerometer
displacement with
YMRS: 0.39 (0.15
to 0.64, 95% CI)

p = 0.003;
autocorrect rate
with HDRS: 2.67
(0.87 to 4.47, 95%

CI), p = 0.0036;
backspace ratio

with YMRS −0.30
(−0.53 to −0.070,
95% CI), p = 0.014

N/A
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Table 2. Cont.

Study N Participants
Digital

Technologies
Implemented

Data Collected Findings Statistical
Analysis

Machine Learning
Models and
Validation

Metrics

Mastoras, R.E.
et al., 2019 [55]

11 people with
depressive

tendencies, 14
healthy controls

Android
smartphones

Passive: Keystroke
dynamics

(timestamps of
keypresses and
releases, delete
rate, number of
characters typed

and typing session
duration)

Active: Patient
Health

Questionnaire-9

Participants with
depressive

tendencies held
down keypresses

for longer and had
longer pauses

between
keypresses

compared to
healthy controls

N/A

Models: Random
forest, gradient

boosting classifier,
support vector

machine classifier

Validation: leave
one subject out

method for
training and

testing

Results: random
forest (best
performing
pipeline):

AUC = 0.89
(0.72–1.00, 95% CI),

sensitiv-
ity/specificity:

0.82/0.86

3. Keystroke Dynamics and Affected Cognitive Domains in
Neurodegenerative Disorders
3.1. Alzheimer’s Disease and Mild Cognitive Impairment

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by
the gradual loss of motor function and cognitive facilities [56]. Studies have shown that
language and speech can manifest as part of the early signs of mild cognitive impairment
(MCI) and other prodromal stages of AD while correlating with declines in episodic and
semantic memory [23,24]. These studies have also indicated that there may be a preclinical
AD stage where cognitive, behavioral, sensory, and motor changes can possibly precede
clinical manifestations of AD by years [24]. Researchers have examined how language
characteristics change in participants with AD and found that AD can already influence
temporal characteristics of spontaneous speech (i.e., increased hesitations) and in reading-
out-loud and spoken tasks (i.e., verbal fluency difficulties) in early stages of AD [57].
These speech characteristic changes may translate through to keystroke dynamics as well.
Researchers using passive data can measure the frequency of text messages, the duration
for text messages to be typed, and other keystroke dynamics to infer these changes. In
one study, symptomatic participants with MCI or AD received less text messages and sent
less text messages than healthy controls [46]. Additionally, these symptomatic participants
with MCI or AD had slower and more variable typing and tracing outcomes in different
tasks on an assessment application. Another study, using an application which replaces
the built-in keyboard with the application’s own custom keyboard to collect passive data,
asked participants to complete structured assignments [47]. These assignments were to type
paragraph-length texts as a response to a prompt on their smartphones. These assignments
were performed in a non-clinical setting without autocorrect or a time limit, and then
participants were asked to send these texts to the researchers so that they could be analyzed.
Researchers found that participants with MCI used less nouns than verbs in the structured
assignment. Additionally, using six months of passively acquired keystroke data along with
natural language processing, researchers were able to detect mild cognitive impairment
in patients and distinguish them from controls [47]. By discerning these subtle changes
in texting, smartphones provide a potential way to detect MCIs and monitor cognitive
fluctuations, allowing for treatments or close monitoring to be implemented earlier to
improve the quality of life for patients with neurodegenerative disorders.
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3.2. Multiple Sclerosis

Multiple sclerosis (MS) is a neurodegenerative immune-mediated disorder causing
mobility and cognitive impairment as immune cells attack neurons in the central nervous
system [58,59]. These impairments can be present early in the disease course, and atrophy
captured by MRI can also be seen early on in the disease course [60]. Given that cognitive
impairment is evident early on, being able to detect MS at its onset or near after provides
a crucial window to stem the further progression of the disease. Thus far, studies have
used smartphone applications (e.g., elevateMS) to assess motor and cognitive functions
in patients with MS [61], but were impeded by incomplete data assessments that required
active participation from patients in order to monitor symptoms and disease burden. Us-
ing passive data allows researchers to obtain data longitudinally, near-continuously, and
unobtrusively, thus bypassing these obstacles. Indeed, by using longitudinal keystroke dy-
namics, researchers have been able to extract potential biomarkers for multiple sclerosis [49].
In one study, typing sessions were initially aggregated per day to obtain five summary
statistics: mean, median, standard deviation, minimum, and maximum. Patients with
MS had on average significantly higher keystroke latencies compared to controls. These
keypress latencies were positively correlated with the expanded disability status scale
(EDSS), while key release was positively correlated with the nine-hole peg test (NHPT). All
keystroke features were negatively correlated with the symbol digit modalities test (SDMT).
The median time of disease duration in patients was 5.7 years and the median of disease
severity, using the EDSS, was 3.5 years within this cohort. Even with mild disease severity
and with a shorter disease duration in patients with MS, distinctions between controls and
patients were already apparent. Another study also examined the relationship between
keystroke dynamics and cognitive functioning in participants with MS [48]. They found
that typing speed and use of the backspace key along with autocorrection events correlated
with a better cognitive functioning and less severe symptoms. These correlations imply
that participants with MS who have more mild symptoms could potentially be better at
monitoring and correcting their mistakes. Another study was able to group participants
by detecting bradykinesia and rigidity in users’ dominant hands using machine learning
algorithms on keystroke features [50]. Using one year’s worth of data, researchers found
that participants with MS who had worse arm motor function had a higher latency between
keypresses, and participants with MS who had a decreased processing speed corresponded
with a higher latency using punctuation and backspace keys [50]. Using the same dataset,
researchers were also able to estimate the levels of disease severity, manual dexterity, and
cognitive capabilities from keystroke dynamics using a machine learning model that used
three predictors (a time-related cluster, a cognitive-related cluster, and the number of times
autofill was used) [51]. Participants with MS who were quicker to correct and adjust
their texting had higher SDMT scores, an indicator of cognitive functioning, which helped
with model predictions [51]. These studies show that keystroke dynamics can be used as
potential biomarkers for MS before significant disease onset, which would allow for earlier
treatments and preventative care.

4. Keystroke Dynamics and Affected Cognitive Domains in Mood Disorders

Certain mood disorders are associated with cognitive deficits [62–64], with cognitive
deficits being established through neuropsychological tests for bipolar disorder [65–67]
and depression [63,68,69]. Cognitive deficits that can be found in patients with mood
disorders imply a disruption in cognitive control [70,71]. Cognitive control is a necessary
ability to flexibly alter and guide behavior in the face of constantly changing circumstances,
which is hindered in those with mood disorders. To examine cognitive control, task-
switching paradigms (i.e., trail-making test part B) test cognitive flexibility [72], processing
speed [73], and executive control [74]. Previously, these tests were administered in person
via pencil and paper but have now been adapted and validated for digital devices (i.e.,
smartphones) [45,75]. Recently, researchers used smartphones and passive data collection
to examine cognitive control in participants with mood disorders [52]. They found that
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participants with mood disorders not only showed lower cognitive performances on the
trail-making test part B, but participants with mood disorders also had diurnal pattern
differences in their keystroke dynamics compared to healthy controls, where individuals
with higher cognitive performances had faster keystrokes and more consistent typing
speeds throughout the day [52]. Another study examined processing speed and execu-
tive function in patients with bipolar disorder by comparing keystroke dynamics with a
smartphone-based version of a task-switching paradigm and a depression rating scale [53].
Researchers found that typing speeds from keystroke dynamics, especially when compared
to mood ratings, could potentially derive features of cognition and cognitive control, such
as visual attention, processing speed, and task switching.

Changes in linguistic patterns can reflect certain mood states [76], and smartphones
can provide a way to potentially measure these changes in mood in a non-clinical setting as
well as provide objective measurements. Previously, patients with bipolar disorder in a
depressive state were shown to have an impairment in phonemic fluency, while patients
with bipolar disorder in a manic state were shown to have a moderate-to-large effect size
deficient in language when it came to letter fluency and semantic fluency [66]. Recently,
using smartphones and passive data collection, researchers examined keystroke dynamics
and found that participants with bipolar disorder who had more depressive symptoms
had increased autocorrect rates, while participants with bipolar disorder who were in
a potentially more manic state used the backspace key less [54]. This can possibly be
accounted for by a decreased ability to concentrate within depressed states and additionally
a decreased self-monitoring known to happen with higher mania scores. In another
study, researchers investigating keystroke dynamics in patients with depression found that
patients with depression had longer hold times between both pressing and releasing a key
and between releasing a key and pressing the next one [55]. Distilling these subtle changes
in keystroke dynamics, especially in conjunction with depression scores, would allow
researchers and clinicians to monitor any potential cognitive dysfunction, which would
allow for early intervention or treatment for particular mood disorders. Early intervention
could be crucial and provide life-saving treatment.

5. Discussion

The aim of this review was to examine how researchers have been using keystroke
dynamics from smartphones to examine cognition. Keystroke dynamics have provided
potential digital biomarkers to infer cognitive functioning outside of the laboratory. In
general, smartphones allow for unobtrusive, near-continuous, and longitudinal passive
data collection, which provides a unique means for future research directions. From having
individual cognitive footprints [77] to predicting mood states [54], keystroke dynamics
coupled with accelerometry appears to provide sufficient informative data to distinguish
healthy controls from people with neuropsychiatric disorders. Currently, most studies
implementing passive data to investigate cognition have been through a lens of neuropsy-
chiatric disorders, extracting potential biomarkers from keystroke dynamics and other
passive data. Although these biomarkers show promising results, more research must be
conducted before remote diagnoses or disease monitoring can replace expert evaluation.
Additionally, as passive data collection and analyses become more advanced, perhaps the
lens examining disorders can be expanded, and the biomarkers found from examining
disorders can be applied universally for preventative measures and early diagnoses. How-
ever, there currently remain many obstacles to assessing neurocognitive functioning and
predicting cognitive fluctuations. One limitation we encountered was that some studies
we reviewed found potential biomarkers through detecting statistically significant group
differences in keystroke dynamics, while other studies used predictive models utilizing
features from keystroke dynamics. Studies that used only statistical analyses could apply
prospective biomarkers to predictive models and examine the capability of said biomarkers.
Another limitation we encountered for studies using statistical analyses that specifically
used mixed-effect models were that there were no effect sizes for these analyses, given the
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complexity of different variances at each level. Additionally, sample sizes were often small
or skewed toward those with disorders. We would suggest implementing a longitudinal
follow-up of cohorts consisting of those with neuropsychiatric disorders to observe if the
same digital passive biomarkers can indeed predict cognition in subsequent in-person
evaluations. Another potential biomarker from passive data would be using GPS location
entropy, a measure of regularity, in conjunction with keystroke dynamics. These could
potentially yield new predictive biomarkers to provide warnings before significant mood
or cognitive changes, as decreased entropy in GPS location data have previously been
associated with depression [78–80].

As previously mentioned, cognition, as defined by RDoC, has six domains [16], but
not all were quantifiable. Some domains were not elaborated on due to a current lack of
research comparing passive data measurements to the gold-standard measurements of
these domains. This is a gap in the literature that can be improved upon and is an essential
area to investigate, given the negative implications of declining attention, perception,
working, and declarative memory. With innovative large language models being created
and updated, there may soon be ways to combine them with keyboard dynamics to examine
cognition and further research toward specific cognitive domains.

Ethical concerns certainly arise regarding informed consent, smartphone usage, pas-
sive data collection, and privacy. Data literacy can be a key component of informed consent
for certain research studies. For some neuropsychiatric disorders with longitudinal studies,
obtaining participant consent multiple times throughout the study may be necessary and
would be ethically important as the disease course progresses. As some neuropsychiatric
disorders progress, participants may reconsider their participation in research studies and
may want to opt-out of studies or may even lack the cognitive facilities to make informed
choices. Because of the dynamic nature of cognition for certain neuropsychiatric disorders,
researchers must be cognizant of these possibilities and may want to periodically confirm
participant consent, potentially using over-the-air updates via smartphones for this pur-
pose. Researchers also need to ensure that participants not only understand the purpose for
the research being conducted but researchers also need to be able to explain the technology
being used in layman terms to ensure full comprehension.

In terms of passive data collection and privacy, with the enormous amounts of data
being continually collected from participants, researchers not only need to ensure that
participants understand the extent of data collection, but are also obligated to handle the
data securely and to anonymize the data when necessary. In 2018, the European Union
(EU) has passed the General Data Protection Regulation (GDPR) law to protect the right
to privacy for its residents [81]. The GDPR strengthens data rights of all EU residents and
holds data controllers accountable to keep digital data private. In comparison, the USA does
not currently have an equivalent comprehensive law that protects consumer data. There are
niche laws that protect certain types of personal data (e.g., Health Insurance Portability and
Accountability Act (HIPPA), Electronic Communications Privacy Act (EPCA), Children’s
Online Privacy Protection Rule (COPPA), Family Educational Rights and Privacy Act
(FERPA), etc.) that currently provide some protection for digital privacy. However, there
are several comprehensive acts of legislation for data privacy, at both the state and federal
levels, that are underway and meant to protect individual data privacy. As passive data
collection becomes more utilized, perhaps government oversight (e.g., the GDPR law) is
necessary to have a universally accepted method of storing and encrypting data to ensure
the privacy of participants.

In the realm of digital privacy, all smartphone users emit digital exhaust. Digital
exhaust encompasses all the information that smartphone users create and leave behind as
they browse websites and applications. By data mining digital exhaust, researchers could
study individuals and their unique patterns and potentially distinguish individuals from
their data. Researchers could then derive more information regarding specific individuals,
jeopardizing their right to privacy, especially in a medical context, as being able to identify
individuals could be harmful if the data were breached and then searchable. As increased
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amounts of data can be extracted from smartphone usage, the distinction between personal
digital data and health data becomes more obscure, as evidenced by the studies reviewed
herein that demonstrated the utility of keystroke dynamics in passively inferring cognition.
It then becomes the responsibility of researchers to ensure the privacy of their research
participants. With participants’ privacy in mind, researchers could examine smartphone
users’ digital exhaust to explore cognitive domains. However, with its dynamic nature, the
varying amounts of digital exhaust can modulate users’ cognitive performance as well.

Arguably, the relationship between smartphone usage and cognition is a complicated
one, with research suggesting not only negative effects but also positive and potentially
neutral ones. Smartphone usage, especially in cases of excessive use and in addiction,
has garnered a negative reputation by being a distraction from tasks at hand [82] and
potentially decreasing concentration levels and worsening impulse control [83]. Excessive
smartphone usage is also potentially associated with higher rates of depression, anxiety, and
smartphone addiction [84,85], which can negatively affect cognition and lower academic
performance [86]. Additionally, smartphone users may perceive their smartphone usage
as less than their actual usage [5,87,88]. Furthermore, smartphone notifications can be
distractive by provoking phone checking, which might lead to habitual checking [89,90]
and, potentially, smartphone addiction [91]. This in turn can interrupt attention and
focus on other tasks [92,93], decreasing executive function [94] and increasing cognitive
failures [95]. Moreover, social media applications on smartphones can also have a negative
impact on cognitive control [96], especially in adolescents [97], and an increased use of
these applications can lead to cognitive failures [95,98], along with being a risk factor for
worsening mental health [99,100]. In addition, available cognitive capacity can decline
when in the mere presence of a smartphone [101], and having a smartphone within view can
cause distractions from the task at hand and impair productivity, despite not being actively
checked [92,102]. In contrast to these negative findings, some studies could not find strong
evidence demonstrating the detrimental effects of smartphones on cognition [103,104].
Furthermore, some research has also shown that smartphones may aid cognition and
memory through various means. Some smartphone applications may help in decreasing
cognitive load through certain tools and applications (i.e., writing down tasks in a list using
a smartphone, smartphone calendar reminders for appointments, registering contacts’
phone numbers) [95], allowing for said cognitive space to be used for other purposes. In
one study, participants were able to more accurately complete a task by using smartphones
to help record and remember parts of the task [105], but when smartphones were taken
away in a subsequent task, participants fared worse than when they had not depended on
a smartphone originally. Smartphones can also have specific applications geared toward
training better cognitive function effectively, especially for the elderly [106]. As digital
health technologies become more widespread, researchers using passive data collection to
study cognition should be cognizant of this complex relationship and find ways to bypass
any incongruencies.

In conclusion, for the last decade, smartphones have provided researchers with a new
device and avenue for health technologies. As smartphones become even more ubiquitous,
their impact on health research exponentially increases as well. The number of features
that researchers have been able to extract thus far from passive data collected from digital
technologies already have numerous clinical applications. In this review, we have shown
the utility of using keystroke dynamics and the richness it can provide for data analyses,
especially when compared in conjunction with other passively and actively collected data.
However, there remains innumerous features that can be extracted further from passive
data, and ensuring digital data privacy for participants and obtaining their consent for
longitudinal studies, especially for those with neuropsychiatric and neurodegenerative
disorders, is key.
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