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Abstract: This study analyzed the efficacy of EEG resting state and neuropsychological performances
in discriminating patients with different forms of dementia, or mild cognitive impairment (MCI), com-
pared with control subjects. Forty-four patients with dementia (nineteen patients with AD, and seven
with FTD), eighteen with MCI, and nineteen healthy subjects, matched for age and gender, underwent
an extensive neuropsychological test battery and an EEG resting state recording. Results showed
greater theta activation in posterior areas in the Alzheimer’s disease (AD) and Fronto-Temporal
Dementia (FTD) groups compared with the MCI and control groups. AD patients also showed
more delta band activity in the temporal-occipital areas than controls and MCI patients. By contrast,
the alpha and beta bands did not discriminate among groups. A hierarchical clustering analysis
based on neuropsychological and EEG data yielded a three-factor solution. The clusters differed
for several neuropsychological measures, as well as for beta and theta bands. Neuropsychological
tests were most sensitive in capturing an initial cognitive decline, while increased theta activity was
uniquely associated with a substantial worsening of the clinical picture, representing a negative
prognostic factor. In line with the Research Domains Framework (RDoC) perspective, the joint use of
cognitive and neurophysiological data may provide converging evidence to document the evolution
of cognitive skills in at-risk individuals.

Keywords: dementia; Alzheimer’s; MCI; EEG; neuropsychological profile

1. Introduction

Dementia is a clinical syndrome caused by neurodegeneration and characterized by a
progressive deterioration in cognitive ability and capacity for independent living [1–3]. It
comprises a group of neurodegenerative disorders related to cognitive decline that influence
memory, language, social abilities, and executive functions [4,5]. With the progression of
cognitive decline, patients with dementia show difficulties in performing daily life activities
and may become entirely dependent on caregivers [6]. Indeed, family caregivers support
patients with dementia, and many caregivers experience substantial psychological and
economic burdens [7,8].
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Patients with dementia are heavy consumers of health services. This leads to direct
costs for public health care services, given that no current treatment is highly effective, but
it can only mitigate cognitive impairments [9,10]. Moreover, with the disease progression,
particularly in the later stages, the patient’s brain shows neuroinflammation and irreversible
synaptic losses [11,12]. Thus, the treatment of dementia implies many difficulties in eco-
nomic and therapeutic terms. For this reason, early diagnosis and detection of neuronal
damage allow for both a timely therapeutic intervention to manage the symptoms and an
adequate preparation of patients and caregivers. Yet, the diagnosis of dementia is still a
debated question. Thus, along with the establishment of clinical standards [4,5], diagnostic
biological biomarkers are developed (e.g., machine learning algorithms for neuroimaging
data; Ref. [13]).

Neurophysiological analysis with electroencephalography (EEG) is a non-invasive
tool that allows the dynamic analysis of electrical brain activity. EEG signals are reliable for
distinguishing patients with dementia from subjects without dementia (controls) or other
neurological disorders [14,15]. Rossini et al. [16] found that the use of quantitative EEG
(qEEG) allows the identification of patients with mild cognitive impairment (MCI) from
control subjects. Moreover, to distinguish patients with Alzheimer’s Disease (AD) or MCI
from control subjects, recent reviews indicated that diffused slowing of the EEG is a specific
diagnostic marker: patients with AD showed increased power in lower frequency bands
(delta and theta) and a decrease in alpha and beta power [17–19]. Following these results,
Meghdadi et al. [20] investigated whether resting-state EEG measures can be potential
biomarkers for detecting and assessing cognitive decline in patients with MCI and AD.
Patients in the AD group showed increased delta and theta power and a decreased power in
the alpha frequency band. A small but significant increase in the power of slow frequencies,
localized to temporal areas, was also found in patients with MCI.

The relationship between the EEG signals and the cognitive abilities of older subjects
can provide information about cognitive alterations [21]. High resting-state theta power in
older subjects was linked with more pronounced cognitive impairment [22]. There were
also positive correlations between resting theta power and cognitive deficits in healthy
subjects and those with MCI [23,24]. Some studies investigated the EEG signals and
progression from MCI to AD and found that patients who progressed to AD showed more
delta, theta, and lower alpha and beta power than those who did not [25–27]. Other studies
indicated that these EEG patterns (higher theta power and less beta power) were associated
with subsequent cognitive decline measured via neuropsychological tests [28,29]. A study
by Finnigan and Robertson [22] on healthy older subjects examined the degree to which
resting EEG band power was associated with cognitive performance. Theta power was
significantly correlated with immediate and delayed verbal recall, attention, and executive
function measures, whereas delta and alpha did not correlate with any cognitive measures.
This study suggested that high resting theta power in healthy older subjects was associated
with better cognitive function. This finding is in line with the link between theta power
and cognition but not with other literature data indicating that theta power can point to
subsequent cognitive decline and MCI or dementia [22].

Hence, although the EEG has become a suitable, accurate, and sensitive biomarker for
the identification of neuronal and cognitive dynamics in different types of dementia, such
as AD, MCI, or Fronto-Temporal Dementia (FTD) [8], the nature of the relationship between
EEG signals and cognitive abilities in dementia is still unclear. Thus, it is not presently
clear whether the increased power of slow frequency bands in patients with dementia is
a marker of overall cognition or whether it is related to specific cognitive domains or the
type of dementia.

There were two main aims of this study: first, to highlight the EEG patterns, expressed
as percentage changes of delta, theta, alpha, and beta bands in different cortical areas, and
to examine whether these patterns can be significantly different, allowing to discriminate
between patients with AD, FTD, and MCI, compared with control subjects.
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A second aim was to jointly examine EEG and neuropsychological functions from a
transdiagnostic perspective using a clustering approach [30]. While classical diagnoses
maintain a clinical utility, the recent NIH Research Domains Framework (RDoC [31])
proposes to examine links across domains (e.g., neurophysiological, and cognitive) by con-
sidering individual variations, including multiple case groups over and above diagnostic
categories. A block diagram of the research aims is in Figure 1.
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2. Materials and Methods
2.1. Participants

Forty-four patients attending the Alzheimer’s Evaluation Unit (a Neurological Clinic
sited in Messina) participated in the study: 19 patients with AD (mean age in years = 69.8;
SD = 0.48); 7 patients with FTD (mean age in years = 68.8; SD = 0.58), and 18 patients
with MCI (mean age in years = 67; SD = 0.45). There were no differences among groups
for age (F(3,60) = 1.3; n.s.), years of schooling (F(3,60) = 0.1; n.s.), and gender (X2 = 3.4, n.s.)
(see Table 1). The diagnosis of dementia syndromes was based on clinical, neuropsy-
chological, laboratory, and neuroimaging data according to current research criteria for
AD, FTD, and MCI. Patients with severe neuro-sensory deficits, psychiatric diseases, and
alcohol/substance abuse were excluded.

The diagnosis of dementia syndromes was based on clinical, neuropsychological,
laboratory, and neuroimaging (either CT or MRI) data according to current research criteria
for AD, FTD, and MCI based on the DSM-5 criteria [5]. For initial diagnostic evaluation, all
participants routinely underwent a neurological examination and a detailed anamnesis and
neuropsychological assessment. Patients with severe neuro-sensory deficits, psychiatric
diseases, and alcohol/substance abuse were excluded. Disease duration was measured
as time since first noticing the symptoms, as reported by caregivers and was also based
on clinical records. For differential diagnosis between suspected AD and MCI, only mild
disease stages were considered with a Mini-Mental State Examination (MMSE) score of at
least 20 [32,33].

In the case of suspected FTD, disease progression was additionally estimated via
the Frontal Behavioral Inventory [34]. Following the test manual, scores between 25 and
30 points indicated early and mild stages [35]. When no local atrophy pattern was visible
on MRI of the brain at 3.0 Tesla, 18F-fluorodeoxyglucose positron emission tomography
(FDG-PET) was additionally applied in the subsample of seven patients with FTD. FDG-
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PET revealed a typical bifrontal hypometabolism. Particularly, we aimed to eliminate the
possibility of underlying AD pathology in patients with suspected FTD [36].

Table 1. Socio-demographic data and neuropsychological data of patients with AD, FTD, and MCI
and the control participants. MMSE values indicate raw data; all other neuropsychological tests refer
to equivalent scores. The means (M) and standard deviations (SD) are presented for all variables
except sex (raw proportion). For each variable, the group effect and the effect size are reported.
Analyses are one-way ANOVAs, except for gender (X2). In the case of significant group effects,
LSD post hoc comparisons are reported as superscript letters: different letters indicate significantly
different means.

AD Group
N = 19

FTD Group
N = 7

MCI Group
N = 18

Control Group
N = 19

Group
Effect

Size
Effect

M SD M SD M SD M SD p η2
p

Age 68.9 7.5 68.3 8.0 65.7 8.2 70.4 5.9 n.s. 0.06
Years of schooling 8.5 3.5 9.1 4.4 8.7 4.1 8.0 3.5 n.s. 0.01
Gender (M/F) 7/12 5/2 12/6 11/8 n.s.
MMSE 19.2 c 3.1 22.5 b 2.2 26.6 a 2.0 26.3 a 1.4 <0.001 0.69
Long-term memory 0.6 b 1.3 1.6 a 1.4 2.1 a 1.1 2.6 a 1.1 <0.001 0.33
Short-term memory 1.1 b 1.4 1.0 b 1.5 1.3 b 1.1 2.7 a 1.0 <0.001 0.27
Visual-spatial memory 0.5 b 0.7 1.1 a 1.6 1.7 a 1.1 2.0 a 0.9 <0.001 0.26
Attention 0.4 b 0.9 1.0 b 1.7 2.2 a 1.6 2.5 a 1.1 <0.001 0.35
Semantic verbal fluency 0.5 b 0.7 0.7 b 0.7 1.9 a 1.6 2.3 a 1.0 <0.001 0.32
Phonemic verbal fluency 0.6 b 1.2 0.9 b 1.6 2.4 a 1.3 2.4 a 0.7 <0.001 0.36
Constructional praxis 0.1 c 0.4 0.6 c 0.8 1.9 b 1.7 3.3 a 1.2 <0.001 0.56
Fluid intelligence 1.0 b 0.6 1.5 a,b 1.0 2.1 a 1.2 2.7 a 1.3 <0.001 0.29

Nineteen healthy subjects matched for age and gender with the patients were enrolled
as a healthy control group. These participants had no dementia or other neurological or
psychiatric disorders and showed a performance within expected limits at the MMSE (see
the next paragraph). They were recruited through online ads. All participants were enrolled
after the completion of a screening interview conducted via telephone and a comprehensive
in-office clinical and personal information questionnaire to assess their global cognitive
functioning. Additionally, in this case, participants with neuro-sensory deficits, psychiatric
diseases, and alcohol/substance abuse were excluded from the control group.

All participants provided written informed consent for participating in this study. All
methods were performed following the ethical standards of the Declaration of Helsinki.

2.2. Neuropsychological Assessment

All patients underwent a neuropsychological test battery to assess the extent of im-
pairment in the cognitive area. We selected a set of neuropsychological tests for analysis to
cover important cognitive domains. All tests have an Italian standardization for the critical
ages tested. We evaluated overall cognition based on the MMSE. We examined specific
cognitive domains through the following tests: Memory: immediate and delayed recall of
the Babcock Story Recall Test (BSRT); Verbal Short Term Memory: Serial Repetition Test of
Two-syllable Words; Visuospatial Working Memory: Corsi’s Block Tapping Test (CBTT);
Attention: Trail-Making Test A and B (TMT); Language: Verbal Fluency Tests; Praxis:
Constructional Apraxia Test (CAT); and Fluid Intelligence: Raven’s Colored Progressive
Matrices (CPM).

Overall cognition: The MMSE consists of thirty items that assess orientation, short and
long-term memory, language, attention, visuospatial skills, and the ability to follow simple
verbal and written commands. This easy-to-use and relatively quick neuropsychological
test is often employed to assess the overall cognitive status [37]. We referred to norms for
the Italian population considering age and education corrections [38].
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Memory: The Babcock Story Recall Test (BSRT) [39] measures immediate and delayed
recall. The examiner reads a brief story, and the participant must provide immediate recall.
Then, the story is repeated, and a delayed recall is obtained after ten minutes. Italian norms
are available for this test. The Serial Repetition Test of Two-syllable Words [40] measures
verbal short-term memory. In this test, the examiner presents a sequence of unrelated
two-syllable words that the subject must repeat immediately after the presentation. The
test is preceded by an example. The examiner begins with a two-word sequence; if the
subject correctly repeats 2 out of 3 stimuli, the examiner moves to a longer set (one more
word). The span is given by the longest sequence for which at least 2 out of 3 stimuli are
correctly repeated. Corsi’s Block Tapping Test [40] measures visuospatial working memory.
This test consists of nine cubes fastened in random order to a blackboard; each time the
examiner taps the blocks in a prearranged sequence, the patient must copy the tapping
pattern, which involves a series of blocks of increasing span length to be tapped by the
patient in a forward (memory span) or backward (working memory span) manner. Thus,
the task is like the verbal digit span but with a visual presentation.

Attention: The Trail Making Test (TMT) [41] measures visual attention and task
switching. It consists of 25 circles distributed over a sheet of paper. In part A, the circles
are numbered from 1 to 25, and the patient should draw lines to connect the numbers
in ascending order. The patient is instructed to connect the circles as quickly as possible
without lifting the pen or pencil from the paper. The time to connect the “trail” is measured.
If the patient makes an error, the examiner immediately points it out to allow the patient
to correct it. Errors affect the patient’s score as the error correction is included in the time
completion for the task. The test is interrupted if the patient has not completed both parts
within five minutes.

Language: The Verbal Fluency Test is a short test of linguistic functioning [42–44]. It
consists of two tasks: category or semantic fluency and letter or phonemic fluency. Semantic
verbal fluency is measured by the number of words produced within a restricted category.
Name categories are semantic colors, animals, and fruits. Concerning phonemic fluency,
participants were instructed to generate words beginning with the test letters F, A, and S,
spelled out loud by the examiner in this order. Examinees were given 60 s to name as many
words as possible, beginning with the first letter; the procedure was then repeated for the
two remaining letters. The participants were informed of inadmissible words (repetitions,
proper names, or words with different inflections sharing the same root) to be eliminated
from the analysis. Application and scoring criteria were derived from Senhorini et al. [45].
Instructions were followed by examples using the letter P to illustrate correct and incorrect
words. The participants are given 1 min to produce as many unique words as possible
within a semantic category (category fluency) or starting with a given letter (letter fluency).
The participant’s score in each task is the number of unique correct words.

Constructional praxis: The Constructional Apraxia Test (CAT) [43,44] was used to
measure the ability to consistently copy the elements that constitute the geometric bidimen-
sional models presented by the examiner. The figures derive from those used in the test
of Arrigoni and De Renzi [46]. After the run-in, the examiner presents the figures printed
on the upper half of the paper; the participant is asked to copy them below as precisely
as possible. A score of 4 is given if the reproduction is perfect, 1 if the copy is partially
defective, and 0 if the reproduction is unrecognizable or if there is a “closing-in” (despite
the instructions, the subject follows the contour of the figure printed above).

Fluid Intelligence: The Raven’s Coloured Progressive Matrices (CPM) [47] is a non-
verbal intelligence test representative of general intellectual capacity or the “g” factor
proposed by Spearman. The CPM was developed to assess children aged from 5 to 11 years
old, mentally disabled individuals as well as older individuals. The items are organized
in ascending difficulty throughout three sets (A, Ab, and B). On average, set B is more
difficult than set Ab, which is more difficult than set A. The items consist of a drawing
with a missing part, which the individual needs to complete by choosing one among six
alternative responses. There is only one correct answer for each item. The respondents
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score one for each correct response and zero for each wrong response. The minimum score
is 0, and the maximum score is 36.

2.3. EEG Evaluation

The Micromed® electroencephalograph, and subsequent data processing with the
System Plus software, were used. The EEG activity was recorded continuously from
19 sites by using electrodes set in an elastic cup and positioned according to the International
System 10–20 Jasper: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6,
O1, and O2. Patients were instructed to sit with closed eyes and relax. A member of staff
controlled the subjective and online EEG traces, alerting the patient any time there were
signs of EEG drowsiness. EEG signal was recorded at 250 Hz from the participants in a
30 min resting state in which intermittent light stimulation (ILS) and hyperpnea (HP) were
also executed. Participants were required to remain awake during the entire recording.
Standard 16-channel montage was used according to the 10–20 International System. The
raw EEG tracks were analyzed using the short-time Fourier Transform analysis, and each
channel was decomposed in delta (0.5–3 Hz), theta (4–7.5 Hz), alpha (8–12.5 Hz), and beta
(13–30 Hz) frequency bands. For each channel, the occurrence of the frequency bands was
expressed as a percentage.

In the ILS, a lamp was placed ~30 cm in front of the patient and the patient was asked
to fixate the lamp. Stimulation commenced as the patient closed his eyes. Stimulation was
delivered at an intensity of 18 Hz, and then following the sequence 2, 6, 8, 10, 15, 20, 30, 40,
50, and 60 Hz. Every stimulation lasted 8 s with 4 s of pause between stimulations. The
patient was asked to open his eyes ~4 s after stimulation onset and close them after ~4 s. In
the HP protocol, the patients were asked to take deep breaths for 3 to 5 min in room air
with a respiratory rate of approximately 20 to 30 breaths per minute, and the EEG recording
continued for at least 3 min afterward. These tests were used to prompt epileptiform
abnormalities, and if epileptiform abnormalities appeared, the EEG was excluded from the
group sample. No patient showed any epileptic signs during the recording.

2.3.1. EEG Scoring

Epochs with ocular, muscular, and other types of artifacts, were discarded by two
skilled EEG technicians. The resulting track, with an average duration of 8 min, was
subjected to qEEG analysis software. We obtained a quantitative analysis for each patient
and each channel; the percentages expressed values of the four frequency spectra analyzed
(δ, θ, α, and ß).

2.3.2. Statistical Analyses

Neuropsychological tests: First, we examined performance on neuropsychological
tests using one-way ANOVAs. In the case of significant group effects, post hoc comparisons
were carried out via the Fisher’s Least Significant Difference (LSD) post hoc test. In the case
of MMSE, we used raw scores. For all other neuropsychological tests, we used equivalent
scores based on Italian standardized norms [40]; in all cases, scores vary between 0 (lowest)
and 4 (highest).

EEG Analysis: For each band (delta, theta, alfa, and beta), we carried out a separate
ANOVA with group (4 levels: controls, FTD patients, AD patients, and MCI patients) as a
between-subjects factor and EEG channel (19 levels: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz,
C4, T4, T5, P3, Pz, P4, T6, O1, and O2) as a repeated measure. Whenever appropriate, main
effects and interactions were further examined using the LSD post hoc test.

We performed a post hoc power analysis using the G*power3 [48]. This analysis
indicated that this study had adequate statistical power at a large effect size level (F = 0.40;
p < 0.05; ref. [49]) but low power at a small to moderate effect size (F = 0.10–0.25; p < 0.05).
The small sample size indicates the need for caution in generalizing the findings of this
study to the population with dementia.
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Next, we classified cases (patients and controls) based on the performance of neu-
ropsychological tests measured using equivalent scores (e.g., ability to modulate attention,
visuomotor coordination ability, recall words both semantically and phonologically, etc . . . ),
and the EEG bands. This is in line with the hypothesis that similar patterns of performance
may be associated with groups of items that share some commonalities. To this end, neu-
ropsychological scores and EEG bands were entered in multivariate classification methods to
test and/or confirm groups of cases able to replicate a priori diagnostic classification based
exclusively on a single cognitive pattern (the MMSE).

3. Results
3.1. Participants

Table 1 shows the socio-demographic data and neuropsychological results for the
clinical groups of patients (AD, FTD, and MCI) and the control group.

For all neuropsychological variables, there was a significant main effect for the group
factor (in all cases, at least p < 0.001). Post hoc comparisons conducted via the LSD test
indicated that patients with AD were impaired in all domains compared to controls. Their
performance was also lower than the patients with MCI in all cognitive tests, except short-
term memory. Finally, they showed worse performances than patients with FTD in MMSE,
long-term memory, and visual-spatial memory. As compared to controls, patients with FTD
were impaired in MMSE, short-term memory, attention, semantic and phonemic verbal
fluency, and praxis, while they were not different in long-term memory, visual-spatial
memory, and fluid intelligence. Patients with MCI were impaired compared to controls in
short-term memory and praxis; all other comparisons were insignificant.

3.2. EEG
3.2.1. Theta Bands

The ANOVA on theta bands highlighted the significance of the main effect of the EEG
channel (F(18,1062) = 3.29; p < 0.0001) indicating different theta activation as a function of the
electrode position (with generally lower theta activity in posterior areas). The group factor
(F(3,59) = 3.77; p < 0.05) indicated generally greater theta activation in FTD (25.4%) and AD
(22.0%) than in controls (18.8%) and MCI patients (15.6%). Additionally, the EEG channel x
group interaction was significant (F(54,1062) = 2.47; p < 0.0001). As shown in Figure 1, except
in the frontal area, AD and FTD patients showed greater involvement of theta bands than
controls; MCI patients generally showed lower involvement of theta bands than the other
patients, as well as (to a smaller degree) than control subjects.

As shown in Figure 2, there was similar theta activity for each channel in FTD and
AD patients, while lower theta activity was present in the posterior areas in controls and
MCI patients. In particular, planned comparisons showed that FTD and MCI patients
differed in theta activation for each EEG channel examined (at least p < 0.05), with larger
theta activation for FTD patients than MCI patients; AD patients showed larger theta
activation than MCI patients for electrodes T5, O1, and O2 (at least p < 0.05), and a trend
was evident for the other posterior areas (in particular for the electrodes P3, P4, T6, and
T3). Control subjects showed larger theta activation than MCI patients in the FP1, FP2, F2,
and F4 electrodes (at least p < 0.05). The AD group showed larger theta activation than
controls in posterior areas, with a significant difference in O1, O2, and T5 (at least p < 0.05)
and a trend approaching significance in T3, P3, P4, and T6. FTD patients showed greater
theta activation than controls in all electrodes examined (at least p < 0.05), except for more
anterior areas, as highlighted by the absence of significant group differences for FP1, FP2,
F3, F4, and CZ, and a trend of significance for P3 and T6 recording. FTD and AD patients
showed a similar pattern of theta activity, except for FP1, FP2, and CZ (at least p < 0.05),
which was more pronounced among FTD participants.
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3.2.2. Delta Bands

The ANOVA on delta bands highlighted the significance of the main effect of the EEG
channel (F(18,1062) = 95.96; p < 0.0001), with larger delta activity in the frontal area (especially
in the pre-frontal area) than in the “central area” bands and especially the parietal-occipital
areas. The group’s main effect was insignificant (F(3,59) = 1.60; p = 0.12), indicating similar
delta activity in the four groups. The EEG channel x group interaction was significant
(F(54,1062) = 1.38; p < 0.05): as shown in Figure 3, delta activity was greater among AD
patients than in the other groups (that were similar among each other). The exploration of
the interaction showed that AD patients and control subjects differed in temporal-occipital
areas: more activity was observed among AD patients than in controls in C3, T5, T6, O1,
and O2 (at least p < 0.05) with a similar trend approaching significance in T3 and T4. The
AD group showed higher delta activity than MCI patients in F8, C3, C4, T4, T5, P4, T6,
O1, and O2 (at least p < 0.05) and a trend in the same direction (but only approaching
significance) for the F7, F4, and P2 channels. There were no group differences in delta
activity for any other channel examined.

3.2.3. Beta Bands

The ANOVA on beta bands did not highlight either the main effect of group (F(3,59) = 1.83,
n.s.) or the EEG channel x group interaction (F(54,1062) = 1.10; n.s.), indicating similar beta
activity in the four groups, both in general and in every EEG channel examined. The unique
significant effect was the main effect of the EEG channel (F(18,1062) = 5.92; p < 0.0001), with
generally higher activity in the central areas.

3.2.4. Alpha Bands

The ANOVA on alpha did not highlight either the main effect of group (F(3,59) = 1.77,
n.s.) or the EEG channel x group interaction (F(54,1062) = 1.10, n.s.), indicating similar alpha
activity in the four groups, both in general and for every EEG channel examined. The
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unique significant effect was the main effect of the EEG channel (F(18,1062) = 75.42; p < 0.0001),
with higher activity in the parietal-occipital areas than in the central and especially the
frontal ones.
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3.2.5. Cluster Analysis

We carried out a cluster analysis of neuropsychological assessment scores and alpha,
beta, theta, and delta EEG bands. A hierarchical and non-hierarchical approaches method
(a dual process clustering procedure [50,51]) was applied to identify subgroups of cases
(patients and controls) with similar cognitive responses profile and EEG patterns.

Different from the previous diagnostic classification, in an explorative manner, we
did not a priori specify the number of clusters. Of note, we used z-scores to yield equal
metrics and equal weighting. Additionally, no multivariate outliers were detected as
assessed using the Mahalanobis Distance test (below the cut-off χ2 = 29.53, p < 0.001). Out
of the total sample, we discharged three cases that completely lacked random data on the
neuropsychological and EEG measures. The final database was composed of 63 cases.

We performed a hierarchical clustering analysis using the squared Euclidean distance
matrix with the Ward’s linkage method [52] for forming clusters. Since there is no formal
stopping rule for hierarchical cluster analysis, a cut-off point was determined according
to the dendrogram to signify when the clustering process should be stopped [53]. Next,
we used information from the agglomeration table and the dendrogram to determine the
number of clusters. Results suggested three-cluster and four-cluster solutions, respectively.
Next, the K-means cluster algorithm was applied to improve results from the hierarchical
procedures to provide more accurate cluster membership. The K-means algorithm defined
three groups using the initial seed points from the hierarchical clustering.
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Table 2 shows the final cluster centers. For each cluster, the centroid (mean value) is
provided. In absolute terms, clusters were dissimilar, ranging from 2.548 (cluster 1 vs. 2)
to 3.452 (cluster 2 vs. 3) and to 4.648 (cluster 1 vs. 3). The greater the distance between
the two clusters, the greater the differences in these clusters. The first cluster classifies
N = 20 cases, the second N = 16, and the third N = 27. In detail, the first cluster rightly
classifies AD patients (N = 17 of 20, or close to 85%). This cluster was characterized by low
scores on neuropsychological measures, alpha and beta bands, and positive values of delta
and theta bands. The second did not classify a specific diagnostic class of cases, with a mixed
composition of patients with MCI, FTD, and AD. This cluster was characterized by low scores
on neuropsychological measures, delta and theta bands, and positive values of alpha and
beta bands. Finally, the third cluster classifies control cases (N = 15 of 19, or close to 79%)
with good performance on neuropsychological measures, positive values on alpha and beta
bands, and negative values on delta and theta bands. Results suggest that it is feasible to
group cases based on patterns of cognitive performance and EEG bands.

Table 2. Final composition of the cluster centers solution.

Cluster

1 2 3

Long-term memory −0.871 −0.049 0.674
Short-term memory −0.610 −0.646 0.834

Visual-spatial memory −0.784 0.177 0.476
Attention −0.750 −0.620 0.923

Semantic verbal fluency −0.644 −0.368 0.695
Phonemic verbal fluency −0.802 −0.345 0.798

Constructional praxis −0.790 −0.511 0.888
Fluid intelligence −0.748 −0.526 0.866
EEG alpha bands −0.677 0.563 0.168
EEG beta bands −0.425 0.215 0.187
EEG delta bands 0.580 −0.572 −0.090
EEG theta bands 0.789 −0.301 −0.407

N 20 16 27
Note. Single EEG bands were saved from PCA factor scoring procedures.

3.2.6. Clusters Description

After pooling cases for cluster membership, we ran analyses to explore the new
classification. First, we investigated the neuropsychological and neurophysiological
patterns of the three clusters by entering the neuropsychological scores and EEG bands
in a series of ANOVAs with cluster membership as a factor (see Table 3). The three
clusters differed for all neuropsychological measures, with effect sizes ranging from
η2

p = 0.278 to 0.679. In detail, LSD post hoc comparisons revealed that the tree clusters
significantly differ on all neuropsychological measures, except for short-term memory
(cluster #1 vs. #2, p = 0.802), visual-spatial memory (cluster #3 vs. #2, p = 0.057), and
semantic verbal fluency (cluster #1 vs. #2, p = 0.059).

We found a slight effect of alpha (F(2,60) = 4.014; p = 0.023; η2
p = 0.118) and delta bands

(F(2,60) = 5.276; p = 0.008; η2
p = 0.150) that did not survive to the post hoc procedures (all

p > 0.05). The clusters differed for the remaining bands with a small effect size, η2
p = 0.301

(beta) and η2
p = 0.287 (theta). LSD post hoc comparisons on EEG bands revealed not-

significant post hoc differences on the beta band between cluster #3 vs. #1 (p = 0.522) and
on the theta band between cluster #3 vs. #2 (p = 0.676).

A non-parametric ANOVA was also used to test the strength of parametric analysis
results, leading to the same conclusions.
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Table 3. ANOVAs for cluster membership. In the case of group effects significant after Bonferroni
correction, LSD post hoc comparisons are reported as superscript letters: different letters indicate
significantly different means.

Cluster M SD Df F p η2
p

Long-term memory 1 −0.674 c 0.769 2 23.883 <0.001 * 0.443
2 −0.067 b 0.893
3 0.842 a 0.639

Short-term memory 1 −0.548 b 0.748 2 25.835 <0.001 * 0.463
2 −0.395 b 0.845
3 0.918 a 0.667

Visual-spatial memory 1 −0.575 b 0.620 2 11.547 <0.001 * 0.278
2 0.082 a 0.944
3 0.623 a 1.039

Attention 1 −0.763 c 0.541 2 47.581 <0.001 * 0.613
2 −0.160 b 0.793
3 1.011 a 0.611

Semantic verbal fluency 1 −0.658 b 0.576 2 22.258 <0.001 * 0.426
2 −0.075 b 0.741
3 0.828 a 0.967

Phonemic verbal fluency 1 −0.824 c 0.629 2 32.428 <0.001 * 0.519
2 0.288 b 0.958
3 0.777 a 0.579

Constructional praxis ¶ 1 −0.795 c 0.284 2 81.560 <0.001 * 0.699
2 −0.222 b 0.760
3 1.091 a 0.637

Fluid intelligence ¶ 1 −0.702 c 0.374 2 48.220 <0.001 * 0.679
2 −0.403 b 0.504
3 1.105 a 0.782

EEG alpha band 1 −0.402 0.789 2 4.014 0.023 0.118
2 0.366 1.004
3 0.225 1.091

EEG beta band ¶ 1 −0.420 a 0.671 2 6.956 <0.001 * 0.301
2 0.951 b 1.328
3 −0.151 a 0.593

EEG delta band 1 0.350 0.951 2 5.276 0.008 0.150
2 −0.636 0.633
3 0.020 1.081

EEG theta band 1 0.625 b 0.996 2 12.092 <0.001 * 0.287
2 −0.584 a 0.494
3 −0.341 a 0.872

Note. ¶ Welch adjustment for unequal variance. * Bonferroni corrected p < 0.05.

4. Discussion

The aims of the present study were twofold: firstly, to examine whether EEG patterns
can be significantly different, allowing to discriminate between patients with AD, FTD, and
MCI, compared with control subjects. Secondly, to examine, from a transdiagnostic perspec-
tive, the feasibility of clustering group cases based on patterns of cognitive performance
and EEG bands independent of the diagnostic group.

Concerning the first aim, the results indicated that the theta band represents an EEG
pattern allowing discrimination of the three clinical groups. Precisely, results showed lower
theta activity in posterior areas and greater theta activation in the FTD group compared
with the MCI group. The AD and FTD groups, which generally had similar activation,
showed greater involvement of theta bands than the control subjects. The MCI group
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showed lower involvement of theta bands than the other groups, as did the control subjects.
There were also some differences in the case of the delta band. AD patients showed more
activity in temporal-occipital areas than controls and MCI patients. By contrast, the alpha
and beta bands did not discriminate among the AD, FTD, and MCI groups. Overall, these
results are consistent with previous findings, indicating increased power in lower frequency
bands (delta and theta) in patients with AD [17–19]. Moreover, the results indicated that
the differential activation of the frequency bands was related to the brain location in each
group. Thus, the AD and control groups differed in temporal-occipital areas, with more
activity in the AD group than in controls in C3, T5, T6, O1, and O2. The AD group showed
higher delta activity than MCI patients in F8, C3, C4, T4, T5, P4, T6, O1, and O2.

Concerning the second aim, the cluster analysis indicated that it is feasible to group
cases based on patterns of cognitive performance and EEG bands. In general, one may see
cognitive decline as lying on a continuum that partially cuts across diagnostic categories but
is also mixed with the wide inter-individual variability characteristic of aging. Thus, while
patients with AD predominantly appeared in cluster #3 and controls mainly in cluster #1,
there was substantial variability in both these clusters. Cluster #2 was characterized by an
intermediate level of performance and featured a mixed composition of patients with MCI,
FTD, and AD, as well as controls. As expected, several neuropsychological indicators were
sensitive to detect the difference between clusters #3 and #2: short- and long-term memory,
attention, semantic and phonemic verbal fluency, praxis, and fluid intelligence. Thus,
neuropsychological tests prove quite sensitive in capturing an initial cognitive decline,
although further worsening in performance occurred in several cognitive areas. Notably,
beta and theta data also contributed to defining the composition of the clusters. Thus, an
increase in theta band activity was uniquely associated with the difference between clusters
#2 and #1. Therefore, it appears that neuropsychological tests are most sensitive in capturing
an initial cognitive decline, while increased EEG theta activity is uniquely associated with a
substantial worsening of the clinical picture and be considered a negative prognostic factor.
Recent evidence is consistent with the idea that EEG biomarkers can be particularly suited
to mark the progression of MCI and AD [15]. Overall, in line with the RDoC perspective,
using both cognitive and neurophysiological data may provide converging evidence to
document the decline of cognitive skills in at-risk individuals [17–19].

Altogether, the results of the present study are consistent with previous findings in-
dicating that the qEEG analysis allows the identification of the indices of brain electrical
activity changes related to pathological processes implicated by different types of demen-
tia [20]. Moreover, this study indicated that the coupling between EEG and cognitive
abilities might provide information on the cognitive alterations area that may be considered
prodromal to dementia [54,55]. Notably, most previous studies either focused on EEG
measures or neuropsychological analysis. We believe that by using tests with different
methodological approaches (neuropsychological analysis and qEEG) we can better charac-
terize the dysfunction of the brain system. On one hand, the use of qEEG is economical, fast,
reproducible, and yields precise data in neurology and psychiatry that can be compared
over time [56]. In line with previous observations [14–16], we observed that the QEEG
data (delta and theta bands and their spatial distribution) allow a distinction between FTD,
AD, and healthy aging controls. As expected, consistent group differences among groups
were also observed using a comprehensive neuropsychological battery over and above
differences in MMSE. Using multiple sources of information is one of the tenets of the
recent RDoC approach [31] to classify mental disorders over and above classical diagnostic
categories (as in the DSM-5 [5]). Indeed, in recent years, studies have begun to couple
EEG measures with behavioral measures, for example, to test the attentional networks
in subjects with attention-deficit/hyperactivity disorder [57]. In the dementia realm, a
recent study based on the transdiagnostic perspective focused on the interrelations among
neuroimaging data and clinical symptoms of apathy and disinhibition [58]. To analyze
EEG and behavioral data from a unitary perspective, we referred to the clusters model
approach [50]. While this approach found a large use in applied psychology (e.g., [51], to
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the best of our knowledge, it is the first time that the clusters model approach has been
used to jointly examine neurophysiological and neuropsychological measures in dementia.

In the present study, the clusters model approach has enabled us to identify differenti-
ated subgroups with specific neuropsychological patterns and EEG characteristics. This
approach highlighted how diagnosis classification performed using routine measures may
be less accurate and may not consider the complexity of the phenomena. Due to the small
number of participants in this dataset, the inclusion of this classification approach enabled
the flexibility and scalability of this method to accommodate several input features. This
approach could integrate the MMSE criteria in a first diagnostic evaluation process and
provide a step forward in classifying patients when more than one neuropsychological
feature and EEG patterns are available. It is also important for future research to improve
model parsimony and its interpretability. Overall, the use of this knowledge can increase
the specificity of the first-level evaluation, allowing for a better selection of patients who
need a subsequent evaluation using focused biomarkers.

The present study has a limitation related to the sample size. The power analysis
indicated that the study had adequate statistical power at a large effect size level but
low power at a small to moderate effect size. The small sample size indicates the need
for caution in generalizing the findings of this study to the population with dementia,
particularly considering the different types of disorders. Future studies with larger samples,
possibly with multi-centric collaborations, are needed to obtain reliable results for the
different groups of patients.

5. Conclusions

In conclusion, the present study indicates that EEG resting state activity, associated
with different brain locations, can be a significant marker for discriminating patients with
AD, FTD, and MCI against controls. In line with the RDoC perspective, considering jointly
neuropsychological and EEG data may increase the possibility of documenting critical
moments in cognitive decline, favoring the distinction between typical aging and dementia.
We propose that this may be a promising line of investigation for future studies using
multivariate classification methods [50] or machine learning algorithms [13], which allow
to go beyond the classical diagnostic categories and to jointly evaluate both EEG resting
state activity and neuropsychological performances.
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