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Abstract: Purpose: The accurate preoperative histopathological grade diagnosis of adult gliomas is
of great significance for the formulation of a surgical plan and the implementation of a subsequent
treatment. The aim of this study is to establish a predictive model for classifying adult gliomas
into grades 2–4 based on preoperative conventional multimodal MRI radiomics. Patients and
Methods: Patients with pathologically confirmed gliomas at Huashan Hospital, Fudan University,
between February 2017 and July 2019 were retrospectively analyzed. Two regions of interest (ROIs),
called the maximum anomaly region (ROI1) and the tumor region (ROI2), were delineated on the
patients’ preoperative MRIs utilizing the tool ITK-SNAP, and Pyradiomics 3.0 was applied to execute
feature extraction. Feature selection was performed utilizing a least absolute shrinkage and selection
operator (LASSO) filter. Six classifiers, including Gaussian naive Bayes (GNB), random forest (RF),
K-nearest neighbor (KNN), support vector machine (SVM) with a linear kernel, adaptive boosting
(AB), and multilayer perceptron (MLP) were used to establish predictive models, and the predictive
performance of the six classifiers was evaluated through five-fold cross-validation. The performance
of the predictive models was evaluated using the AUC and other metrics. After that, the model with
the best predictive performance was tested using the external data from The Cancer Imaging Archive
(TCIA). Results: According to the inclusion and exclusion criteria, 240 patients with gliomas were
identified for inclusion in the study, including 106 grade 2, 68 grade 3, and 66 grade 4 gliomas. A
total of 150 features was selected, and the MLP classifier had the best predictive performance among
the six classifiers based on T2-FLAIR (mean AUC of 0.80 ± 0.07). The SVM classifier had the best
predictive performance among the six classifiers based on DWI (mean AUC of 0.84 ± 0.05); the SVM
classifier had the best predictive performance among the six classifiers based on CE-T1WI (mean AUC
of 0.85 ± 0.06). Among the six classifiers, based on ROI1, the MLP classifier had the best prediction
performance (mean AUC of 0.78 ± 0.07); among the six classifiers, based on ROI2, the SVM classifier
had the best prediction performance (mean AUC of 0.82 ± 0.07). Among the six classifiers, based on
the multimodal MRI of all the ROIs, the SVM classifier had the best prediction performance (average
AUC of 0.85 ± 0.04). The SVM classifier, based on the multimodal MRI of all the ROIs, achieved
an AUC of 0.81 using the external data from TCIA. Conclusions: The prediction model, based on
preoperative conventional multimodal MRI radiomics, established in this study can conveniently,
accurately, and noninvasively classify adult gliomas into grades 2–4, providing certain assistance for
the precise diagnosis and treatment of patients and optimizing their clinical management.
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1. Introduction

In 2021, the WHO central nervous system (CNS) tumor classification criteria intro-
duced molecular diagnosis indicators, emphasizing the role of molecular typing in the
classification and grading of gliomas. It is suggested that CNS tumors should be diagnosed
hierarchically, including histopathological grading and molecular typing. It is believed
that this can more accurately guide neuro-oncologists in formulating plans for surgery,
adjuvant radiation therapy, and chemotherapy [1–4].

According to the latest classification criteria, adult diffuse gliomas are classified into
grades 2, 3, and 4, with different invasiveness and infiltration characteristics, and there are
also significant differences in treatment plans and prognoses [5]. Therefore, if the accurate
grade diagnosis of gliomas can be obtained noninvasively before surgery, it is of great
significance for the formulation of surgical plans and for the implementation of subsequent
treatment plans. Nowadays, MRI has been widely used in the diagnosis of brain tumors due
to its superior soft-tissue contrast and the ability to conduct multiangle and multiparameter
imaging [6]. However, the previous preoperative grade diagnosis of gliomas was mostly
subjectively judged by radiologists and neurosurgeons, mainly based on the location,
shape, signal, and contrast enhancement performance of the tumor, and the accuracy of
the judgment results largely depended on the experience of the doctors [7]. Therefore, it is
necessary to find an objective, stable, and reliable classification method. For patients with
gliomas, surgery and subsequent histological and molecular assessments of the specimen
are irreplaceable. A comprehensive pathological diagnosis is the gold standard for the
diagnosis of gliomas, and it is also the basis for selecting the subsequent treatment methods,
which are unavailable before surgery. Different grades of gliomas, such as WHO grade 2 and
grade 3 gliomas, may have different treatment plans. Therefore, the accurate preoperative
grade prediction of gliomas may be crucial for patients and might influence the formulation
of the surgical plan and the implementation of the subsequent treatment.

With continuous development and progress in interdisciplinary research, such as re-
search in medical imaging, computer science, and applied mathematics, radiomics-related
research has gradually emerged and become a research hotspot. As a form of machine
learning, radiomics can transform a large amount of medical image information into data
information that can be used for mining to establish and train models, providing clinical
decision support [8–10]. At present, radiomics has been widely used in the diagnosis
and prognosis prediction of brain tumors. Li et al. [11] established an MRI radiomics
approach to predict survival and tumor-infiltrating macrophages in gliomas. Yan et al. [12]
utilized quantitative MRI-based radiomics for noninvasively predicting molecular subtypes
and survival in glioma patients. However, the lack of the standardization of acquisition
parameters and inconsistent methodologies between working groups have made valida-
tions unreliable; hence, multicenter studies involving heterogenous study populations are
warranted [13]. Research based on radiomics to predict the grading of gliomas mainly
focuses on distinguishing between low-grade and high-grade gliomas [14–16], and there
are few studies on the specific grading of grades 2, 3, and 4. However, only distinguish-
ing between high and low grades of tumors is clearly insufficient for the development
of treatment plans for gliomas. In addition, the studies that achieved good prediction
results [17–20] mostly utilized advanced MRI sequences, such as diffusion tensor imaging
(DTI), diffusion kurtosis imaging (DKI), magnetic resonance spectroscopy (MRS), and
dynamic susceptibility contrast-perfusion-weighted imaging (DSC-PWI), which may affect
the generalization of prediction models and may not be conducive to clinical promotion
and practical application.

In this study, we established a machine learning predictive model utilizing six clas-
sifiers based on preoperative conventional multimodal MRI radiomics to conveniently,
accurately, and noninvasively obtain glioma grading (grades 2–4).
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2. Patients and Methods
2.1. Patients

This study was approved by the institutional review board of Huashan Hospital,
Fudan University. We retrospectively analyzed the data of pathologically confirmed glioma
patients that were at Huashan Hospital, Fudan University, from February 2017 to July 2019.
In total, 500 patients with diffuse gliomas (55 of grade 2, 42 of grade 3, and 403 of grade 4)
from The Cancer Imaging Archive (TCIA) were used for external validation.

2.2. Inclusion and Exclusion Criteria

Inclusion criteria: (1) patients aged above 18 years; (2) patients with histopathological
diagnosis of grade 2–4 gliomas; (3) patients with brain MRI examination performed within
one week of surgery; and (4) patients with brain MRI acquired using a 3.0 T scanner
(Magnetom Verio; Siemens Healthineers, Erlangen, Germany) with sequences including
T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), T2-fluid-attenuated inversion
recovery (T2-FLAIR), diffusion-weighted imaging (DWI), and CE-T1WI.

Exclusion criteria: (1) previous history of brain tumors, (2) lesion was predominant
hemorrhage, (3) artifacts on MRI images, (4) other treatment before surgery, and (5) incom-
plete clinical data.

2.3. MRI Scanning Parameters

Brain MRI scanning parameters are shown in Table 1. The scanning range of all
sequences covered the entire brain. The contrast agent gadodiamide (GE Pharmaceuticals)
was injected through the elbow vein using a dose of 0.1 mmol per kilogram of body weight
for CE-T1WI scanning. After the injection of the contrast agent, transverse CE-T1WI
scanning was started immediately, and, after the injection of the contrast agent, 20 mL of
physiological saline was used to rinse.

Table 1. Brain MRI scanning parameters.

Sequence Parameters

T1WI SE TR = 2000 ms; TI = 857 ms; TE = 17 ms; matrix = 256 × 168; FOV = 201 × 230 mm2; thickness = 5 mm; and
interval = 1.5 mm

T2WI TSE TR = 2200 ms; TE = 96 ms; matrix = 256 × 256; FOV = 260 × 260 mm2; thickness = 5 mm; and interval = 1.5 mm

T2-FLAIR FIR TR = 9000 ms; TI = 2500 ms; TE = 102 ms; matrix = 256 × 190; FOV = 201 × 230 mm2; thickness = 5 mm; and
interval = 1.5 mm

DWI EP TR = 5000 ms; TE = 104 ms; matrix = 192 × 192; FOV = 229 × 229 mm2; thickness = 8 mm; and
interval = 1.2 mm

CE-T1WI SE TR = 2000 ms; TI = 857 ms; TE = 17 ms; matrix = 256 × 168; FOV = 201 × 230 mm2; thickness = 5 mm; and
interval = 1.5 mm

Abbreviations: T1WI = T1-weighted imaging; T2WI = T2-weighted imaging; T2-FLAIR = T2-fluid-attenuated
inversion recovery; DWI = diffusion-weighted imaging; CE-T1WI = contrast enhanced-T1-weighted imaging;
SE = spin echo; TSE = turbo spin echo; FIR = fast inversion recovery; EP = echo planar; TR = repetition time;
TI = inversion time; TE = echo time; and FOV = field of view.

2.4. Data Preprocessing

First, we executed an anonymous operation on the image information of included
patients. After that, to match the region of interest (ROI), with the images of all sequences,
we used the linear differential resampling method in SimpleITk software package (version
2.1.1.1, https://simpleitk.readthedocs.io/en/master/index.html accessed on 26 April 2023),
resampling all images to 240 × 240 × 24 with an interval of 1 × 1 × 4 mm3. Then, by
utilizing the tool of ANTs [21] (https://github.com/ANTsX, accessed on 26 April 2023), all
sequences (T1WI, T2WI, T2-FLAIR, and DWI) were registered to CE-T1WI. After that, we
used SimpleITK to normalize the image grayscale value to 0–255.

https://simpleitk.readthedocs.io/en/master/index.html
https://github.com/ANTsX
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2.5. Image Segmentation

MRI image segmentation was based on the research of Zacharaki et al. [22] and the
Multimodal Brain Tumor Image Segmentation Benchmark [23], and it was implemented
by a radiologist with more than 20 years of experience in neuro-oncology radiology. The
tumors were segmented on T2-FLAIR and CE-T1WI axial images using ITK-SNAP [24]
(version 4.0.0, PICSL, Philadelphia, PA, USA, http://www.itksnap.org/pmwiki/pmwiki.
php, accessed on 26 April 2023). All tumors were delineated into two parts, called ROI1
and ROI2. ROI1 represents the maximum anomaly region (MAR), and it was delineated on
T2-FLAIR image and was represented in green; ROI2 represents the tumor area (tumor),
and it was delineated on CE-T1WI image, with yellow representing the enhancement area
and red representing the nonenhancement area. The maximum anomaly region represents
the abnormal hyperintense signal region on the T2-FLAIR. Representative tumor ROI
delineation is shown in Figure 1.
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green, and D represents the tumor region (ROI2), with red representing the nonenhancement region.
(E–H) A case of WHO grade 4 glioblastomas; F represents the maximum anomaly region (ROI1),
which is delineated in green, and H represents the tumor region (ROI2), with yellow representing the
enhancement region and red representing the nonenhancement region.

2.6. Feature Extraction and Selection

A total of 12,918 features were extracted using Pyradiomics [25] (version 3.0, DFCI
of Harvard Medical School, Boston, MA, USA, https://pyradiomics.readthedocs.io/en/
latest/features.html, accessed on 26 April 2023) for 6 combinations of 2 ROIs and 3 se-
quences to force the extraction of 2D features with slice-averaged features instead of 3D
features. We used the least absolute shrinkage and selection operator (LASSO) filter to
select the most significant features.

In addition, feature selection, model construction, and validation were proceeded
utilizing the scikit-learn software package (version 1.0.2, Machine Learning in Python,
Saclay, France, https://scikit-learn.org/stable/, accessed on 26 April 2023) basing on
Python (version 3.10.7, Python Software Foundation, Wilmington, DE, USA, https://www.
python.org, accessed on 26 April 2023).

http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
https://scikit-learn.org/stable/
https://www.python.org
https://www.python.org
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2.7. Classifier Evaluation and Statistical Analysis

Prediction models were built utilizing six classifiers, including Gaussian naive Bayes
(GNB), random forest (RF), K-nearest neighbor (KNN), support vector machine (SVM)
with linear kernel, adaptive boosting (AB), and multilayer perceptron (MLP), and the
predictive performance of the six classifiers was assessed through five-fold cross-validation.
Additionally, we utilized area under curve (AUC), precision (PRE), recall (REC), and
F1-score to evaluate the performance of each predictive model.

3. Results
3.1. Baseline Characteristics

According to the inclusion and exclusion criteria, 240 patients were enrolled in the
study, with a median age of 50.05 ± 13.82 years, including 151 males and 89 females,
106 cases of grade 2 gliomas, 68 cases of grade 3 gliomas, and 66 cases of grade 4 gliomas.
The baseline characteristics of the enrolled patients are shown in Table 2.

Table 2. The baseline characteristics of enrolled glioma patients.

Baseline Characteristics Number of Cases (Percentage)

Total 240
Gender

Male 151 (63%)
Female 89 (37%)

Age (year)
Mean ± standard deviation 50.05 ± 13.82

≤50 112 (47%)
>50 128 (53%)

Histopathological grading
WHO grade 2 106 (44%)
WHO grade 3 68 (28%)
WHO grade 4 66 (28%)

3.2. Feature Selection

In total, 150 features were filtered using the LASSO filter, including first-order features
(n = 28), grayscale co-occurrence matrix features (n = 33), grayscale run length matrix
features (n = 15), grayscale size region matrix features (n = 45), adjacent grayscale difference
matrix features (n = 22), and grayscale dependency matrix features (n = 7). According to
the sequence distribution, the number of features from the CE-T1WI, DWI, and T2-FLAIR
sequences was 41, 52, and 57, respectively. According to the region distribution, the number
of features from the maximum anomaly region (MAR) and the tumor region (tumor) was
78 and 72, respectively.

3.3. Different Sequence-Based Predictive Model Performances
3.3.1. T2-FLAIR-Based Predictive Model Performance

The specific evaluation parameters are shown in Table 3, and the ROC curves of the
six classifiers are shown in Figure 2. The results indicate that the MLP classifier had the
best classification performance.

Table 3. Predictive performance of six classifiers based on T2-FLAIR.

Classifier Average AUC Average PRE Average REC Average F1

GNB 0.74 ± 0.08 0.53 ± 0.17 0.64 ± 0.12 0.57 ± 0.14
KNN 0.75 ± 0.06 0.58 ± 0.18 0.51 ± 0.20 0.53 ± 0.17

RF 0.76 ± 0.07 0.71 ± 0.20 0.44 ± 0.19 0.52 ± 0.18
AB 0.77 ± 0.06 0.63 ± 0.16 0.48 ± 0.21 0.52 ± 0.19
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Table 3. Cont.

Classifier Average AUC Average PRE Average REC Average F1

SVM 0.79 ± 0.07 0.68 ± 0.16 0.61 ± 0.19 0.63 ± 0.17
MLP 0.80 ± 0.07 0.69 ± 0.19 0.62 ± 0.20 0.64 ± 0.18

Abbreviations: AUC = area under curve; PRE = precision; REC = recall; F1 = F1-score; GNB = Gaussian naive
Bayes; KNN = K-nearest neighbor; RF = random forest; AB = adaptive boosting; SVM = support vector machine;
and MLP = multilayer perceptron.
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A C

D FE

B

Figure 3. The ROC curves of the six classifiers based on DWI; (A) is GNB, (B) is KNN, (C) is RF, (D) is
AB, (E) is SVM, and (F) is MLP.

3.3.3. CE-T1WI-Based Predictive Model Performance

The specific evaluation parameters are shown in Table 5, and the ROC curves of the
six classifiers are shown in Figure 4. The results indicate that the SVM classifier had the
best classification performance.
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Table 5. Predictive performance of six classifiers based on CE-T1WI.

Classifier Average AUC Average PRE Average REC Average F1

GNB 0.84 ± 0.06 0.60 ± 0.16 0.71 ± 0.12 0.64 ± 0.13
KNN 0.78 ± 0.07 0.58 ± 0.19 0.51 ± 0.19 0.53 ± 0.19

RF 0.85 ± 0.06 0.70 ± 0.21 0.52 ± 0.19 0.57 ± 0.19
AB 0.84 ± 0.06 0.68 ± 0.19 0.55 ± 0.20 0.58 ± 0.19

SVM 0.85 ± 0.06 0.73 ± 0.17 0.62 ± 0.19 0.65 ± 0.18
MLP 0.84 ± 0.07 0.68 ± 0.16 0.64 ± 0.15 0.65 ± 0.15

Abbreviations: AUC = area under curve; PRE = precision; REC = recall; F1 = F1-score; GNB = Gaussian naive
Bayes; KNN = K-nearest neighbor; RF = random forest; AB = adaptive boosting; SVM = support vector machine;
and MLP = multilayer perceptron.

3.4. Different ROI-Based Predictive Model Performances
3.4.1. ROI1-Based Predictive Model Performance

The specific evaluation parameters are shown in Table 6, and the ROC curves of the
six classifiers are shown in Figure 5. The results indicate that the MLP classifier had the
best classification performance.

Table 6. Predictive performance of six classifiers based on ROI1.

Classifier Average AUC Average PRE Average REC Average F1

GNB 0.73 ± 0.05 0.50 ± 0.16 0.61 ± 0.18 0.55 ± 0.16
KNN 0.72 ± 0.05 0.52 ± 0.19 0.41 ± 0.22 0.44 ± 0.20

RF 0.74 ± 0.06 0.53 ± 0.31 0.35 ± 0.26 0.41 ± 0.27
AB 0.75 ± 0.06 0.58 ± 0.22 0.41 ± 0.21 0.46 ± 0.21

SVM 0.77 ± 0.07 0.66 ± 0.19 0.62 ± 0.20 0.63 ± 0.19
MLP 0.78 ± 0.07 0.66 ± 0.18 0.64 ± 0.20 0.64 ± 0.18

Abbreviations: AUC = area under curve; PRE = precision; REC = recall; F1 = F1-score; GNB = Gaussian naive
Bayes; KNN = K-nearest neighbor; RF = random forest; AB = adaptive boosting; SVM = support vector machine;
and MLP = multilayer perceptron.
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3.4.2. ROI2-Based Predictive Model Performance

The specific evaluation parameters are shown in Table 7, and the ROC curves of the
six classifiers are shown in Figure 6. The results indicate that the SVM classifier had the
best classification performance.

Table 7. Predictive performance of six classifiers based on ROI2.

Classifier Average AUC Average PRE Average REC Average F1

GNB 0.75 ± 0.05 0.53 ± 0.16 0.78 ± 0.11 0.61 ± 0.12
KNN 0.77 ± 0.06 0.64 ± 0.15 0.59 ± 0.18 0.60 ± 0.16

RF 0.80 ± 0.07 0.73 ± 0.20 0.51 ± 0.18 0.58 ± 0.18
AB 0.81 ± 0.07 0.71 ± 0.19 0.54 ± 0.16 0.60 ± 0.16

SVM 0.82 ± 0.07 0.69 ± 0.18 0.65 ± 0.21 0.66 ± 0.19
MLP 0.82 ± 0.07 0.66 ± 0.16 0.62 ± 0.18 0.63 ± 0.17

Abbreviations: AUC = area under curve; PRE = precision; REC = recall; F1 = F1-score; GNB = Gaussian naive
Bayes; KNN = K-nearest neighbor; RF = random forest; AB = adaptive boosting; SVM = support vector machine;
and MLP = multilayer perceptron.
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3.5. Predictive Model Performance Based on All Sequences and ROIs

The specific evaluation parameters are shown in Table 8, and the ROC curves of the
six classifiers are shown in Figure 7. The results indicate that the SVM classifier had the
best classification performance.

Table 8. Predictive performance of six classifiers based on all sequences and ROIs.

Classifier Average AUC Average PRE Average REC Average F1

GNB 0.75 ± 0.05 0.53 ± 0.16 0.79 ± 0.10 0.61 ± 0.11
KNN 0.76 ± 0.06 0.54 ± 0.21 0.49 ± 0.23 0.50 ± 0.21

RF 0.79 ± 0.07 0.67 ± 0.24 0.45 ± 0.21 0.52 ± 0.21
AB 0.80 ± 0.07 0.71 ± 0.19 0.51 ± 0.19 0.57 ± 0.19
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Table 8. Cont.

Classifier Average AUC Average PRE Average REC Average F1

SVM 0.85 ± 0.04 0.73 ± 0.19 0.71 ± 0.19 0.70 ± 0.18
MLP 0.82 ± 0.07 0.69 ± 0.20 0.65 ± 0.22 0.65 ± 0.21

Abbreviations: AUC = area under curve; PRE = precision; REC = recall; F1 = F1-score; GNB = Gaussian naive
Bayes; KNN = K-nearest neighbor; RF = random forest; AB = adaptive boosting; SVM = support vector machine;
and MLP = multilayer perceptron.

Brain Sci. 2023, 13, x FOR PEER REVIEW 10 of 14 
 

 
Figure 6. The ROC curves of the six classifiers based on ROI2; (A) is GNB, (B) is KNN, (C) is RF, (D) 
is AB, (E) is SVM, and (F) is MLP. 

 
Figure 7. The ROC curves of the six classifiers based on all sequences and ROIs; (A) is GNB, (B) is 
KNN, (C) is RF, (D) is AB, (E) is SVM, and (F) is MLP. 

  

Figure 7. The ROC curves of the six classifiers based on all sequences and ROIs; (A) is GNB, (B) is
KNN, (C) is RF, (D) is AB, (E) is SVM, and (F) is MLP.

3.6. External Validation

The model with the best predictive performance (the SVM classifier based on multi-
modal MRI using all the ROIs) was tested using the data from The Cancer Imaging Archive
(TCIA), achieving an AUC of 0.81 and an ACC of 0.80, and the confusion matrix is shown
in Figure 8.
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4. Discussion

With the deepening of the cognition of the glioma genome map, the biological pro-
cess, the occurrence and development, and changes in some of the molecular genetics of
gliomas show great diagnostic and prognostic value [26–28]. In 2021, the WHO CNS tumor
classification criteria formulated a new classification system for brain tumors, proposed the
concept of integrated diagnosis, and focused on promoting the application of molecular
and genetic diagnosis in CNS tumor classification. In a sense, the diagnosis of gliomas is
stepping into the era of precision medicine [1,2]. As the basis of integrated diagnosis, the
histological grading of gliomas still occupies an indispensable position. Many molecular
genetics changes have more clinical significance in specific tumor grading, while some
tumors with a lower histological grade are redefined as high-level tumors because of special
molecular genetics changes. Therefore, the accurate histopathological grading of gliomas
is the foundation for further molecular diagnosis, and molecular diagnosis can modify
and improve grade diagnosis. The effective complementarity between the two can achieve
the goal of the precise diagnosis of gliomas and plays a role in the clinical diagnosis and
treatment management of patients.

MRI is one of the most commonly used imaging tools for CNS diseases [29,30]. In
conventional MRI, the T1WI sequence reflects the T1 relaxation difference of each tissue,
focusing on the anatomical structure of the tissue; the T2WI sequence reflects the T2
relaxation difference of each tissue, focusing on abnormal changes in the tissue; the T2-Fair
sequence is mainly used to distinguish the free water and the bound water in the tissue;
the DWI sequence is used to evaluate the diffusion movement of water molecules in the
tissue, which can indicate microstructural differences in diseased tissues; and CE-T1WI
uses gadolinium as a contrast agent, which can shorten the T1 relaxation time, thereby
enhancing the signal and reflecting the difference in gadolinium absorption between tumor
tissue and normal tissue, and high-blood-flow tissues exhibit high signal intensity during
CE-T1WI scanning due to the high content of gadolinium. Typical low- and high-grade
gliomas, such as grade 2 and 4 gliomas, have easily identifiable radiology manifestations
on conventional MRI. However, grade 2 and grade 3 gliomas, which are at the edge of low-
and high-grade grading, sometimes have similar MRI presentations, making differential
diagnosis tough, especially for junior doctors.

With the vigorous development of medical imaging and computer science, radiomics
has emerged, which can extract high-throughput data information that cannot be recog-
nized by the human eye to establish and train models, providing clinical decision support.
Currently, radiomics methods have been widely applied in the clinical research of can-
cers [31–33]. Among them, studies using radiomics to predict glioma grades have mostly
focused on discriminating between low-grade and high-grade gliomas. The study by
Ditmer et al. [15] retrospectively included 94 patients with gliomas (14 low-grade and
80 high-grade gliomas) and utilized a texture analysis based on preoperative MRI images
to evaluate tumor heterogeneity to distinguish tumor grades. It was indicated that using
an average 2 mm texture scale yielded the best differential diagnostic efficacy, with an
AUC of 0.90 and a sensitivity and specificity of 0.93 and 0.86, respectively. Wang et al. [16]
used a radiomics nomogram based on multimodal MRI (CE-T1WI, T2WI, and ADC) to
grade 85 patients with gliomas, and the consistency indices in the training and validation
cohorts were 0.971 and 0.961, respectively. In addition, some studies used functional MRI
sequences, such as DTI, MRS, and APTWI [17–20]. These advanced imaging sequences
require more high-end scanners, longer examination times, and higher examination costs,
which may affect the generalization of predictive models and are not conducive to clinical
promotion or practical application.

In this study, we established a radiomics model for predicting glioma grades by
effectively integrating radiomics features from conventional multimodal MRI and by
utilizing six classifiers. It shows that the SVM classifier based on radiomics features from
all the sequences and ROIs achieved the best diagnostic performance, with an average
AUC of 0.85 ± 0.04. This highlights the potential significance and value of multimodality
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and fusion concepts in MRI radiomics research [34–36]. Additionally, the SVM classifiers
based on the CE-T1WI and DWI sequences also achieved good diagnostic performance,
with average AUCs of 0.85 ± 0.06 and 0.84 ± 0.05, respectively. Due to the fact that
the enhancement of gliomas mainly occurs in the rapidly growing area of the tumor,
which is closely related to the formation of neovascularization within the tumor and the
destruction of the blood–brain barrier, the scope and morphological characteristics of tumor
neovascularization are some of the main reference criteria for histopathological grading [37],
and CE-T1WI radiomics features may be able to accurately reflect the histopathological
grading of gliomas. However, the patients with gliomas that were enrolled in this study
had grade 2–3 gliomas, some of which may not have had enhancement. The DWI sequence
can reflect the microstructural features closely related to the tumor grade and invasion,
such as the tumor cell density, the extracellular space, and vascular infiltration [38,39].
Therefore, the radiomics features of the DWI sequence may indicate the infiltration degree
and tumor grade of some lower-grade gliomas without enhancement.

However, our study still has some inevitable limitations. Firstly, selection bias is an
unavoidable inherent flaw in retrospective studies, and, therefore, prospective, multicenter,
and larger-scale studies are needed in the future to further test the accuracy of the prediction
model. Secondly, the histopathological grade prediction model of adult gliomas established
in this study requires further validation in multiple centers before it can be applied to
the clinic.

5. Conclusions

The prediction model based on preoperative conventional multimodal MRI radiomics
established in this study can conveniently, accurately, and noninvasively classify adult
gliomas into grades 2–4, providing certain assistance for the precise diagnosis and treatment
of patients and optimizing their clinical management.
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