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Abstract: Early and accurate diagnosis of autism spectrum disorders (ASD) and tailored therapeutic
interventions can improve prognosis. ADOS-2 is a standardized test for ASD diagnosis. However,
owing to ASD heterogeneity, the presence of false positives remains a challenge for clinicians. In
this study, retrospective data from patients with ASD and multi-systemic developmental disorder
(MSDD), a term used to describe children under the age of 3 with impaired communication but
with strong emotional attachments, were tested by machine learning (ML) models to assess the
best predictors of disease development as well as the items that best describe these two autism
spectrum disorder presentations. Maternal and infant data as well as ADOS-2 score were included in
different ML testing models. Depending on the outcome to be estimated, a best-performing model
was selected. RIDGE regression model showed that the best predictors for ADOS social affect score
were gut disturbances, EEG retrievals, and sleep problems. Linear Regression Model showed that
term pregnancy, psychomotor development status, and gut disturbances were predicting at best for
the ADOS Repetitive and Restricted Behavior score. The LASSO regression model showed that EEG
retrievals, sleep disturbances, age at diagnosis, term pregnancy, weight at birth, gut disturbances, and
neurological findings were the best predictors for the overall ADOS score. The CART classification
and regression model showed that age at diagnosis and weight at birth best discriminate between
ASD and MSDD.

Keywords: autism spectrum disorder; multisystem developmental disorder; retrospective data;
ADOS2 score; machine learning; regression models; RIDGE model; Linear Regression Model; LASSO
model; CART model

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized
by impairment in communication and social interaction as well as repetitive, stereotyped
behavior [1,2]. Since the publication of the Diagnostic and Statistical Manual of Mental
Disorders, Fifth edition (DSM-5), ASD has mirrored an umbrella of diagnostic entities that
previously reflected multiple distinct disorders, including Autistic Disorder, Asperger’s
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Syndrome, Multisystem Developmental Disorder (MSDD), and other clinical features
previously defined as “pervasive developmental disorders” (PDD) [3].

To be diagnosed with Autism Spectrum Disorder, children must have:

• Deficits in social interaction and communication spanning all three of the following
areas: (1) social-emotional reciprocity, (2) nonverbal communication, and (3) develop-
ment, management, and understanding of interpersonal relationships;

• Stereotypic behavior, either motor or vocal/verbal, fixed patterns of behavior or strict
adherence to routines, restricted interests and abnormal sensory processing;

• Autism onset in early childhood.

DSM-5 distinguishes three levels of autism severity based on social functioning, rang-
ing from Level 1 (“requiring support”) to Level 3 (“requiring very substantial support”).

We can distinguish four main developmental trajectories at autism onset:

1. Lack of acquisition of new developmental functions, especially expressive language
and symbolic play, usually between 9 and 24 months;

2. Loss of previously acquired functions (“regression”), typically between 12 and 30
months;

3. Loss of previously acquired functions after 3 years of age (“late regression”);
4. ASD in the context of a global developmental delay [4].

MSDD (DC: 0–3, diagnostic manual) is a term coined by Dr. Stanley Greenspan to
diagnose children under the age of 3 who exhibit signs of impaired communication as
in autism, but with stronger emotional attachment disturbances than in autism. MSDD
is considered a milder developmental disorder than autism spectrum disorder, but the
differences are very slight, and some argue that the differences lie “in the eyes of the clini-
cians” [5]. Nevertheless, children with MSDD who receive adequate treatment generally
have better prognosis than most children diagnosed with ASD. Some clinicians use MSDD
as a “temporary” diagnosis for children under the age of 3, when there are reasons that
suggest to differ the diagnosis of autism (DC, 0–3) [6].

The definition of Multisystem Developmental Disorder in DC 0–3 [7] includes the
following:

• Significant impairment, but not complete lack, of the ability to engage in an emotional
and social relationship with a primary caregiver;

• Significant impairment in forming, maintaining, and/or developing communication.
This includes preverbal gestural communication as well as verbal and nonverbal
symbolic communication;

• Significant dysfunction in auditory processing (i.e., perception and comprehension);
• Significant dysfunction in the processing of other sensations, including hyper- and

hyporeactivity (e.g., to visual–spatial, tactile, olfactory, proprioceptive, and vestibular
input) and motor planning (e.g., sequencing movements).

Children up to three years of age with various language and communication disorders
associated with relational and emotional problems may not fully fit the ASD clinical features
and/or present non-fixed clinical pictures with gradual and favorable changes over time.

Multisystem Developmental Disorders therefore represent a concept referred to as
a permanent and relatively fixed deficit but with openness to change and growth (DC,
0–3) [7].

For a young child whose development is rapid, changeable, and potentially flexible, it
may be important to offer diagnostic alternatives.

This type of diagnosis would be taken into consideration when the ability to enter into
relationships with others and to possess some of the prerequisites of communication in the
area of intersubjectivity are observed.

Other than the clinical evaluation, the psychological assessment is useful to describe
clinical features of ASD and other neurodevelopmental disorders. Psychological assess-
ment is crucial for quantifying functional deficits and following their evolution over time,
mapping not only the weaknesses but also the strengths [8].
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The identification and definition of the individual functioning profile requires the
evaluation of the intelligence quotient, the severity of autistic symptoms, and the adaptive
quotient.

The assessment of the intellectual profile is usually performed by Leiter-3, a non-
verbal scale that also excludes calculation, working memory and processing speed from
the intellectual quotient (IQ). It emphasizes fluid intelligence and is a reliable assessment
measure, without any cultural or language bias [9]. However, both the Leiter-3 and other
psychometric tools may underestimate the intellectual potential of ASD subjects [10] due
to the low ability of these children to adapt to the assessment setting. A more reliable
instrument in describing the developmental profile of ASD children, from birth to eight
years, is the Griffiths Mental Development Scale (GMDS) [11,12].

The Autism Diagnostic Observation Schedule—Second Edition (ADOS-2) is currently
considered the “gold standard” in the assessment of ASD. It represents the best-practice
clinical tool for the diagnosis of ASD in children [13] providing two different cut-off
scores for “autism spectrum” and for “autism”. The first shows high specificity (76–86%)
and acceptable sensitivity (81–94%), the second shows high sensitivity (95%+) and low
specificity (63–73%) [14]. Although widely used in research because of its standardization,
the ADOS requires clinical judgment from a professional with expertise in ASD when
making a diagnosis. Despite that, the presence of false positives and the low predictability
of ASD classification remain a challenge for clinicians.

Another useful tool for clinical evaluation of ASD is the Childhood Autism Rating
Scale (CARS) that was developed to recognize young children with ASD symptoms and
distinguish their severity in responses including smell, touch, light, sound, body use,
social behavior, verbal and nonverbal communication, and coherence of intellectual re-
sponse [15,16]. It can be considered an integrative diagnostic tool [17].

Despite having a high sensitivity for the presence/absence of ASD-typical signs, the
above-mentioned diagnostic tools have an unavoidable degree of interrater unreliability
among clinical users. New technologies can help the clinicians in the screening of the most
effective tools allowing a more objective diagnosis of ASD in order to start a therapeutic
intervention as early as possible. Among them, Artificial Intelligence-based methods
have gained importance in the last years in light of their development, acceptance by the
scientific and clinical community, as well as increasing trustworthiness. Among them,
Machine learning (ML) methods have been used to support clinicians in solving complex
tasks dealing with differential diagnosis, the clinical characteristics of ASD being somewhat
similar to those of other neurodevelopmental and neuropsychiatric disorders. Dating back
to 2016, one of the first attempts in this regard was made by Duda and colleagues [18]
who employed ML models to select a subgroup of Social Responsiveness Scale (SRS) items
to distinguish ASD from ADHD, highlighting the positive role for this innovative way
to conduct such an investigation. This has fostered new related works, either aiming
at performing a feature selection in terms of cognitive or mood measures to distinguish
between clinical and non-clinical groups [19] or, closer to our aim, to detect ASD predictive
features among adolescents and adults by picking up the most significant features from the
ADOS in this regard [20].

Considering the success in terms of feasibility and positive results obtained by the
works mentioned above, and in particular by the article by Küpper and collaborators, the
aim of this study was to evaluate the ability of different ML models to improve discrimina-
tive power of the diagnostic procedure of ASD on the basis of maternal and infant data
as well as the ADOS score. Therefore, differently from what is already published in the
literature, here, we employed clinical and diagnostic features to assess the best predictors
of disease development as well as the items that best describe the different autism spec-
trum disorder presentations. By retrospective data collection from patients with ASD and
MSDD, this study aims to use the ML models to better describe ASD and other clinical
conditions such as MSDD and clinical profiles. This represents a more difficult task than
the performance of a differential diagnosis between ASD and non-clinical disturbances.
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This could potentially serve as a future reference study in this domain to identify early
risk factors and clinical predictors for ASD with respect to other clinical disorders with
somewhat similar features.

2. Materials and Methods
2.1. Study Cohort

Fifty-seven children (50 M, 7 F; age 3.5 ± 2.7 years) were recruited at the Unit of Child
Neuropsychiatry of Polyclinic Hospital University in Messina (Italy) based on (1) fulfilling
diagnostic criteria for neurodevelopmental disorders, including autism spectrum disorder
(ASD) (38 M, 6 F; age 4 years, 22–144 months) and multi-systemic developmental disorder
(MSDD) (12 M, 1 F; age 2.4 years, 19–36 months).

The diagnosis of ASD was confirmed by expert child psychiatrists at the time of
inclusion.

An accurate anamnestic collection was carried out with the parents to investigate pos-
sible sleep or eating disorders, behavioral problems, alterations in electroencephalographic
(EEG) activity, or other medical problems.

At the time of recruitment, Intellectual Quotient (IQ) or Developmental Quotient
(DQ) were determined using the Leiter International Performance Scale—Third Edition [9]
or the Griffith Mental Development Scales (GMDS) [11], respectively. Autistic behaviors
were assessed using the ADOS-2 [9] and the Children Autism Rating Scales (CARS) [15].
Adaptive functioning was assessed using the Vineland Adaptive Behavior Scales—Second
Edition [21].

The GMDS assesses a child’s strengths and weaknesses in all developmental areas,
including the locomotor abilities (gross motor skills, balance, coordination, and movement
control), personal–social capacities (independence in daily activities and in interaction
with other children), hearing and language development (hearing, expressive language
and receptive language), eye and hand coordination (fine motor skills, manual dexterity
and visual monitoring skill). Furthermore, the developing ability to reason through tasks
(including speed of working and precision) and the practical reasoning (ability to solve prac-
tical problems, understand basic math concepts and moral issues) can be evaluated. Three
sub-quotients (personal–social, hearing and language, and practical reasoning) indicate the
severity of symptoms when the diagnosis of ASD is assigned [12].

ADOS is a is a semi-structured, activity-based assessment aimed to evaluate com-
munication skills, social interaction, and imaginative use of materials in individuals who
are suspected to have ASD. It provides the examiner with the opportunity to observe
behaviors directly relevant to the diagnosis of ASD. The ADOS-2 can be used for individ-
uals regardless of age (from 12 months of age through adulthood), developmental level,
and language skills because it comprises several modules. The comparison scores (from
1 to 10) indicate different levels of impairment: 1 indicates minimal-to-no evidence of
autism-related symptoms and 10 indicates a very high level of autism-related symptoms.

2.2. Machine Learning Approach

The database included in this investigation was composed of data from 57 individuals
diagnosed with neurodevelopmental disorders at an age of 12–144 months, including ASD
and MSDD.

The tasks assigned to the machine learning (ML) algorithms included the predictions
of clinical scores normally employed to categorize the severity of the existing condition,
including ADOS and some of its subscales, and the Developmental Quotient (DQ). In
addition, the prediction of differential diagnosis between ASD and MSDD was attempted.
Since the dataset considered also includes the real values of the outcome to be predicted, the
models employed in the present work are supervised ones, allowing for a so-called “task-
driven approach”, where the aim, based on the input values, is to perform an estimation of
the true value in output.
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Machine learning models, where possible, were compared featuring the same parame-
ters in order to allow a fair assessment of their respective performances.

The entire database was divided into a training and a test set based on an 80–20%
split, which is a quite common choice in this regard. All the algorithms evaluated were
considered taking into account a 10-fold cross-validation for performance assessment,
which is popular to somewhat guarantee a reasonable decrease in terms of overfitting
(i.e., the tendency of a model to fully adapt to the training set, without the capability to
generalize over another dataset, including the test set, which is quite frequent especially
in the datasets featuring a reduced number of observations, i.e., individuals). In order to
further reduce the overfitting likelihood, the best model was considered to be not the one
providing the best performances on the training set overall, but the one within one standard
error from the best performances. This choice was adopted for all the models featuring
regression tasks (i.e., the prediction of ADOS and subscales, as well as DQ), whereas the
overall best model was picked up in the case of classification tasks (i.e., the differential
diagnosis between ASD and MSDD) due to its intrinsically different characteristics. It
should be specified that the best performances were evaluated in terms of minimal Root
Mean Squared Error (RMSE) for the regression tasks and in terms of maximum accuracy
for the classification tasks. In both cases, the error was considered in terms of the difference
between the predicted value from a model and the real outcome value.

2.3. ML Models
2.3.1. LASSO

The Least Absolute Shrinkage and Selection Operator, LASSO, is a very common ML
model relying on a regression analysis method. It carries out both variable selection and
regularization and aims at improving the prediction accuracy and the resulting model
interpretability. It is known to be particularly useful when datasets are composed of several
variables hypothesized not being useful for prediction purposes [22]. Here, it was employed
for regression tasks.

2.3.2. RIDGE

Ridge Regression is a ML technique often employed when the regression data to be
analyzed are significantly affected by multicollinearity problems. If multicollinearity occurs,
it turns out that least square estimates are totally unbiased with a large variance deviating
them significantly from their true value. By adding a quota of bias to the regression
estimates, RIDGE regression is able to reduce the standard errors. Contrary to LASSO,
which is quite similar in some instances, RIDGE regression shrinks all the coefficients to a
non-zero value. Here, it was employed for regression tasks [23].

2.3.3. Elastic Net

The Elastic Net attempts at taking the advantages of both LASSO and RIDGE, blending
their optimal characteristics. Its main regularization parameter can be continuously varied
between 0 and 1, with the lower limit (zero) making the model equal to RIDGE and the
upper limit (one) to LASSO. A 0.5 value indicates a 50/50 blend between the two regression
models. Like the two above-mentioned models, the Elastic Net was also employed for
regression tasks [24].

2.3.4. CART

Classification and Regression Trees (CART) are popular and powerful ML models
relying on the deconstruction of the overall sample into smaller groups performed through
repeated, binary splits of the sample, considering one exploratory variable at a time. Their
advantages are manifold: they can be easily adapted to different data, including cross
sectional, longitudinal, survival data, the possibility to use different types of response
variables, and the fact that they do not need to make any assumptions in terms of the
normality of the data distribution. On the other hand, their main limitations include their
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strong sensitivity to data changes and their somewhat limited interpretability [25]. Due to
its adaptability to both conditions, in the present study, it was employed for both regression
and classification tasks.

2.4. Random Forest

Random Forest (RF) are learning methods that can be applied for classification and
regression purposes, as in the present article, operating by building up a series (forest) of
decision trees at the training. Their output is represented by the class that is the mode of the
classes for classification, or the mean prediction for regression, of the individual trees. With
respect to the classical decision trees, RF possess several advantages. Those include the
performance of implicit on-the-run feature selection, the provision of accurate indicators
of feature importance, the absence of the need for particular data preparation prior to the
application of the ML model, and the opportunity for them to handle binary, categorical,
numerical features without any need for scaling, normalization or standardization. They
are also unlikely to perform overfitting and they are relatively quick to train and versatile,
although their interpretability is often cumbersome [26].

2.5. Linear Model

A Linear Model was here employed for regression purposes, and, more specifically
to this extent, a Linear Regression Model was selected. In a Linear Regression Model, the
response variable “y” (target, the “outcome”) is expressed as a linear function or linear
combination of all the predictors “X” (the observed variables). The underlying relationship
between the response and the predictors is deemed to be linear (i.e., lying on a straight line),
and the error distribution of the response variable should be normally distributed [27].

2.6. Neural Network

An Artificial Neural Network is a quite popular ML approach making use of artificial
neurons connecting each other between nodes and weights between their connections
under the principles of resemblance to biological neurons. The inputs to the network are
modified step by step through weights and summed to each other, eventually triggering
a related activation function. As such, various kinds of Neural Networks exist, among
which for the present study a resilient backpropagation-based network, composed of two
hidden layers of 10 and 4 neurons, respectively, was employed since it provided the best
performances in terms of regression (and classification) with respect to other models tested,
with a reasonably low computational burden [28]. An example of the topology used is
shown in Figure 1.

All the models adopted were implemented and trained using an RStudio v.1.4.1106,
running on a PC equipped with Intel(R) Pentium(R) CPU B980 @ 2.40 GHz featuring 8 GB
RAM. Comparisons between the models were performed based on such technological
basis.
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Figure 1. A topology example of a Neural Network employed in the present work.

3. Results
3.1. Clinical Features of the Study Population

The clinical features of children recruited for this study are shown in Table 1.
Time range for diagnosis of ASD or MSDD was 12–144 months in our study cohort.

Age at diagnosis was lower than 36 months in 47.3% of the examined cases.
Almost half of the pregnancies were complicated by threats of miscarriage, uterine

contractions, placental abruption, emergency caesarean section, gestational diabetes, in-
trauterine growth retardation, uterine fibroid, antibiotic administration, thromboflebitis,
cardioaspirin treatment, and risk of retinal detachment (3.8%).

About 18% of births occurred between 31 and 37 weeks of gestation; moreover, birth
occurred by caesarean section in more than two thirds of all cases.

About 14% of the recruited children were born with low birth weight (<2500 g), 42%
of which were pre-term newborns.

In pre-term newborns, perinatal problems were encountered, including respiratory dis-
tress, hospitalization in Neonatal Intensive Care Unit, pulmonary hypertension and neona-
tal sepsis, corpus callosum agenesis, jaundice, hypotonia, and umbilical cord wrapped
around the neck.

More than half of the examined cases exhibited development retardation, particularly
denoted by a delay in language skills in all subjects.

About two fifths of ASD cases presented with comorbidities, including hyperactivity,
epilepsy, anxiety disorder, ADHD, hyperkinesia, Tourette syndrome, Riddle syndrome,
coeliac disease, microcephaly and severe intellectual disability, interatrial septal defect, and
electroencephalogram abnormalities.

About two fifths of the children experienced either difficulties in falling asleep or
frequent nighttime awakenings. Gut disturbances, including diarrhea, constipation, and
encopresis occurred in one fifth of the children; one of the recruited children presented
with allergies.

About 40% of subjects showed abnormalities in the EEG records.
About 60% of the examined cases had a positive family history for neuropsychiatric

disorders.
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Table 1. Clinical features of 57 patients recruited for this study.

Clinical Features Number of Cases (%)

Age at diagnosis (months) 41.5 ± 27.9

Physiological pregnancy Yes 31 (54.4%)
No 26 (45.6%)

Term pregnancy Yes 47 (82.4%)
No 10 (17.6%)

Birth
Eutocic delivery 16 (28.05%)

Caesarean section 40 (70.2%)
Dystocial 1 (1.75%)

Weight at birth (kg) 3.213 ± 0.957

Dysmorphic features Yes 2 (3.5%)
No 55 (96.5%

Perinatal problems Yes 10 (17.6%)
No 47 (82.4%)

Psychomotor development Developmental delay 30 (52.6%)
Typical development 27 (47.4%)

Comorbidities
Yes 21 (36.8%)
No 36 (63.2%)

Sleep disturbances Yes 22 (38.6%)
No 35 (61.4%)

Gut disturbances
Yes 24 (42.1%)
No 33 (57.9%)

Neuroexamination
Normal 42 (73.7%)

Higher than normal 15 (26.3%)
Gentilitium Positive 33 (57.9%)

(Family history) Negative 24 (42.1%)

Allergies Yes 1 (1.8%)
No 56 (98.2%)

EEG
Normal 36 (63.1%)

Higher than normal 21 (36.9%)
ADOS score 16.3 ± 4.95

ADOS Social Affect subscore 12.8 ± 3.9
ADOS Repetitive and Restrictive

Behavior subscore 3.5 ± 1.7

Developmental Quotient 61.2 ± 19.9
Legend: EEG: electroencephalography; ADOS: Autism Diagnostic Observation Schedule.

3.2. ML Analysis

As mentioned, two kinds of tasks were assigned to the ML models implemented,
namely regression and classification.

Regression tasks were applied when trying to predict continuous-like output variables,
including the ADOS score and its subscores (e.g., Social Affect, Restricted and Repetitive
Behaviors), as well as the DQ score.

For these predictions, as previously reported, the RMSE was selected as the parameter
to be kept at the minimum to ensure the good performances of the model. Table 2 shows
the RMSE values for the different models concerning the ADOS Social Affect subscore.

Table 2. Performances of the different models trained on the ADOS Social Affect score prediction.

Model RMSE

Linear Model 4.514
Neural Network 5.126

LASSO 3.859
RIDGE 3.589

Elastic Net 4.067
CART 3.759

Random Forest 3.926
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As such, the best performances, those with the lowest RMSE, were achieved by the
RIDGE model using a hyperparameter lambda of 0.9 and capable of performing such
prediction within 390.83 s employing the technological infrastructure described above.

The RIDGE model makes use of all the features with different “penalization” param-
eters, the largest of which, as absolute values, were assigned to gut disturbances, EEG
retrievals, and sleep problems.

The other ADOS subscale evaluated was about the Restricted and Repetitive Behaviors,
on which the Linear Model performed best (Table 3).

Table 3. Performances of the different models trained on the ADOS Restricted and Repetitive
Behaviors score prediction.

Model RMSE

Linear Model 1.311
Neural Network 2.526

LASSO 1.765
RIDGE 1.841

Elastic Net 1.789
CART 1.747

Random Forest 1.699

Regarding the clinical interest, the most reliable predictors for this specific task in-
cluded the occurrence of term pregnancy, the psychomotor development status, and the
occurrence of gut disturbances.

Of particular clinical interest is the prediction of the overall ADOS score, where the
LASSO made the best use of the data available, outperforming all the other models as
displayed in Table 4.

Table 4. Performances of the different models trained on the ADOS score prediction.

Model RMSE

Linear Model 4.947
Neural Network 7.533

LASSO 4.902
RIDGE 5.121

Elastic Net 4.920
CART 5.912

Random Forest 5.248

The hyperparameter used by the best, up to one Standard Error, LASSO model was
0.197 (see Figure 2), and the full model was trained within a very short amount of time,
32.24 s.

The LASSO model used seven parameters including the EEG retrievals, the occurrence
of sleep disturbances, the age of neurodevelopmental disorder diagnosis, the occurrence of
term pregnancy, the weight at birth, the occurrence of gut disturbances, and the retrievals
from the neurological examination.

As reported above, the last regression task demanded was to predict the DQ score,
with the CART performing at best (Table 5).

The CART model was trained within 121.6 s, and the best performances were achieved
with a hyperparameter of 0.1 (Figure 3), making the best use of the age at diagnosis and the
psychomotor development status.

On the other hand, the classification task was conducted to distinguish the subjects
included in the database according to their clinical status, taking into account also the
differences between ASD and MSDD. As reported above, three models were employed
to this extent: CART, RF and Artificial Neural Network. According to the best accuracy
data, CART and RF performed equally in the demanded task, with an 80% incidence of
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correct classification into the two classes. As expected, CART obtained such results in a
shorter amount of time and using less computational resources (88.55 s for training) than
RF did due to the lower complexity of the model itself. As such, the CART hyperparameter
providing the best results was 0.9, and the most important variables for the specific task
resulted to be the age at diagnosis and the weight at birth.

Table 5. Performances of the different models trained on the DQ score prediction.

Model RMSE

Linear Model 25.800
Neural Network 32.390

LASSO 22.915
RIDGE 25.429

Elastic Net 23.320
CART 17.221

Random Forest 21.666
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4. Discussion

ML is a subfield of Artificial Intelligence which has the potential to substantially en-
hance the role of computational methods in neuroscience. These machine learning models
are based on statistical algorithms and are suitable for complex problems involving combi-
natorial explosions of possibilities or non-linear processes where traditional computational
models fail in terms of quality or scalability [15].

In clinical studies, the prediction of a diagnosis or correlations between clinical vari-
ables is becoming a fundamental step. In these cases, ML is used, and it often enables
superior opportunities compared to standard statistical approaches [16].

The determination of the clinical diagnosis, the establishment of the severity of the
disorder, as well as the differential diagnosis between disorders appear to be difficult and
complex tasks for a clinician. To this extent, ML can support clinicians in various domains.
Those might include, among many others, the prediction of the clinical outcome (as the
score reported in a given clinical questionnaire or scale) based on observational behavioral
or instrumental variables, or the investigation around the possible relationships between
different variables that might stay hidden when just the classical statistical approaches are
employed.

Focusing on the present article, several supervised ML approaches have been applied
and compared to the prediction of the typical clinical scores and variables commonly
employed in the diagnostic pathway of the ASD and related conditions. In particular, the
ADOS scores were predicted in the cohort of participants by means of different ML models,
trying to understand which of the variables, taken into account in the clinical assessment,
are deemed more predictive for the related outcome. The overall ADOS score was best
predicted using a subset of seven variables: (a) the EEG retrievals, (b) the occurrence of sleep
disturbances, (c) the age of neurodevelopmental disorder diagnosis, (d) the occurrence
of term pregnancy, (e) the weight at birth, (f) the occurrence of gut disturbances, (g) the
retrievals from the neurological examination.

Furthermore, the ADOS subscale Social Affect score was best predicted by combining
the occurrence of gut disturbances, the EEG retrievals, and sleep problems, also significant
in the prediction of the ADOS score, whereas the ADOS subscale Restricted and Repetitive
Behaviors score was mainly related to the occurrence of term pregnancy, the psychomotor
development status, and the occurrence of gut disturbances. Notably, two of these variables
(term pregnancy and gut disturbances) were also seen in the previous analyses.

Taken together, these data make the assessment of gut disturbances particularly
useful to check for the clinical variations featured in the ADOS clinical scores. This may
suggest a pivotal role of the gut–brain axis and the microbiota in ASD and other brain
disorders [29], as well as all neurodevelopmental disorders [30]. Several studies have
successfully demonstrated the impact of the gut–brain axis on the fetal programming of
brain development and the modulatory ability of various gut microbial metabolites in this
process. Gut microbial metabolites have been shown to influence the release and turnover
of neurotransmitters, the impairment and recovery pathways of synaptic plasticity, the
alterations of parasympathetic activity, and the expression profiles of canonical signaling
pathway [31].

In recent years, there has been an emerging interest in the possible role of the gut
microbiota as a co-factor in the development of ASD as many studies have highlighted
the bidirectional communication between the gut and the brain (gut–brain axis). Autistic
children often carry on an intestinal dysbiosis which can exacerbate both CNS and GI
malfunctioning in several ways. A skewed ASD-associated gut microbiota can boost
the production of inflammatory cytokines, increasing intestinal permeability, and can
negatively influence mRNA splicing in the CNS, yielding ASD-like behaviors in rodent
models [32].

Concomitant medical symptoms, including gastrointestinal and sleep problems, are
common in many children with ASD. In a study conducted in 2018, ASD children with
gastrointestinal symptoms reported more severe underlying ASD symptoms than others.
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ASD children with sleep disorders performed lower in daily living skills, social cognition,
social communication, and intellectual development than ASD children without sleep
disorders [33]. This could mean higher scores on the ADOS assessment for this group of
autistic patients.

The prediction of the DQ, on the other hand, was performed at best using as input
variables the age at diagnosis and the psychomotor development status. This fact points
out the importance of a timely diagnosis for such neurodevelopmental disorders and of a
proper patient care in their early infancy or toddlerhood to improve their clinical outcome,
reducing severe signs of the related clinical condition. From the ML perspective, our work
somewhat confirms the findings in the literature, highlighting the added value of the ML
approach with respect to linear models for a better prediction of DQ in our case, or of
intellectual disabilities, as reported [34].

In the initial stages of clinical assistance, the evaluation of the developmental profile
and cognitive abilities in children with ASD assumes a key role, allowing to establish
the functioning profile. Early diagnosis and assessment of the level of development by
determining the Development Quotient (DQ) and of cognitive abilities by measuring the
Intelligence Quotient (IQ) are crucial aspects not only in delineating the clinical pheno-
type, and the long-term outcomes of subjects with ASD, but also in establishing early
rehabilitation therapy [35].

The data provided by the machine learning approach can steer the diagnostic process
in specific directions, shortening the time to diagnosis. The evidence of a specific pattern of
symptoms and conditions, such as the occurrence of sleep and gut disturbances, allows
to screen children at risk predicting a negative development trajectory and, thus, to start
treatment earlier.

While current treatments vary, most interventions focus on managing behavior and
improving social and communication skills to enable optimal social functioning and in-
dependence [36]. Our work in this framework represents a useful add-on to the current
literature, which has progressed a lot since a few years ago, but is still affected by huge
heterogeneity of data and retrievals [37].

Research examining the age of ASD diagnosis and the factors affecting it highlighted
that the identification of factors associated with the age of ASD diagnosis is essential for a
full understanding of the obstacles to early developmental screening and comprehensive
diagnostic evaluations [38]. The last ML model attempted at performing a differential
diagnosis between PDD and MSDD. This approach, making use of ML for purposes of
differential diagnosis based on best-practice diagnostic instruments for autism, was already
proposed with satisfying results, even though it was limited to a lower number of models
from the ML perspective [39], focused on some specific clinical variables [40] or both [41].
In this respect, our work comparing different classification models showed that to the
benefit of the clinician, the age at diagnosis and birth weight were seen to be the variables,
which were the most predictive for distinguishing the two disorders. Recent meta-analysis
studies showed that birth weight, especially low and very low birth weight, are associated
with increased risk of ASD diagnosis [42]. Over the recent years, after the publication of the
DSM53, the interest in MSDD has declined. The nosographic autonomy of MSDD in now
questionable due to several reasons: (a) the increased use of “spectrum” dimension; (b) the
introduction of “hyper- or hyporeactivity to sensory input or unusual interest in sensory
aspects” in the ASD diagnostic criterion “B”; (c) the DSM5 statement that ASD symptoms
may be seen even earlier than 12 months if developmental delay is severe However, prompt
recognition of the MSDD clinical feature still appears to be of great importance because
children who are affected share a developmental trajectory in continuity with ASD, with
most symptoms and risk factors shared with ASD children. According to our data, MSDD
could represent a sort of “bridge” between a high-risk predisposition to autism and the full
autism spectrum disorder diagnosis. The shared profile of clinical variables and assessment
scores between MSDD and ASD shown in our research is consistent with the notion that a
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fully severe autism disorder can be developed independently of the severity of the initial
evaluation.

5. Conclusions

ASD has a multifactorial etiology, making it difficult to acquire timely and accurate
diagnoses. Nevertheless, ASD diagnosis is currently earlier and more accurate due to
increased public awareness and widespread research in the field of autism. In most cases,
symptoms are clearly evident as early as 18 months of age, reducing the learning opportu-
nities and affecting the development of the social, cognitive and behavioral competences in
a child. The value of early diagnosis in patient clinical outcome, is now clear, as well as
the fact that evidence-based interventions can significantly improve the quality of life of
people with ASD and their families.

Through better and earlier identification, it will be possible to promptly recognize
children at risk and implement therapeutic interventions aimed to significantly reduce the
impact of this disorder on the global development of the child. It can be hypothesized that
in the future, timely help to the child and their parents based on the early identification of
risky situations could prevent the development of this serious disorder of mental health,
reducing the frequency of its occurrence.

Despite the methodological limitations, including the quite different age ranges be-
tween the two clinical groups and the relative simplicity of the ML models employed
here, the present work shows that the application of ML methods to the clinical data
collected in patients with neurodevelopmental disorders results in a better understanding
and prediction of clinical scores useful for detection of ASD and classification of disease
severity.

Examining the ongoing research in the field of neurodevelopmental disorders, it is
likely that, as is the case in other clinical conditions, the transfer of knowledge to ML models
and the implementation of the same ML models will provide specialists with predictive
and explainable models for more accurate ASD detection and differential diagnosis.
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