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Abstract: The ability to develop vivid motor imagery (MI) is important for effective mental practice.
Therefore, we aimed to determine differences in the MI clarity and cortical area activity between
patients with right hemiplegia and left hemiplegia after stroke in an MI task. In total, 11 participants
with right hemiplegia and 14 with left hemiplegia were categorized into two groups. The MI task
required the flexion and extension of the finger on the paralyzed side. Considering that MI vividness
changes with MI practice, we measured the MI vividness and cortical area activity during the task
before and after MI practice. MI vividness was evaluated subjectively using the visual analog scale,
and cerebral hemodynamics during the task were measured using near-infrared spectroscopy in
cortical regions during the MI task. The MI sharpness and cortical area activity in the MI task were
significantly lower in the right hemiplegia group than in the left hemiplegia group. Therefore, when
practicing mental practices with right hemiplegia, it is necessary to devise ways by which to increase
MI vividness.

Keywords: stroke; motor imagery vividness; NIRS

1. Introduction

There are many rehabilitation methods used for motor paralysis after stroke, including
motor therapy, electrical stimulation therapy, constraint-induced movement therapy, action
observation (AO), and mental practices (MP) [1–4]. Among these, MP is the continuous
repetition of motor imagery (MI) to improve the performance of motor tasks and can be
performed regardless of the degree of motor paralysis or the physical environment.

A systematic review of MP in individuals with stroke reported its interventional effects
on post-stroke motor paralysis [5]. Behind this intervention effect, it has been established
that MI induces activity in the cortical regions that is comparable to that during actual
movement [6]. The combination of the brain–computer interface, MP, and occupational
therapy has been reported as a promising approach by which to promote sensory-motor
recovery and the functional independence of the upper limb in the daily activities of
individuals with stroke [7]. On the other hand, it is important for the effective practice of
MP to know how vividly the individual can recall the MI of the task, as some studies have
reported that individuals with stroke have difficulty recalling the MI of the task [8]. The
regions and degrees of brain activity differ between the first-person and third-person motor
imagery [9]. However, during the first-person motor imagery of the upper extremities, the
premotor cortex, auxiliary motor, primary motor, primary somatosensory, superior parietal
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lobe, and inferior parietal lobe are activated, similar to the brain activity observed during
actual movement [10].

As a neurophysiological study on the vividness of MI, by performing MI while grasp-
ing the object used in the task in the same posture as the task, proprioceptive information is
provided during MI and the excitability of the corticospinal tract is enhanced. Increasingly,
this has been reported to affect MI [11,12]. It has also been shown that performing MI
while viewing a video of a task, which is called action observation (AO), increases MI
vividness [13]. This AO+MI intervention also increases activity in motor-related areas, such
as the supplementary motor cortex and the primary motor cortex, more than AO and MI
alone [14]. There is evidence that the independent use of MI and AO is largely effective,
and that the two processes can induce similar changes in motor system activity [15]. In
a study that evaluated the effects of a video presentation on AO, the corticospinal tract
was more excited when presented with a first-person perspective (observing from one’s
own perspective) than with a third-person perspective (observing from another person’s
perspective) [16].

In stroke patients, it is necessary to practice MP according to the paralyzed side.
However, it is questionable as to whether the MP of patients with right hemiplegia and
left hemiplegia can be combined. Among them, there is a report describing the differ-
ence in the laterality of the cerebral hemispheres. Regarding the differences in cerebral
hemispheric function during MI tasks, a study using transcranial magnetic stimulation
in healthy individuals reported increased excitability in the primary motor cortex of the
left hemisphere in left, right, and bilateral MI, indicating that the dominant hemisphere in
MI is the left hemisphere [17]. Studies of individuals with stroke have also stated that the
predominant hemisphere for MI is the left hemisphere [18]. These studies have shown that
MI is predominantly in the left hemisphere; however, no studies have compared MI clarity
and cortical area activity in patients with right and left hemiplegia after stroke.

In this study, we compared MI vividness and cortical area activity in individuals with
stroke and with right and left hemiplegia after stroke, and clarified the differences between
individuals with stroke and with right and left hemiplegia in MI tasks.

2. Materials and Methods
2.1. Participants

The participants included 25 individuals with cerebral infarction (mean age:
68.1 ± 11.0 years) admitted to a recovery rehabilitation ward (Table 1). The mean time from
onset was 26.1 ± 7.9 days.

On the paraplegic side, 11 individuals with stroke were in the right hemiplegia
group (mean age: 71.6 ± 9.5 years) and 14 were in the left hemiplegia group (mean age:
65.4 ± 11.7 years). The dominant hand was determined by self-report, and all partici-
pants were right-handed without any experience in correcting their dominant hand. The
participants’ upper limb function on the paralyzed side scored 42.4 ± 20.3 points on the
Fugl–Meyer Assessment (FMA), 1.7 ±1.6 points on the Motor Activity Log (MAL) Amount
of Use (AOU), and 1.6 ± 1.5 points on the Quality of Movement (QOM). The Fugl–Meyer
Assessment (FMA) is a measure of motor paralysis function in the upper extremity. The
Motor Activity Log (MAL) Amount of Use (AOU) points on the Quality of Movement
(QOM) are quantity and quality measures, respectively, of how well the paralyzed upper
extremity is used in daily activities. The vividness of motor imagery was VAS1 before MI
practice and VAS2 after MI practice. VAS1 was 64.6 ± 27.3 and VAS2 was 72.7 ± 25.2.

The exclusion criteria were as follows: (1) history of neurological disease, respiratory
disease, stroke, or dementia; (2) a score of 23 or less on the Mini Mental State Examination
(MMSE) of cognitive function; (3) individuals with stroke who were unable to perform the
experimental tasks due to impaired consciousness, aphasia, hemiplegia, body apraxia, or
visual or spatial perception effects; (4) inability to sit in a backrest chair or wheelchair; and
(5) blood pressure fluctuations caused by maintaining a sitting posture.
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Table 1. The basic attributes of the study participants.

ID Sex Age
Days
since
Onset

Region of Damage Stroke
Side MMSE FMA MAL

(AOU)
MAL

(QOM) VAS1 VAS2

1 M 78 20 Left anterior cephalic lobe,
lateral lobe subcortical R 25 40 0.8 0.7 50 56

2 M 57 54 Left anterior cephalic lobe R 28 42 0.4 0.4 48 60

3 M 87 22 Left paraventricular
white matter R 29 49 2.8 2.2 100 100

4 F 86 33 Left side of the pons R 24 63 5.0 4.4 100 100
5 M 72 24 Left thalamus R 28 51 1.2 1.3 100 97
6 M 68 31 Left intension R 24 65 4.6 3.9 21 24
7 M 67 18 Left crown of radiation R 29 56 2.9 2.6 21 23
8 M 68 22 Left intension R 30 62 3.5 3.8 60 75
9 M 67 30 Left intension R 28 4 0.0 0.0 52 41

10 F 61 35 Pons R 26 50 2.0 2.0 100 100
11 F 77 18 Left thalamus R 29 30 0.6 0.6 70 80
12 F 78 21 Right internal hind leg L 27 61 1.5 1.5 25 50
13 F 70 23 Right lentiform nucleus L 30 48 1.4 1.0 100 100

14 M 84 35 Right anterior cephalic
lobe L 24 57 3.0 3.5 28 45

15 M 65 31 Right internal hind leg L 30 55 0.7 1.2 51 52
16 F 61 25 Right putamen L 24 23 0.0 0.1 54 63
17 M 38 24 Right temporal lobe L 28 14 0.0 0.0 100 100
18 F 63 19 Right internal hind leg L 28 30 2.2 1.7 69 71
19 M 63 21 Right crown of radiation L 28 60 0.6 0.5 52 66
20 M 60 22 Right internal hind leg L 30 5 0.0 0.0 100 100

21 M 64 23 Right anterior cephalic
lobe L 24 64 5.0 4.5 53 74

22 M 67 33 Right thalamus L 24 60 2.3 1.8 48 53
23 M 67 25 Right crown of radiation L 30 48 1.1 1.3 86 97
24 M 82 19 Right lentiform nucleus L 28 4 0.0 0.0 78 100
25 M 53 24 Right internal hind leg L 30 19 0.0 0.0 50 90

AVG 68.1 26.1 27.4 42.4 1.7 1.6 64.6 72.7
SD 11.0 7.9 2.3 20.3 1.6 1.5 27.3 25.2
SE 2.2 1.6 0.5 4.1 0.3 0.3 5.5 5.0

M: Male F: Female R: Right L: Left.

This study was approved by the Ethics Committee of the Department of Health
Sciences, Nagasaki University Graduate School of Biomedical Sciences (Nagasaki, Japan;
approval number: 15070927). The participants were given a full explanation of the research
and were asked to sign a consent form before participating.

2.2. MI Task

The MI task consisted of the flexion and extension of the paralyzed hand [19]. The
flexion and extension movements consisted of a series of movements in which the hand was
held open, the palm was closed for 1 s, and opened for the next 1 s [20]. The participants
were instructed to perform myosensory (first-person) MI as if they were performing MI
themselves and not to move their hands (no muscle contraction) during the MI [20,21].
Video images were used to explain the MI tasks to the participants. Video images were cap-
tured using a digital camera (D5100, Nikon Corporation) from the first-person viewpoint of
a healthy adult individual in left and right hand flexion and extension (Figure 1). Therefore,
the video presented during the MI task performed in this experiment was a first-person
viewpoint video of AO + MI of another person’s hand. Video images were taken from the
first-person perspective of the flexion and extension of the left and right fingers of a healthy
adult and were used to explain the MI task to the participants and the use of video images
during MI practice.
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person viewpoint video of AO + MI of another person's hand. For the right hemiplegia, (A) the AO 
+ MI image of another person's hand, and for the left hemiplegia, (B) the AO + MI image of another 
person's hand, were used for MI practice. Participants practiced MI for 5 min while being shown a 
video image. The participants were instructed to observe the paralyzed upper limb during the NIRS 
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2.3. Experimental Procedure 
The participants were shown a video image explaining the MI task, and the experi-

ment was started after confirming that the participant’s understanding. The experiments 
were conducted within 1 week of admission. Considering that MI vividness changes with 
MI practice, we measured the MI vividness and cortical area activity during the MI tasks 
before and after MI practice. MI vividness was subjectively assessed using a visual analog 
scale (VAS) [20], and cerebral hemodynamics during the MI task were measured using 
near-infrared spectroscopy (NIRS) for activity in cortical regions during the MI task. Table 

Figure 1. First-person model video of left and right hand flexion and extension movements of a
healthy adult. The video presented during the MI task performed in this experiment was a first-
person viewpoint video of AO + MI of another person’s hand. For the right hemiplegia, (A) the
AO + MI image of another person’s hand, and for the left hemiplegia, (B) the AO + MI image of
another person’s hand, were used for MI practice. Participants practiced MI for 5 min while being
shown a video image. The participants were instructed to observe the paralyzed upper limb during
the NIRS measurements to facilitate MI.

2.3. Experimental Procedure

The participants were shown a video image explaining the MI task, and the experiment
was started after confirming that the participant’s understanding. The experiments were
conducted within 1 week of admission. Considering that MI vividness changes with MI
practice, we measured the MI vividness and cortical area activity during the MI tasks
before and after MI practice. MI vividness was subjectively assessed using a visual analog
scale (VAS) [20], and cerebral hemodynamics during the MI task were measured using
near-infrared spectroscopy (NIRS) for activity in cortical regions during the MI task. Table 1
shows VAS1 for MI vividness before MI practice and VAS2 for MI vividness after MI
practice. For the MI exercise, the participants practiced MI for 5 min while being shown a
video image. The participants were instructed to observe the paralyzed upper limb during
the NIRS measurements to facilitate MI.

2.4. NIRS Measurement and Analysis

NIRS measurements were performed using an optical topography system (ETG4000;
Hitachi Medical Corporation). The participants were seated in a chair or wheelchair
position, with both upper limbs resting on a table. NIRS probes were arranged in a
4 × 4 optode probe configuration for Cz according to the international 10–20 method. With
a total of 24 channels, the distance between the optodes was 3.0 cm [22] (Figure 2). The
NIRS system emitted at two different wavelengths (625 and 830 nm) over the scalp, and
the relative change in the absorption of the near-infrared light was measured. These values
were based on the modified Beer–Lambert [23–25], oxygenated hemoglobin (oxy-Hb), and
deoxygenated hemoglobin concentrations. It has been reported that there is no difference
in the optical path length of the left and right target regions for this NIRS probe [23].

The regions of interest (ROIs) included the left and right sensorimotor cortex (SMC),
premotor area (PMA), prefrontal cortex (PFC), supplementary motor area (SMA), and
anterior SMA (pre-SMA) (Figure 2). The 15 s data from 5 s after the start of the task to 20 s
after the end of the task were used as the data during the task.

Based on previous studies, we designated 18 and 22ch as Left-SMC; 21 and 24ch
as Right-SMC; 9, 12, 13, and 16ch as SMA; 2, 5, and 6ch as Pre-SMA; 8, 11, and 15ch as
Left-PMA; 10, 14, and 17ch as Right-PMA; 1 and 4ch as Left-PFC; 3 and 7ch as Right-PFC;
Left-PFC for channels 1 and 4; and Right-PFC for channels 3 and 7 [21,26,27]. For this SMC,
the sensory and motor cortices were treated as in the NIRS studies [21,27].
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Figure 2. Near-infrared spectroscopy (NIRS). NIRS measurements were performed using an optical
topography system. NIRS probes were positioned at the Cz position (midpoint of the crown of the
head) according to the international 10–20 method in a 4 × 4 probe set.

NIRS measurements were performed in a block design with three consecutive cycles
of alternating 20 s MI tasks and 30 s rest periods [28,29]. Because oxy-Hb is a more obvious
indicator of activation than deoxy-Hb [30,31], the amount of change in oxy-Hb during the
MI task was used as an indicator of regional cerebral hemodynamics. The data obtained
were analyzed for changes in the oxy-Hb concentration in each region in the integral mode,
which was calculated by adding up and averaging the data from three cycles. The data
used during the task were considered for the time it takes for cerebral blood flow to increase
with neural activity, and the 15 s data from 5 s after the start of the task to 20 s after the end
of the task were used as the data during the task [28] (Figure 3). The measured data were
filtered with a 3 Hz high-pass filter on 0.1 standard deviations of wave analysis, as used by
previous researchers [28,32]. This filter was used to remove noise, such as hyperactivity due
to skin and blood dynamics and marked channels with high noise levels [33]. If obvious
artifacts were detected, they were removed from the waveforms. The average waveform
was calculated using integral analysis. The oxy-Hb values for each region were converted
into Z-scores.
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prior to the start of the MI task and the 5 s following its completion. The data recorded 5 s following
the start of the MI task until 20 s following its completion (15 s of data) were used.

2.5. Assessment of Paralyzed Upper Extremity Function

Upper extremity function was assessed using the Fugl–Meyer Assessment (FMA),
Motor Activity Log (MAL), Amount of Use (AOU), Quality of Movement (QOM), and
Motor Activity Log within 1 week of admission.
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2.6. Statistics

Statistical analysis software (SPSS v22.0; IBM Corp., Armonk, NY, USA) was used to
compare the oxy-Hb and VAS of ROIs (PFC, PMA, pre-SMA, SMA, and SMC) during MI
before and after MI practice in the right and left hemiplegia groups. The Wilcoxon signed-
rank test was used to compare the FMA and MAL between the right and left hemiplegia
groups. All significance levels were set at less than 5%.

3. Results

There were no significant differences in the upper limb function of the paralyzed
side between the right hemiplegic group (FMA 46.5±5.3, MAL [AOU] 2.2±0.5, and MAL
[QOM] 2.0±0.5) and the left hemiplegic group (FMA 39.1±6.0, MAL [AOU] 1.3±0.4, and
MAL [QOM] 1.2±0.4) (Figure 4).
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the upper extremity function between the right and left hemiplegia.

There were no significant differences in the FMA and MAL (AOU and QOM) scores
between the right and left hemiplegic groups in terms of paralyzed upper limb function.

Regarding MI vividness, the VAS was evaluated before and after the MI practice.
No significant difference was found in the right hemiplegia group before MI practice
(65.6 ± 9.3) and after MI practice (68.7 ± 9.0). For the left hemiplegia group, there was
a significant increase in the VAS before MI practice (63.9 ± 6.8) and after MI practice
(75.8 ± 5.7) (p < 0.05) (Figure 5).
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Regarding the cortical area activity during the MI task, the right hemiplegic group
showed lower oxy-Hb levels during MI in all ROIs than the left hemiplegic group. The left
hemiplegia group showed significantly higher values for the left and right PFC (p < 0.05)
(Figure 6).
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Activity in the cortical regions during the MI task showed lower oxy-Hb levels during
MI in all ROIs in the right hemiplegia group than in the left hemiplegia group, and
significantly higher values for the left and right PFC in the left hemiplegia group.

4. Discussion

The purpose of this study was to compare MI vividness and cortical area activity in
right and left hemiplegia groups after stroke and to determine the differences between the
right and left hemiplegia groups in MI tasks.

Regarding MI vividness, there was no significant difference in the right hemiplegic
group before and after MI practice; however, there was a significant increase in the left
hemiplegic group. In addition, in terms of cortical area activity during the MI task, oxy-Hb
during MI was lower in the right hemiplegic group than in the left hemiplegic group in all
ROIs. This is a difference in the cerebral hemispheric function during MI. Studies on healthy
people and individuals with stroke have reported that the predominant hemisphere in MI
is the left hemisphere [28,29]. Regarding the relationship between MI vividness and cortical
area activity, a study on MI vividness and corticospinal tract excitability in MI tasks in
healthy individuals showed a positive correlation between MI vividness and corticospinal
tract excitability [34]. These results suggest that the dominant hemisphere for MI is the
left hemisphere, making MI recall more difficult in the right hemiplegic group with left
hemisphere damage. In addition, activity in the cortical areas did not increase due to low
MI vividness after MI practice.

One study reported that the PFC area increased during MI. In a NIRS study using a
smartphone flick input task, the left SMC, SMA, and right PFC showed significant changes
in cerebral hemodynamics as the task cycle progressed, demonstrating that movement
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was learned over time. These activity changes may reflect different aspects of motor task
acquisition, such as increased finger motor activity, motor inhibition, and visual working
memory, in the left SMC, SMA, and right PFC, respectively [27]. Therefore, it is possible
that the activity of the right PFC region was higher than that of the right SMC and SMA in
the present experiment in the early stage of learning in the MI task.

Regarding the method of increasing MI vividness, previous neurophysiological in-
vestigations have reported that performing MI in the same posture as the task [11] and
grasping the object used for the task affects the intrinsic sensory information acquired in
the MI [12] and increases the excitability of the corticospinal tract during MI. Research that
combines MI and AO as a means of enhancing the presence of MI is attracting attention,
and research is also being conducted on video presentations. Studies using such video
presentations have shown differences in the perspectives used in AO, with first-person
perspectives being more effective than third-person perspectives in inducing activity in
the brain’s somatosensory cortex [16]. In addition, the results of one study showed that
PMA brain activity changes less when the image of another person’s hand is displayed
compared to when the image of one’s own hand is displayed [35]. A study examining the
effect of the hand angle on the presented image showed that images with the third finger
rotated to the midline direction of the body responded faster than images rotated in two
opposite directions (medial-lateral). Effectiveness was observed and it was speculated that
the MI strategy was predominantly employed [36,37]. First-person perspective (kinesthetic
MI) video presentation is, thus, ideal, and it is clear that the subject’s own hand should be
shown instead of someone else’s. Hands in biomechanically constrained positions are also
thought to be susceptible to MI.

Performing MI while watching a video of a task, as in the present case, enhances MI
vividness by combining the AO and MI [13]. In this study, MI practice was conducted
while the participants watched a 5 min video of the model’s hands moving. However, in
the right hemiplegic group, 5 min of MI practice did not improve either MI vividness or
cortical area activity. A study conducted in individuals with stroke patients and healthy
controls that used inverted images of their own hands to enhance the vividness of MI and
cortical area activity revealed that the vividness of MI and cortical area activity were higher
when images of one’s own hands were used, compared to when images of other people’s
hands were used [38,39]. In a study evaluating the task performance of AO + MI, dart
throwing, basketball throwing, and golf tasks were performed under the conditions of AO
only and MI only; AO + MI was shown to be superior to MI alone [40–43]. From these
studies, it can be concluded that the conditions for better performance are the use of videos
of participants’ own hand and the combination of AO + MI.

Therefore, when performing MP on individuals with stroke and with right hemiplegia
in clinical practice, it is necessary to consider using inverted images of individuals’ own
hand as a method of enhancing MI vividness. In addition, although the MI task in this study
was the flexion and extension of the paralyzed side of the hand, it has been reported that
younger individuals with stroke have more heterogeneous needs than older individuals
with stroke and require a more individualized program [44]. Therefore, it is necessary to
consider participant preferences in clinical practice.

5. Limitations

One of the limitations of the study is the small number of participants; therefore,
an analysis that considers the site of injury could not be performed. In addition, only
cerebral hemorrhage and cerebral infarction were included in this study due to the small
sample size. A further analysis that considers disease and uses a larger sample size is
required. NIRS was used to analyze the activity of cortical regions, and mainly motor-
related regions. However, measuring the activity of other cortical regions was limited
because other neuropsychological measures were not used.
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6. Conclusions

MI practice was performed while showing AO + MI images of other people’s hands to
patients with right and left hemiplegia due to stroke. Although there was no significant
difference in the upper extremity function of the affected side between groups, the MI
vividness and cortical area activity during the MI task were lower in the right hemiplegia
group than in the left hemiplegia group. Therefore, when practicing MP for a right hemi-
plegic patient, it is necessary to improve the clarity of MI, such as using a reversed image
of the patient’s own hand to facilitate MI.
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