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Abstract: Amyloidogenesis is one of the key pathophysiological changes in Alzheimer’s disease 
(AD). Accumulation of the toxic Aβ results from the catalytic processing of β-amyloid precursor 
protein (APP) associated β-amyloid converting enzyme 1 (BACE1) activity. It is reported that dead-
box helicase 17 (DDX17) controls RNA metabolism and is involved in the development of multiple 
diseases. However, whether DDX17 might play a role in amyloidogenesis has not been documented. 
In the present study, we found that DDX17 protein level was significantly increased in HEK and 
SH-SY5Y cells that stably express full-length APP (HEK-APP and Y5Y-APP) and in the brain of 
APP/PS1 mice, an animal model of AD. DDX17 knockdown, as opposed to DDX17 overexpression, 
markedly reduced the protein levels of BACE1 and the β-amyloid peptide (Aβ) in Y5Y-APP cells. 
We further found that DDX17-mediated enhancement of BACE1 was selectively attenuated by trans-
lation inhibitors. Specifically, DDX17 selectively interacted with the 5′ untranslated region (5′UTR) 
of BACE1 mRNA, and deletion of the 5′UTR abolished the effect of DDX17 on luciferase activity or 
protein level of BACE1. Here, we show that the enhanced expression of DDX17 in AD was associ-
ated with amyloidogenesis; through the 5′UTR-dependent BACE1 translation, DDX17 might serve 
as an important mediator contributing to the progression of AD. 
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1. Introduction 
Alzheimer’s disease (AD) is the most common neurodegenerative disease affecting 

more than 35 million people worldwide [1], with a particular onset and course of cognitive 
decline associated with age [2]. Anatomical studies reveal that atrophy of the frontal, tem-
poral and parietal cortices and hippocampus develops along with different disease stages 
[3]. Despite that oxidative stress and inflammation play an important role in cognitive 
impairment [4], the pathology of AD is characterized by β-amyloid plaque (Aβ) deposi-
tion and neurofibrillary tangles (NFTs) of hyperphosphorylated tau [5,6]. Importantly, Aβ 
remains one of the diagnostic biomarkers that distinguish AD from other dementias [7,8]. 

Amyloidogenesis refers to overproduction or the inhibited clearance of Aβ, leading 
to an excessive Aβ accumulation. It is suggested that Aβ is generated from the only source 
of amyloid precursor protein (APP), which can be regulated by the amyloid and non-am-
yloid pathways. The former involves the enzymatic activity of β-amyloid converting en-
zyme 1 (BACE1) [9], whereas the latter is associated with the α-secretase, a disintegrin 
and metalloproteinase 10 (ADAM10) [10]. Previous studies demonstrate that protein level 
and activity of BACE1 are increased in the brain of AD, and generations of the improved 
BACE1 inhibitors have shown potential hope for the treatment [11,12]. Moreover, BACE1 
expression is regulated by a variety of factors including oxidative stress, inflammation, 
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and calcium overload, indicating that the upstream signaling of BACE1 is closely associ-
ated with the pathogenesis of AD [13,14]. Thus, it is important to understand how BACE1 
links the key molecular alterations with amyloidogenesis. 

DEAD-box helicase 17 (DDX17) belongs to the DEAD-box family of ATP-dependent 
RNA helicase [15]. These proteins are characterized by the conserved motif Asp-Glu-Ala-
Asp [16] and are essential for RNA-protein complex dynamics, RNA decay, and transla-
tion [17,18]. It is reported that DDX17 is an RNA binding protein (RBP) that recognizes 
specific RNA structure and promotes miRNA processing [19], and serves as an essential 
mediator of sterile NLRC4 inflammasome activation by regulating retrotransposon RNAs 
[20,21]. DDX17 is also involved in DNA damage repair and cancer development [22–24]. 
In particular, DDX17 affects the pathological progress of cancer through a variety of mech-
anisms, such as formation of the microprocessor complex, transcriptional regulation, and 
RNA binding [25,26]. Moreover, the role of DDX17 in the alternative splicing of many 
important tumor-related genes has also been reported [27,28]. In neurological diseases, 
DDX17 is involved in the pathology of amyotrophic lateral sclerosis, an ophthalmoplegic 
subphenotype of myasthenia gravis and glioma [22,29,30]. However, whether DDX17 
might be involved in AD is currently uncertain. 

In this study, we aim to explore whether DDX17 participates in AD pathology by 
influencing amyloidogenesis. An elevated level of DDX17 is found in the brain of APP/PS1 
mice. We further define that DDX17 preferentially affects the amyloid pathway by regu-
lating BACE1 translation, through binding to the 5′ untranslated region (5′UTR) of BACE1 
mRNA. The close association of DDX17 with amyloidogenesis suggests that DDX17 could 
serve as a new potential target for the treatment of AD. 

2. Materials and Methods 
DDX17 protein level was first assessed in cellular and animal models of AD, followed 

by evaluation of protein expression levels of APP, BACE1, ADAM10, and amyloidogene-
sis by DDX17 knockdown or overexpression. Through pharmacological methods, the po-
tential mechanisms of DDX17-induced alteration of BACE1 expression were further de-
termined, and DDX17 binding to the 5′UTR of BACE1 mRNA in association with the 
5′UTR activity was assessed by RNA pulldown and luciferase reporter assay [31,32]. 

2.1. Animal Model 
APPswe/PS1E9 (APP/PS1, RRID: MMRRC_034829-JAX) [33] transgenic mice were 

obtained from Ensiweier (Chongqing, China). Controls were generated from littermates 
without AD phenotype. All the animals were fed freely in the Experimental Animal Cen-
ter of Chongqing Medical University in cycles of 12 h dark/12 h light, and experimental 
protocols strictly abided by the management of the Ethics Commission of Chongqing 
Medical University in accordance with international standards. Brain tissue samples were 
obtained from male mice at 9 months. After anesthesia by pentobarbital (100 mg/kg, i.p), 
brain tissues were quickly collected and stored in liquid nitrogen. 

2.2. Antibodies and Reagents 
The following antibodies were purchased from Abcam (Cambridge, United King-

dom): ADAM10 (ab1997, 1:1000), DDX17 (ab180190, 1:1000), and BACE1 (ab2077, 1:1000). 
Antibodies against APP and CTFs (A8717, 1:1000) were purchased from Sigma-Aldrich 
(St. Louis, MO, USA), and those against GADPH (60004-1-Ig, 1:10,000) were obtained from 
Proteintech (Wuhan, China). 
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2.3. Cell Lines and Chemicals 
HEK293 (human embryonic kidney) cell lines and SH-SY5Y (human neuroblastoma) 

cell lines were obtained from the Type Culture Collection of the Chinese Academy of Sci-
ences (Shanghai, China). HEK293 were maintained in DMEM (Gibco, Rockville, MD, 
USA) with 10% of fetal bovine serum (FBS, Hyclone). SH-SY5Y(Y5Y) were cultured in F-
12 (Gibco, Rockville, MD, USA) supplemented with 10% of FBS. HEK-APP was generated 
from HEK293 stably expressing human full-length APP695 as previously described [34]. 
HEK-APP cells were cultured in DMEM supplemented with 10% of FBS and 200 mg/mL 
of G418 (Sigma-Aldrich, St. Louis, MO, USA). Y5Y-APP (SH-SY5Y cells stably expressing 
human full-length APP695) cells were cultured in F-12 with 10% of FBS and 200 mg/mL 
of G418 [35]. All cells were cultured in a humidified incubator at 37 °C and 5% CO2. 

The following chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA): 
lysosomal inhibitor chloroquine (CQ), protease inhibitor MG132, the transcriptional in-
hibitor actinomycin D (ActD), and the protein biosynthesis inhibitor cycloheximide 
(CHX). The eIF4E/eIF4G interaction inhibitor 4EGI-1 were from Selleck (Houston, TX, 
USA). 4EGI-1, MG132, ActD, and CHX were all dissolved in dimethyl sulfoxide (DMSO). 
The final concentration of DMSO was at least 1:2000. CQ was dissolved in sterilized dou-
ble-distilled H2O. 

2.4. Plasmid and Transfection 
Human DDX17 pcDNA3.1(+) plasmid, control vector pcDNA3.1(+), human BACE1 

+5′UTR (containing the 5′UTR and the entire human BACE1 coding region) pcDNA3.1(+), 
and human BACE1-5′UTR (only containing the entire human BACE1 coding sequence) 
pcDNA3.1(+) were obtained from YouBio (Changsha, China). The BACE1 +5′UTR-pmir-
GLO and BACE1 −5′UTR-pmirGLO were from Sangon Biotech (Shanghai, China). The 
siRNA oligonucleotide sequences for DDX17 (SiDDX17) and non-targeting control (NC) 
were designed by GenePharma Biotech (Shanghai, China) as follows: SiDDX17 (sense: 
GCUGCUUAUGGCACCAGUAGCUAUA; antisense: UAUAGCUACUGGUGCCAU-
AAGCAGC); and NC (sense: UUCUCCGAACGUGUCACGUTT; antisense: AC-
GUGACACGUUCGGAGAATT). Cells were transfected with LipofectamineTM 3000 (Invi-
trogen, USA) or LipofectamineTM RNAiMAX Transfection Reagent (Invitrogen, Carlsbad, 
CA, USA) mixed with Opti-MEMTM Reduced Serum Media (Gibco, Rockville, MD, USA) 
according to the manufacturer’s protocols. 

2.5. Western Blotting 
Animal brain tissues or cells were homogenized in ice-cold RIPA buffer (Beyotime, 

Shanghai, China) supplemented with protease inhibitor cocktail (MedChemExpres, NJ, 
USA) [35]. All protein samples were ultrasonicated on ice for 30 min and centrifuged at 
16,000× g for 20 min at 4 °C. BCA Protein Assay Kit (Beyotime, Shanghai, China) was used 
to detect the concentration of all protein samples. Denatured proteins were separated by 
8% SDS-PAGE gels or 16.5% Tris-Tricine-SDS-PAGE gels specific for CTF detection [36]. 
The PVDF membranes were visualized using electrochemiluminescence (ECL) reagent 
(Beyotime, Shanghai, China) and analyzed with the Fusion FX5 image system (Vilber 
Lourmat, Marne-la-Vallee, France). The protein expression was analyzed by ImageJ and 
normalized to the amount of GADPH. 

2.6. Luciferase Activity Assay 
The Dual-Lumi II Luciferase Reporter Gene Assay Kit (Beyotime, Shanghai, China) 

was used in this experiment. Y5Y-APP cells were seeded in a 96-well plate for 24 h before 
transfection. After 48 h of transfection, luciferase activity was measured by a GloMax mi-
croplate luminometer (Promega) according to the instructions of the manufacturer [35]. 
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2.7. RNA Pulldown Assay 
RiboTrap Kit (MBL, Tokyo, Japan) was used to perform the RNA pulldown assay 

according to the manufacturer’s instructions. Briefly, using the linearized BACE1 5′ UTR 
pcDNA3.1(+) plasmid as a template, the 5-bromo-UTP (BrU) was incorporated into the 
BACE1 5′ UTR randomly through in vitro transcription (Riboprobe in vitro Transcription 
Systems-T7, Promega). Then, the anti-BrdU antibody was conjugated to protein G beads 
(Pierce), and the cytoplasmic extracts from cell lysates were incubated with the BrU-la-
beled BACE1 5′UTR and the antibody-conjugated beads for 2 h at 4 °C [31]. After washing 
and eluting, the samples were subjected to Western blotting. 

2.8. Enzyme-Linked Immunosorbent Assay (ELISA) 
The human Aβ40 and Aβ42 levels in Y5Y-APP cells were detected by ELISA as pre-

viously described [37]. In brief, the culture medium of Y5Y-APP cells was collected and 
then centrifuged at 4 °C for 30 min at 14,000 rpm. The expression levels Aβ40 and Aβ42 
were, respectively measured by the commercially available ELISA kits according to the 
manufacturer’s specification (Elabscience, E-EL-H0542c for Aβ40, and E-EL-H0543c for 
Aβ42, Wuhan, China). 

2.9. Statistical Analysis 
All data were obtained from at least three independent replicate experiments and 

were presented as mean ± standard deviation (SD). Data were statistically analyzed by 
GraphPad Prism version 8.0 (GraphPad Software, La Jolla, CA, USA). Comparison be-
tween two groups was analyzed by unpaired Student’s t-test. The differences were con-
sidered to be statistically significant when p < 0.05. 

3. Results 
3.1. DDX17 Protein Levels Were Increased in Cellular and Animal Models of AD 

DDX17 has two major mRNA isoforms responsible for two protein isomers, respec-
tively: p72 and p82, which are commonly co-expressed in cell lines and tissues without 
functional difference [24]. To determine whether the expression of DDX17 is associated 
with AD, we first examined the protein levels of DDX17 in HEK-APP and SH-SY5Y-APP 
(Y5Y-APP) cells, which could serve as a cellular model of AD because of the higher Aβ 
levels as a result of APP overexpression [38]. As shown in Figure 1A–D, the protein ex-
pression level of DDX17 was significantly increased in HEK-APP and Y5Y-APP cells com-
pared with the corresponding cells in which APP was not stably overexpressed. Similarly, 
in both the cortex and hippocampus of the APP/PS1 mice, a significantly higher DDX17 
protein level was found relative to age-matched controls (Figure 1E–H). These results in-
dicated that DDX17 protein levels were increased in cellular and animal models of AD. 
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Figure 1. DDX17 protein levels are increased in cellular and animal models of AD. (A,B), Repre-
sentative Western blots (A) and quantitative analysis (B) of the protein expression levels of DDX17 
in HEK-293 and HEK-APP cells. (C,D) Representative Western blots (C) and quantitative analysis 
(D) of the protein expression levels of DDX17 in Y5Y and Y5Y-APP cells. (E,F) Representative West-
ern blots (E) and quantitative analysis (F) of the protein expression levels of DDX17 in the cortex of 
wild-type (WT) and APP/PS1 mice at 9 months of age (n = 5 in each group). (G,H) Representative 
Western blots (E) and quantitative analysis (F) of the protein expression levels of DDX17 in the hip-
pocampus of WT and APP/PS1 mice at 9 months of age (n = 5 in each group). Data are expressed as 
means ± SD. ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

3.2. DDX17 Regulated APP Processing by Enhancing BACE1 Protein Level 
The altered DDX17 protein expression levels prompted us to speculate that DDX17 

might be involved in amyloidogenesis. Whereas BACE1 is responsible for Aβ and β-CTF 
generation by APP processing [39,40], the α-secretase a disintegrin and metalloproteinase 
10 (ADAM10) facilitates the non-amyloid cleavage of APP, leading to a decreased level of 
Aβ [41]. Thus, we assessed the protein expression levels of APP, BACE1, and ADAM10 in 
Y5Y-APP cells transiently transfected with DDX17 siRNA. As shown in Figure 2A,B, 
knockdown of DDX17 significantly decreased the protein levels of APP and BACE1, while 
those of ADAM10 were not obviously altered. In contrast, DDX17 overexpression signifi-
cantly increased the protein levels of APP and BACE1, without altering those of ADAM10 
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(Figure 2C,D). These results indicated that the protein expression levels of BACE1 were 
preferentially affected by DDX17. 

 
Figure 2. DDX17 regulates APP processing by increasing BACE1 protein levels. (A,B) Representa-
tive Western blots (A) and quantitative analysis (B) of APP, ADAM10, and BACE1 in Y5Y-APP cells. 
Samples were collected after transfections with control (CTRL) or DDX17 siRNA (SiDDX17) for 48 
h. (C,D) Representative Western blots (C) and quantitative analysis (D) of APP, ADAM10, and 
BACE1 in Y5Y-APP cells. Samples were collected after transfections with vector or DDX17 for 48 h. 
All values were normalized to control or vector. Data are expressed as means ± SD; n.s. indicates no 
significant difference. * p < 0.05, ** p < 0.01. 

3.3. DDX17 Regulated Amyloidogenesis 
To determine whether the altered BACE1 expression by DDX17 was associated with 

amyloidogenesis, we assessed the protein expression levels of the metabolites of APP in-
cluding α/β-CTFs and Aβ [42] in Y5Y-APP cells. Cells were treated with the γ-secretase 
inhibitor DAPT for better detection of CTFs after transfection with DDX17 siRNA [43]. 
First, we found that DDX17 silencing significantly reduced the protein levels of β-CTF but 
not α-CTF (Figure 3A,B). Accordingly, the expression levels of Aβ40 and Aβ42 were sig-
nificantly decreased (Figure 3C). Moreover, an opposite effect was observed in Y5Y-APP 
cells overexpressing DDX17, in which the protein levels of β-CTF and Aβ40/42 were sig-
nificantly increased without altering those of α-CTF (Figure 3D–F). These results indicated 
that DDX17 controlled amyloidogenesis that was associated with BACE1 protein level and 
activity.  



Brain Sci. 2023, 13, 745 7 of 15 
 

 
Figure 3. DDX17 regulates the protein levels of β-CTF and Aβ. (A,B) Representative Western blots 
(A) and quantitative analysis (B) of β-CTF and α-CTF in Y5Y-APP cells. Samples were collected after 
transfections with control (CTRL) or DDX17 siRNA (SiDDX17) for 48 h. (C), Protein expression lev-
els of Aβ40 and Aβ42 in culture medium from Y5Y-APP cells transfected with SiDDX17 relative to 
CTRL. (D,E) Representative Western blots (D) and quantitative analysis (E) of β-CTF and α-CTF in 
Y5Y-APP cells. Samples were collected after transfections with vector or DDX17 for 48 h. (F) Protein 
expression levels of Aβ40 and Aβ42 in culture medium from Y5Y-APP cells transfected with DDX17 
relative to vector. All data are expressed as means ± SD; n.s. indicates no significant difference. * p < 
0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

3.4. DDX17-Mediated Regulation of BACE1 Involved a Translational Mechanism 
Previous studies have shown that the expression of BACE1 can be regulated at sev-

eral levels, including gene transcription, translation, and protein degradation [9,44,45]. 
Thus, we first investigated whether DDX17-mediated regulation of BACE1 was regulated 
at the protein degradation level. Y5Y-APP cells were transfected with vector or DDX17 
and then treated with lysosome inhibitor chloroquine (CQ) or proteasome inhibitor 
MG132 [46]. We found that although CQ or MG132 increased the basal protein level of 
BACE1 significantly, neither CQ nor MG132 prevented the up-regulation of BACE1 (Fig-
ure 4A,B). Next, we examined whether DDX17-mediated upregulation of BACE1 was reg-
ulated at the transcriptional or translational level. We used the transcription inhibitor 
ActD and the translation inhibitor CHX for our study [47]. As shown in Figure 4C,D, 
whereas the basal protein levels of BACE1 were significantly decreased in cells treated 
with ActD or CHX, DDX17 overexpression-induced enhancement of BACE1 protein was 
blocked by CHX but not ActD. This result suggested that a translation mechanism is in-
volved in DDX17-mediated BACE1 regulation. Then, we used 4EGI-1, a small molecule 
inhibitor of cap-dependent translation for validation [48–50]. As shown in Figure 4E,F, 
4EGI-1 significantly reduced the basal level of BACE1 and further blocked the effect of 
DDX17 on BACE1. It is reported that DDX17 is implicated in inflammation by mediating 
NLRC4 inflammasome activation [21], suggesting that NLRC4 in association with inflam-
mation could be responsible for the elevated level of BACE1 [13]. As shown in Figure 4G–
J, the protein level of NLRC4 was not significantly altered by DDX17 knockdown or over-
expression. These results indicated that, without altering the level of NLRC4, DDX17-me-
diated upregulation of BACE1 involved a translational mechanism. 
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Figure 4. DDX17−mediated regulation of BACE1 involves a translational mechanism. (A,B) Repre-
sentative Western blots (A) and quantitative analysis (B) of BACE1 protein expression levels in Y5Y-
APP cells. Cells were transfected with vector or DDX17 and further treated with or without CQ (100 
µM for 6 h) or MG132 (1 µM for 6 h). (C,D) Representative Western blots (C) and quantitative anal-
ysis (D) of BACE1 levels in Y5Y-APP cells. Cells were transfected with vector or DDX17 and further 
treated with or without ActD (0.1 µM for 12 h) or CHX (5 µM for 6 h). (E,F) Representative Western 
blots (E) and quantitative analysis (F) of BACE1 levels in Y5Y-APP cells. Cells were transfected with 
vector or DDX17 and further treated with or without 4EGI1(25 µM for 6 h). (G,H) Representative 
Western blots (G) and quantitative analysis (H) of NLRC4 expression levels in Y5Y-APP cells with 
DDX17 knockdown. (I,J) Representative Western blots (I) and quantitative analysis (J) of NLRC4 
expression levels in Y5Y-APP cells overexpressing DDX17. Data are expressed as means ± SD; n.s. 
indicates no significant difference. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

3.5. The Effect of DDX17 on BACE1 Translation Was Dependent on the 5′UTR 
The helicase activity suggests that function of DDX17 could be associated with trans-

lation [51]. Thus, we assessed the potential interaction between DDX17 and different frag-
ments of BACE1 mRNA, including the 5′ UTR, coding sequence (CDS), and the 3′UTR. As 
shown in Figure 5A, RNA-pulldown assay revealed that DDX17 selectively bound to the 
5′UTR, which is known to be critical for BACE1 translation initiation [45,52,53]. Accord-
ingly, the luciferase activity was significantly increased by DDX17 overexpression in cells 
co-transfected with BACE1 +5′UTR, but not with BACE1 −5′UTR construct, in which the 
5′UTR was deleted (Figure 5B). To validate that DDX17-mediated upregulation of BACE1 
protein levels was also dependent on the 5′UTR, we detected the protein expression level 
of BACE1 in Y5Y-APP cells co-transfected with DDX17 and BACE1 constructs containing 
(+5′UTR) or deleting (−5′UTR) the 5′UTR. We found that the basal protein level of BACE1 
was dramatically higher in the Y5Y-APP cells overexpressing the −5′UTR relative to 
+5′UTR, which was in line with previous reports showing that the 5′UTR inhibits BACE1 
translation [32,54]. In addition, the DDX17-mediated enhancement of BACE1 was pre-
sented in +5′UTR but not −5′UTR. These data collectively indicated that DDX17 promoted 
BACE1 translation through the 5′UTR-dependent mechanism. 
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Figure 5. DDX17 regulates BACE1 translation through the 5′UTR. (A) Representative Western blots 
of DDX17 in immunoprecipitated extracts by RNA pulldown using BrU−labelling of the 5′UTR, 
coding sequence (CDS) and 3′UTR of BACE1 mRNA. (B) Relative luciferase activities in Y5Y-APP 
cells. Cells were transiently co-transfected with vector or DDX17 plasmid, and human BACE1 
mRNA construct either deleting (−5′UTR) or containing the 5′UTR (+5′UTR). (C,D) Representative 
Western blots (C) and quantitative analysis (D) of BACE1 protein expression levels in Y5Y-APP cells. 
Cells were transiently co-transfected with vector or DDX17 plasmid and human BACE1 mRNA in 
which the 5′UTR was either deleted (−5′UTR) or included (+5′UTR). n.s. indicates no significant dif-
ference. ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

Altogether, our data indicated that an increased protein level of DDX17 was found 
in both cellular and animal models of AD. The role of DDX17 in amyloidogenesis was 
demonstrated by that DDX17 overexpression enhanced BACE1 translation in the 5UTR-
dependent manner, whereas DDX17 knockdown exerted an opposite effect. 

4. Discussion 
The present study reveals that the protein level of DDX17 is significantly elevated in 

both cellular and animal models of AD. In line with this, the mRNA level of DDX17 is 
significantly increased in the selected area of AD patients (http://www.alzdata.org, ac-
cessed on 12 March 2022) [55]. We also show that DDX17 enhances BACE1 translation 
through the 5′UTR of mRNA, leading to an increased BACE1 protein level and Aβ gener-
ation.  

The exact pathophysiological mechanisms of AD remain incompletely understood. 
In recent years, accumulating evidences have suggested that alterations in RNA pro-
cessing and RBPs are involved in AD [56]. For example, the level of RNA splicing, along 
with small ribonuclear protein complex, is changed in AD patients [57]. Mitochondrial 
and cytosolic tRNA methylation are dysregulated in animal model of AD [58]. Using mul-
tiple approaches, including RNAseq and proteomics, RNA-binding protein ELAVL4 is 
identified to attenuate the molecular alterations of AD [59]. As DDX17 is one of the most 
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characterized RBPs [60], the current study provides a link between RBP and the amyloi-
dogenesis, which should shed new light on the understanding of disease progression.  

The DEAD-box RNA helicases are the largest family of RNA helicases. They play an 
important role in gene expression and RNA metabolism ranging from pre-mRNA splic-
ing, mRNA export and decay and translation initiation, to ribosome biogenesis [61,62]. 
DDX17, in particular, is involved in various types of human diseases [24,25,29]. For in-
stance, DDX17 regulates breast cancer pathology by promoting the transcription of 
NFAT5 target genes [63], and facilitates hepatocellular carcinoma metastasis by regulating 
alternative splicing, leading to the production of oncogenic RNA subtypes [64]. It is re-
ported that upregulation of DDX17 is associated with the progression and poor prognosis 
in glioma [29], in addition to an enhancement of the gefitinib resistance via activation of 
β-catenin [65]. To the best of our knowledge, the role of DDX17 in BACE1 regulation in 
association with the pathology of AD, has not been previously reported. 

Aβ slowly and progressively accumulates in the brain long before the presence of 
clinical symptoms [66]. Aβ pathogenesis starts with altered cleavage of APP which is an 
integral protein on the plasma membrane [67]. In the catalytic processing of APP, BACE1 
functions as a rate-limiting enzyme that links to amyloidogenesis [68]. Importantly, 
BACE1 cross-talks with cellular and molecular mechanisms that are in close association 
with the pathophysiology of AD [13]. In our study, we provide evidence that DDX17 con-
trols amyloidogenesis by selectively regulating protein levels BACE1 without altering 
those of ADAM10. A translational mechanism in BACE1 regulation by DDX17 is sup-
ported by that the translation inhibitor CHX or 4EGI-1 [48,69], but not the lysosome in-
hibitor CQ, the proteasome inhibitor MG132, or the transcription inhibitor ActD, prevents 
DDX17-mediated regulation of BACE1. Thus, the translational control of BACE1 links 
DDX17 to amyloidogenesis. It is worth noting that DDX17 is implicated in inflammation, 
which is mainly mediated by its RNA-binding activity and could be associated with NFκB 
[21,70]. This raises the possibility that DDX17 could regulate BACE1 expression through 
inflammation. Previous studies demonstrate that inflammation, oxidative stress, and 
NFκB promote BACE1 expression through a transcriptional mechanism [13,71,72]. In our 
study, the level of inflammasome maker NLRC4 that is not altered by DDX17 knockdown 
or overexpression and the failure of transcription inhibitor ActD to prevent DDX17-in-
duced BACE1 expression suggest that inflammation might not play a direct role. 

It is reported that the 5′UTR is critical for BACE1 translation and can be regulated by 
the eukaryotic initiation factors and translation elongation factor Tu of mitochondria 
[46,73,74]. In our study, the interaction between DDX17 and the 5′UTR is demonstrated 
by RNA pull-down assay. Moreover, the functional role of DDX17 in direct regulation of 
the 5′UTR is supported by that the enhanced luciferase activity and protein level of BACE1 
occur only in the presence of 5′UTR, indicating that DDX17 acts as a key RBP in BACE1 
translation initiation.  

Study limitation: the present study focuses only on amyloidogenesis by DDX17, 
without investigating changes in glial fibrillary acidic protein and Tau in association with 
phosphorylation, which are considered as potential biomarkers for AD [75]. Given that 
RBPs including DDX17, are the major components of Tau interactors [76], it could be pos-
sible that DDX17 and RBP-enriched stress granules might be critical for Tau phosphory-
lation and neurofibrillary tangles [77]. Therefore, the role of DDX17 in Tau regulation may 
deserve a separate and independent study in the future. 

5. Conclusions 
Although alteration of RBPs has been reported as one of the prominent features of 

AD, how RBPs might be involved in amyloidogenesis remains an open question. Our 
study provides evidence that DDX17 functions as RBP that controls BACE1 translation 
through binding to the 5′UTR. Given that RBPs are essential for RNA processing and cel-
lular functions, our study highlights a potential link of DDX17 with the pathophysiology 
of AD. 
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