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Abstract: It is essential to assess the condition of moyamoya disease (MMD) patients accurately and
promptly to prevent MMD from endangering their lives. A Pseudo-Three-Dimensional Residual
Network (P3D ResNet) was proposed to process spatial and temporal information, which was
implemented in the identification of MMD stages. Digital Subtraction Angiography (DSA) sequences
were split into mild, moderate and severe stages in accordance with the progression of MMD,
and divided into a training set, a verification set, and a test set with a ratio of 6:2:2 after data
enhancement. The features of the DSA images were processed using decoupled three-dimensional
(38D) convolution. To increase the receptive field and preserve the features of the vessels, decoupled
3D dilated convolutions that are equivalent to two-dimensional dilated convolutions, plus one-
dimensional dilated convolution, were utilized in the spatial and temporal domains, respectively.
Then, they were coupled in serial, parallel, and serial-parallel modes to form P3D modules based
on the structure of the residual unit. The three kinds of module were placed in a proper sequence
to create the complete P3D ResNet. The experimental results demonstrate that the accuracy of P3D
ResNet can reach 95.78% with appropriate parameter quantities, making it easy to implement in a
clinical setting.

Keywords: moyamoya disease; Digital Subtraction Angiography; deep learning; dilated convolution;
Pseudo-Three-Dimensional Residual Network; feature extraction

1. Introduction

The cause of moyamoya disease (MMD), a relatively unusual cerebrovascular disease,
is unknown. It is known as MMD because it is characterized by stenosis or occlusion in the
terminal part of the internal carotid arteries (ICA), the beginning part of the middle cerebral
artery (MCA) and the anterior cerebral artery (ACA), which results in the presence of small
vessels that resemble smoke in the brain [1]. MMD is quite damaging, with a high mortality
rate and disability rate. The clinical symptoms of MMD include ischemic and hemorrhagic
strokes. MMD brought on by a hemorrhagic stroke will seriously damage the cranial
nervous system, which is a significant factor in patients” poor prognosis and eventual
death [2-4]. Once a cerebrovascular accident occurs, it will cause permanent damage to
the body, and may even cause the patient to die [5]. Magnetic Resonance Angiography
(MRA), Computed Tomography Angiography (CTA), and Digital Subtraction Angiography
(DSA) are the three most commonly utilized diagnostic methods for MMD. The gold
standard for the diagnosis of MMD in clinical practice is DSA [6], and the diagnosis is
based on pathological alterations in the cerebral vasculature that occur in MMD [7]. To
create a continuous subtraction image sequence with a high temporal resolution and a
high dynamic resolution, DSA equipment can continually take a few to dozens of images
per second.
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In 1969, Japanese researchers Suzuki and Takaku [8] created the Suzuki stage as a
standard method for determining the extent of vasculopathy in MMD patients. Accord-
ing to the patient’s cerebral angiography, MMD can be classified into six stages: carotid
fork narrowing, moyamoya initiation, moyamoya intensification, moyamoya minimiza-
tion, moyamoya reduction, and moyamoya disappearance. Briefly, stages 1-2 are when
moyamoya-like vessels first start to progressively form in the brain. Stages 3-4 are when
the moyamoya-like vessels are increased. With the gradual elimination of moyamoya-like
vessels, stages 5-6 are the stages of compensated vessel formation. The goal and greatest
challenge of current research is remains the accurate classification of the stages of MMD
and the prediction of MMD. Instead of using the precise Suzuki stage, Stages 1-2, stages
3—4, and stages 5-6 of MMD were combined into three grades: mild, moderate, and severe.
First, there are many other factors that must be considered in addition to the severity of
ICA lesions when determining the prognosis of MMD patients. The prognosis of MMD
patients with ischemic stroke is considerably impacted by the compensatory capacity of
collateral circulation [9]. The ischemic area is maintained by collateral or new vessels when
severe ICA stenosis or occlusion occurs, preventing insufficient blood flow and minimizing
brain tissue damage. Monitoring collateral circulation in the region of cerebral ischemia
is crucial [10]. Because of this, it is more practical to categorize MMD into three stages in
this study.

Deep Learning (DL) has gained significant traction in the field of intelligent medical
treatment in recent years, and reliable research breakthroughs have been made in the
automatic identification of MMD. Tackeun et al. [11] trained a neural network with six
convolution layers to recognize MMD on CTA modality with 84.1% accuracy. The accuracy
of the improved VGG16 network employed by Akiyama et al. [12] in diagnosing MMD was
92.8%. MMD identification frequently employs Convolutional Neural Networks (CNN),
although it is unable to concurrently account for the spatio-temporal information in the
sequence. Three-dimensional (3D) convolution is currently one of the mainstays for the
simultaneous analysis of spatial and temporal data. In comparison to two-dimensional (2D)
convolution, the temporal dimension is added to 3D convolution to process information be-
tween frames, which has led to some success in the investigation of behavior identification
in videos [13-16]. Based on this, it successfully employs 3D convolution to identify MMD
in a DSA sequence. In order to extract the long-term temporal and spatial features of a DSA
picture sequence, Hu et al. [17] employed a 2D CNN and a Bidirectional Convolutional
Gated Recurrent Unit (BiConvGRU), while the short-term temporal and spatial data were
further extracted using a 3D CNN. Its accuracy, sensitivity, and specificity were 0.9788,
0.9780, and 0.9796. Automatic staging and precise prognosis can be achieved based on the
automatic identification and detection of MMD. The spatio-temporal features in the video
sequence can be effectively extracted using 3D convolution; however, this involves a high
computing cost, requires the development of a new 3D CNN, and consumes large amounts
of memory space, according to some studies [18-20]. Therefore, it is crucial to use better
3D convolution to tackle this issue [21].

In this paper, an automatic staging technique for MMD based on a Pseudo-3D (P3D)
Residual Network was provided. First, P3D convolution kernels were defined to classify
the stages of MMD automatically. These kernels processed spatial and temporal data sepa-
rately using equivalent 2D convolution and one-dimensional (1D) convolution. Dilative
convolution was employed to expand the receptive field without lowering the resolution
ratio, which enabled the network to focus on multi-scale context information. Finally, P3D
modules were created based on the residual unit to prevent gradient explosion and gradient
disappearance induced by the rise in network depth. The 2D dilative convolution kernel
and 1D dilative convolution kernel were combined in serial, parallel, and serial-parallel
fashions, respectively, to form a P3D Residual Network (ResNet). A P3D ResNet realizes the
automatic staging of MMD and provides a necessary reference for the prognosis of MMD.
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2. Materials and Methods
2.1. Data Processing

The department of neurosurgery, Huashan Hospital, Fudan University, provided the
information used in this experiment. In total, we gathered 406 samples of MMD cases
between July 2017 and October 2020. DSA images that were affected by intense artifacts
were eliminated. All patients in our database were diagnosed independently by two senior
neurosurgeons via routine procedures. If a consensus was not reached, the whole treatment
team discussed the case together and came to a final consensus. We were able to obtain
137 mild, 412 moderate, and 174 severe MMD hemispheres. First, the starting frame was
chosen to be the instant when the contrast medium had just passed through the end of
the ICA, and the beginning of the ACA and MCA. The DSA sequence needed for this
experiment was taken from this frame and the following 9 frames, for a total of 10 frames.
Second, we extracted the region of interest (ROI), that is, the terminal part of the ICA, the
MCA and the ACA, from the DSA sequence, and processed them as 224 x 224 pixels. As is
shown in Figure 1, after the ROI was divided, the influence of the skull and other irrelevant
parts was removed. We used the augmentation technique to address the issue of imbalance
in the experimental data caused by the majority of the samples being moderate MMD. The
DSA images were rotated and flipped throughout this process. In addition, we used test
time augmentation [22,23], that is, enhancement of the data in the test set. The number
of mild, moderate, and severe MMD hemisphere cases obtained was 516, 512, and 515,
respectively. Last but not least, the data were split into training, validation, and test sets
with a ratio of 6:2:2.

00001.jpg 00002.jpg 00003.jpg 00004.jpg

00006.jpg 00007.jpg 00008.jpg 00009.jpg
Figure 1. ROI division diagram.

2.2. Operating Environment

In this experiment, we used a Nvidia Tesla V100 graphics card with 16GB video RAM
and an Intel (R) Xeon (R) CPU e5-2640 V4 @ 2.40 GHz processor with 128GB memory.
It was put into practice using the PyTorch DL framework in a Linux environment using
anaconda3.7, cudal0.0, and python3.6.

2.3. Design of P3D ResNet

Neural networks have exceptional technological benefits in the area of image pro-
cessing because they can extract image features through the convolution layer, learn the
internal rules of data samples, and obtain the distributed feature representation of data. The
retrieved feature information is richer the deeper the network becomes, and the network
also performs better. However, gradient disappearance and gradient explosion are likely to
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happen if the model’s depth reaches its maximum. Additionally, a wide model leads to
excessive parameters, a high risk of over-fitting, and difficulty in model optimization. The
performance of deep networks is still not totally satisfying, although data initialization and
regularization can stop the network training process from stagnating. He et al. [24] created
a deep ResNet using identity mapping to continuously learn new features, considerably
enhancing their model’s capacity to learn features. The prevailing consensus is that medical
data sets typically consist of tiny sample sizes. We suggest using the infrastructure of
ResNet to reduce the risk of over-fitting in small MMD sample data sets in deep networks,
and breaking down the original 3 x 3 x 3 3D convolution kernel into 1 x 3 x 3 convo-
lution kernels (equivalent to 2D CNN) for the spatial domain and 3 x 1 x 1 convolution
kernels (equivalent to 1D CNN) for the temporal domain, in that order. Dilative convo-
lution can also retain more feature details, expand the network’s receptive field while
extracting features, and enhance generalization capacity when utilized in both the spatial
and temporal domains. Three P3D modules, comprising a combination of serial, parallel,
and serial—-parallel 2D dilative convolution and 1D dilative convolution, were designed
to maximize the effects of the two types of dilative convolution kernel. These three P3D
modules, designated P3D-A, P3D-B, and P3D-C, were linked alternatively to replace the
original residual unit in ResNet. Figure 2 depicts the structure of P3D ResNet.

Conv:1x7x7, - 3 g
64.5:1x2x2 P3D-A P3D-B P3DC

Figure 2. Structure of Pseudo-Three-Dimensional Residual Network (P3D ResNet).

2.3.1. Residual Unit

The identity map (arc part in Figure 3) and residual map (straight line part in Figure 3)
are connected to the output by jump connections in each residual unit, as shown in Figure 3.
This operation can produce the final output from the input data x and the output data
F(x) obtained through the weight layer, that is, H(x) = F(x) + x. The residual mapping
path passes through the weight layers, increasing the depth of the network and enhancing
its functionality. It is customary to raise the network’s layer count in order to improve
the network’s accuracy and feature extraction capabilities. The network will approach
saturation once the number of layers reaches a certain level, and network degradation will
become a problem. Due to the identity mapping that is applied to the residual unit, the
ultimate result can still be H(x) = x, even if F(x) is 0. Without identity mapping, the network
loses its capacity for forward propagation and back propagation, and the parameter update
of weight layers becomes stalled, making it impossible for the network to learn new features.
Additionally, leveraging jump connections to incorporate the input data into the output
data can significantly increase the integrity of information, ease the burden of training the
network, and lower computational costs.
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Figure 3. Residual unit.

2.3.2. P3D Modules

The T x S x S 3D convolution kernel is decomposed into 1 x S x Sand T x 1 x 1
convolution kernels, where T represents the temporal dimensional convolution parameters
in the 3D convolution kernel and S represents the spatial convolution parameters in the 3D
convolution kernel. This action is taken because the conventional 3D convolution kernel
merges spatial and temporal information, which is detrimental to the optimization of the
model. The spatial information and temporal information of DSA sequences are processed
independently using the two convolution kernels through decomposition. P3D convolution
is the name given to this type of decoupled 3D convolution. By breaking down the 3D
convolution kernel in the spatio-temporal domain, it is possible to significantly lower the
number of parameters and reduce the calculating cost. In addition, multiple nonlinear
operations in the module make it more capable of learning features.

As can be seen in Figure 4, three P3D residual modules, named P3D-A, P3D-B, and
P3D-C, were designed. Among them, P3D-A connects spatial convolution S and temporal
convolution T in series, ensuring the depth of the network under the same receptive field
conditions, and improving the performance of the network to a certain extent. P3D-B uses
a parallel structure to facilitate the distributed computing of features. P3D-C integrates
series and parallel operations into a module, effectively fusing and supplementing feature
information, so as to enrich it.

(a) (b) (c)

Figure 4. Three different P3D modules: (a) P3D-A; (b) P3D-B; (c) P3D-C. S is defined as the convolu-
tion of the spatial dimension, and T is defined as the convolution of the temporal dimension.
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(1) P3D-A: Both the spatial and temporal dimension convolutions are cascaded in P3D-A.
To create the final result, the feature maps are first used to perform a 2D spatial
convolution calculation, followed by a 1D temporal convolution calculation. The
equation can be written as follows:

(I4T-S)-x¢ = x; + T(S(xt)) = X111 1)

(2) P3D-B: There is no symbiotic relationship between spatial and temporal dimension
convolutions. The two run parallel to one another. These two outcomes can be
combined with the input of the module to obtain the final output. The equation reads
as follows:

(I+T+8)xt:=xt+S(xt) + T(xt) = xp11 2)

(3) P3D-C: This operation combines the two earlier approaches. The input first passes
through spatial 2D convolution, and the results are then added to those of the temporal
1D convolution operation. Finally, it is possible to establish the following formula:

(I+S+T-S)xt:=x¢ + S(xt) + T(S(xt)) = xp41 ®)

Among these equations, x; is the input of the module, x;1 is the output of the module,
T is the convolution of the temporal dimension, and S is the convolution of the spatial
dimension.

2.3.3. Dilated Convolution

The feature extraction process is improved by adding dilated convolution to the
spatial and temporal dimensions of the P3D module, respectively, so that the details of
vessels can be better preserved and the perception of context information can be enhanced.
This action is taken to prevent the pooling operation in the network from reducing the
resolution of the feature map, and to better determine the dependency between frames
in the DSA sequences. Dilated convolution does not enhance the number of convolution
kernel parameters. Additionally, it can broaden the receptive field of the network and
enhance feature extraction’s capacity for generalization. P3D modules produce higher-level
information that is more suited to classifying the stages of MMD, since it not only achieves
the same resolution as the input feature, but also has receptive field information that is
equivalent to the pooling layer. Atrous convolution is another name for dilated convolution.
The convolution kernel is given a fixed number of holes, where the number of holes is
equal to the dilated rate r. The size of the dilated convolution kernel is determined using
Formula (4):

K=rx((k-1)+1 4)

where k is the size of the input convolution kernel, r is the dilated rate, and K is the
equivalent convolution kernel size after dilation.

2.3.4. Bottleneck Structure of P3D Module

One can change the dimensions of the feature map and decrease the difficulty of the
calculation by adding a 1 x 1 convolution layer before and after the 3 x 3 convolution layer
to create a bottleneck structure in ResNet. As shown in Figure 5, three bottleneck structures
in P3D module are available when we extend the operation from a 2D CNN to a 3D CNN.
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Figure 5. Bottleneck structure of 3D residual element and three different P3D modules. (a) Residual
unit; (b) P3D-A; (c) P3D-B; (d) P3D-C.
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3. Results and Discussion
3.1. Evaluation Metrics

Accuracy, precision, recall, specificity, F1 score, and AUC are the key evaluation
metrics employed in this work. The ratio of samples with the right categorization to all the
samples in a multi-classification problem is known as accuracy. Using mild MMD as an
example, precision is defined as the ratio of the number of samples accurately recognized
as mild MMD to the number of samples predicted to be mild MMD. The proportion of
samples that are correctly classified as having mild MMD out of all the samples with mild
MMD is known as recall. The ratio of the number of correctly classified non-mild MMD
samples to the total number of non-mild MMD samples is known as specificity. The F1
score is the harmonic average of precision and recall. The area under the receiver operating
characteristic (ROC) curve is referred to as the AUC. The following is the computation
process:

" TP;
accuracy = % (5)
TP;
precision; = ﬁ (6)
1 1
recall; = TP ?)

TP; + FN;
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e TN;
SpElelClt]/i - m (8)
1 1

precision; X recall;

©)

F1 score; =2 % —
precision; + recall;

M(Q1+M)
ZiepositiveClass ranki -0
M x N

Among these equations, TP; is the number of samples correctly classified as positive
in class i; FP; is the number of samples incorrectly classified as positive in class i; FN; is
the number of samples incorrectly classified as negative in class i; TN; is the number of
samples correctly classified as negative in class i; Num is the total number of samples; M
is the number of positive samples; N is the number of negative samples; and rank; is the
serial number.

AUC; = (10)

3.2. The Performance of P3D ResNet

The confusion matrix of the model is displayed in Figure 6 in order to examine the
effectiveness of the methodology suggested in this paper. Each column’s sum indicates
the actual number of samples in this category, whereas each row’s sum represents the
number of samples predicted to be this category. It can be observed that the outcome of
MMD staging includes the number of accurate classifications and the number predicted
to be other categories. The numbers of accurately identified MMD stages are represented
by the number on the diagonal path with a deep color. Because of the more pronounced
characteristics of severe MMD, in which it is clear that the number of moyamoya-like vessels
is greatly decreased, the number of accurately recognized severe MMD samples is the
highest. The numbers of correctly classified moderate MMD cases and mild MMD cases are
lower than those of severe MMD cases, primarily because mild MMD and moderate MMD
may have some similar feature points, making it simple for the model to be interfered with.

Confusion_matrix (Acc=0.9578)

100
mild 1
80
c 60
©
.2 moderate
©
't
a - 40
- 20
severe - 2
T — 0
O < 4
3 ¢ 2\
& @ @
K &
&
Real label

Figure 6. Confusion matrix of P3D ResNet.
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The precision, recall, specificity, F1 score, and AUC of mild, moderate, and severe
MMD are all shown in Table 1, in that order. The table shows that this model achieves
the maximum precision of 0.971 for severe MMD, and the AUC is 0.99, demonstrating
the superior performance of P3D ResNet in the detection of severe MMD. Meanwhile, the
precisions for mild and moderate MMD are, respectively, 0.95 and 0.951, and are lower
than that for severe MMD. Due to the possibility of misinterpretation between the features
of mild MMD and moderate MMD, ROC curves for various MMD stages are displayed in
Figure 7. It is clear that the model has the best classification performance for severe MMD
because the AUC of the condition is closest to 1. Both mild and moderate MMD have an
AUC of 0.96. When calculating the micro-average ROC curve, each component of the label
indicator matrix is treated as a label. The macro-average ROC curve is derived from the
unweighted mean of each label, and the AUC reaches 0.97, indicating that the model has
excellent overall classification performance.

Table 1. MMD staging performance of the model.

Stage Precision Recall Specificity F1 Score AUC
Mild 0.95 0.932 0.976 0.941 0.96
Moderate 0.951 0.951 0.976 0.951 0.96
Severe 0.971 0.99 0.985 0.98 0.99

MMD: Moyamoya disease, AUC: the area under ROC.

1.0' .r-—- ’u?*. I.b_*' ol o b e el ’,
I4 AT 7
5 ”
J 7
" ”
0.8 !.‘ s
e ”
E = I‘P
2 e ’r’
s 06p -~
= H 27
w0
s P
Q
3 0.4 - ,w'
- L’
»7 ® ® micro-average ROC curve (area = 0.97)
0.2 ’I, = ®= macro-average ROC curve (area = 0.97)
i ,’ ROC curve of mild MMD (area = 0.96)
,’ ROC curve of moderate MMD (area = 0.96)
’r' —— ROC curve of severe MMD (area = 0.99)
0.0 T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 7. ROC curves of different stages of MMD. MMD represents moyamoya disease, and ROC
represents the receiver operating characteristic curve.

3.3. Demonstrations of MMD Staging Based on P3D ResNet

Our findings indicate that P3D ResNet is capable of accurately identifying the MMD
stages. The staging results for mild, moderate, and severe cases are shown in Figure 8a—c,
respectively. The probabilities are 0.9835, 0.9869, and 0.9901, respectively. In Figure 8a, it
can be seen that the ICA and ACA are narrowed at the red arrow, and an abnormal vascular
network begins to appear at the skull base, which is defined as mild MMD in this study. In
Figure 8b, we can clearly observe that a large number of abnormal vascular networks have
formed, which is defined as moderate MMD in this study. Figure 8c shows that the ICAs,
ACAs, and a large number of abnormal vascular networks have disappeared, which is
defined as severe MMD in this study. It is evident that the model has a positive impact on
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classifying the MMD stages. This demonstrates the viability and efficacy of the approach in
the actual clinical staging of MMD.

® rosult | ° result i () rosult
severe
prob: 0.9901

|

(@) (b) (0
Figure 8. Demonstrations of MMD staging. (a) Mild MMD; (b) moderate MMD; (c) severe MMD.

3.4. Comparison among P3D ResNet Variants

A P3D ResNet, which combined three modules, including P3D-A, P3D-B, and P3D-C,
was compared with three different P3D ResNet variations to demonstrate the effectiveness
of merging three P3D modules. The P3D-A ResNet was created by substituting the P3D-A
modules for all the P3D modules in P3D ResNet. The P3D-B modules were used to replace
all the P3D modules to create the P3D-B ResNet, while the P3D-C modules were used to
create the P3D-C ResNet.

The accuracy of the P3D ResNet model is 0.0293, 0.026, and 0.0195 higher than that of
the three variants, P3D-A ResNet, P3D-B ResNet, and P3D-C ResNet, separately, as can be
seen from Table 2. This demonstrates that P3D ResNet is the most effective model due to
the diversity of its modules.

Table 2. Recognition performance of P3D ResNet and its variants.

Model Accuracy
P3D-A ResNet 0.9285
P3D-B ResNet 0.9318
P3D-C ResNet 0.9383

P3D ResNet 0.9578

3.5. Comparison of P3D ResNet with Different Dilation Rates

The original convolution kernel is represented by a dilation rate of 1. By altering the
dilation rate of the network, multiple convolution kernel sizes can be achieved. Therefore,
the final performance of the model will be impacted by variable dilation rates. We chose
the best dilation rate for training by comparing the accuracy at various dilation rates.

The accuracy of the network increases with the dilation convolution compared to the
original model, as shown in Table 3. When the dilation rate is 2, the model’s accuracy
reaches its greatest value of 0.9578. However, accuracy starts to suffer as the dilation rate
continues to rise. Hefty computing costs, brought on by growing convolution kernel sizes
under the influence of dilation rate, are adverse to the increase in model depth and decrease
the performance of P3D ResNet. This demonstrates that the model can only be trained
well by choosing the appropriate dilation rate. Therefore, 2 was used as the dilation rate in
order to guarantee the model’s training effect.
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Table 3. Recognition performance of P3D ResNet with different dilation rates.

Dilation Rates Accuracy
1 0.9448
2 0.9578
3 0.9318
4 0.8961

3.6. Comparison with Other Models

Three 3D CNN models were chosen for comparison, to demonstrate the superiority of
the model suggested in this paper. These models (C3D [25], R3D [26], and R2Plus1D [27])
are frequently employed in video behavior identification, and have produced positive
results. The complexity of the model affects how long it takes to train. Excessive param-
eters will result in a significant rise in the calculation cost and time commitment, which
will make it challenging to actually deploy the model and difficult to adapt it to clinical
circumstances. We calculated the parameters of P3D ResNet and three other 3D CNN
models, and evaluated the classification accuracy of each to validate the performance of
P3D ResNet. As shown in Table 4, the R2plus1D and R3D models have the same number of
parameters and tiny scales, while their accuracy values are 0.7370 and 0.7922, respectively.
The performance of these two models is not sufficient. C3D has more parameters but lower
accuracy than P3D ResNet with pretraining. In conclusion, P3D ResNet is more favorable
than other models since it can attain high accuracy with fewer parameters.

Table 4. Recognition performance of different models.

Model Pretraining Accuracy Parameters
R2Plus1D / 0.7370 33.18M
R3D / 0.7922 33.18M
C3D Vv 0.8961 78.01 M
P3D ResNet Vv 0.9578 65.68 M

The micro-average ROC curve and macro-average ROC curve for each model are
displayed in Figure 9a,b, respectively. The AUC of P3D ResNet with pretraining is higher
than that of C3D with pretraining, and that of R3D and R2Plus1D without pretraining in
both the macro-average and micro-average ROC curves, as can be seen in Figure 8. This
demonstrates the effectiveness of the classification effect of P3D ResNet.
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(a)
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4. Conclusions

In this paper, a P3D ResNet model is proposed for classifying the stages of MMD. This
model can precisely classify MMD stages in the complex vascular network by identifying
the features of moyamoya-like vessels and surrounding structures, and could lay a solid
foundation for future research.

The following are the primary contents of this work:

(1) Multiple DSA sequences capable of reflecting blood flow trajectory were chosen,
and information on dynamic blood flow was taken into account, which maximized the
potential of 3D convolution.

(2) Equivalent 2D convolution and 1D convolution were used to process the spatial and
temporal information, respectively, which reduced the scale of the model and improved its
capacity for linear expression. The receptive field was broadened by the addition of dilated
convolution, and high-dimensional characteristics with richer information were achieved.
In order to create P3D modules, 2D dilated convolution and 1D dilated convolution were
finally combined through the cascade, parallel, and cascade—parallel modes based on the
residual unit. Three different P3D modules were alternately arranged to replace the original
residual units in ResNet and form the complete P3D ResNet.

(3) The accuracy of P3D ResNet under various dilation rates was compared to deter-
mine the optimum parameters for training. Three variants and three advanced 3D CNN
models were compared with P3D ResNet to confirm the efficacy and robustness of P3D
ResNet. The experimental findings demonstrate that P3D ResNet, which is superior to
its variant and comparative model, has the ability to identify the stages of MMD with
an accuracy of 95.78%. It is uncomplicated to deploy in a clinical setting because of the
opportune number of parameters and low calculation cost.

The method proposed in this paper still has many aspects that must be improved. The
following points can be considered for future improvement:

(1) Data diversification: The data used in this paper are the anterior posterior DSA
images of MMD patients’ ICAs. In order to provide more accurate diagnoses of patients in
all directions, it is also necessary to refer to other intracranial vessels, such as the external
carotid artery and vertebrobasilar artery. At the same time, multimodal images should also
be included in the data set to make the diagnosis more comprehensive and reliable.

(2) Data processing: In this study, the images included in the data set were filtered
to remove images with artifacts and unclear development. However, in actual clinical
application, there will certainly be artifacts or noise in the DSA images. Therefore, it is
necessary to develop data preprocessing algorithms to improve the quality of the input
image and improve the final diagnostic accuracy.

The accuracy of this model’s classification will continue to increase as a result of the
increase in MMD samples, advancements in angiography technology, and improvements
in CNNs in the future.
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