
Citation: Yuvaraj, R.; Baranwal, A.;

Prince, A.A.; Murugappan, M.;

Mohammed, J.S. Emotion

Recognition from Spatio-Temporal

Representation of EEG Signals via

3D-CNN with Ensemble Learning

Techniques. Brain Sci. 2023, 13, 685.

https://doi.org/10.3390/

brainsci13040685

Academic Editor: Ateke

Goshvarpour

Received: 7 March 2023

Revised: 12 April 2023

Accepted: 17 April 2023

Published: 19 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

brain
sciences

Article

Emotion Recognition from Spatio-Temporal Representation of
EEG Signals via 3D-CNN with Ensemble Learning Techniques
Rajamanickam Yuvaraj 1, Arapan Baranwal 2, A. Amalin Prince 3 , M. Murugappan 4,5,6,*
and Javeed Shaikh Mohammed 7

1 National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
2 Department of Computer Science and Information Systems, BITS Pilani, Sancoale 403726, Goa, India
3 Department of Electrical and Electronics Engineering, BITS Pilani, Sancoale 403726, Goa, India
4 Intelligent Signal Processing (ISP) Research Lab, Department of Electronics and Communication Engineering,

Kuwait College of Science and Technology, Block 4, Doha 13133, Kuwait
5 Department of Electronics and Communication Engineering, Faculty of Engineering, Vels Institute of Sciences,

Technology, and Advanced Studies, Chennai 600117, Tamilnadu, India
6 Centre for Excellence in Unmanned Aerial Systems (CoEUAS), Universiti Malaysia Perlis,

Kangar 02600, Perlis, Malaysia
7 Department of Biomedical Technology, College of Applied Medical Sciences,

Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
* Correspondence: m.murugappan@gmail.com or m.murugappan@kcst.edu.kw

Abstract: The recognition of emotions is one of the most challenging issues in human–computer
interaction (HCI). EEG signals are widely adopted as a method for recognizing emotions because of
their ease of acquisition, mobility, and convenience. Deep neural networks (DNN) have provided
excellent results in emotion recognition studies. Most studies, however, use other methods to extract
handcrafted features, such as Pearson correlation coefficient (PCC), Principal Component Analysis,
Higuchi Fractal Dimension (HFD), etc., even though DNN is capable of generating meaningful
features. Furthermore, most earlier studies largely ignored spatial information between the different
channels, focusing mainly on time domain and frequency domain representations. This study utilizes
a pre-trained 3D-CNN MobileNet model with transfer learning on the spatio-temporal representation
of EEG signals to extract features for emotion recognition. In addition to fully connected layers,
hybrid models were explored using other decision layers such as multilayer perceptron (MLP), k-
nearest neighbor (KNN), extreme learning machine (ELM), XGBoost (XGB), random forest (RF), and
support vector machine (SVM). Additionally, this study investigates the effects of post-processing or
filtering output labels. Extensive experiments were conducted on the SJTU Emotion EEG Dataset
(SEED) (three classes) and SEED-IV (four classes) datasets, and the results obtained were comparable
to the state-of-the-art. Based on the conventional 3D-CNN with ELM classifier, SEED and SEED-IV
datasets showed a maximum accuracy of 89.18% and 81.60%, respectively. Post-filtering improved the
emotional classification performance in the hybrid 3D-CNN with ELM model for SEED and SEED-IV
datasets to 90.85% and 83.71%, respectively. Accordingly, spatial-temporal features extracted from
the EEG, along with ensemble classifiers, were found to be the most effective in recognizing emotions
compared to state-of-the-art methods.

Keywords: hybrid models; 3D-CNN; deep neural networks; machine learning classifiers; emotion
recognition

1. Introduction

An emotion is a psycho-physiological experience resulting from a conscious or un-
conscious perception of a situation, object, or characteristic. It is often related to mood,
temperament, and personality [1]. Emotions are vital aspects of human existence and play
an imperative role in our lives. The ability to understand emotions is crucial when it comes
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to human–computer interaction (HCI) and clinical settings. Currently, emotion recognition
has attracted major attention due to its potential applications in a variety of fields. A wide
range of application areas are developing very rapidly, such as virtual reality (VR), gaming,
health care, marketing, e-learning, and recommendation systems [2]. These application
areas use emotion recognition to interact with humans at high levels.

Many studies have been previously conducted on emotion recognition. The in-
put modes used in these studies can generally be divided into physiological and non-
physiological signals. A non-physiological signal is composed of external signals such
as gestures, facial expressions, verbal tones, etc. [3]. Most modern HCI systems still lack
emotional intelligence and the ability to utilize these signals. An individual’s conscious-
ness can easily influence and control non-physiological signals, but physiological signals
represent their emotional state more accurately and consistently [4,5]. There are several
types of physiological signals, such as electroencephalograms (EEGs), electrooculography
(EOGs), electromyography (EMGs), etc. Among the types of physiological signals, EEG
signals originate from the cortex of the brain, the region believed to be largely responsible
for individual thoughts, emotions, and behaviors. EEG measures electrical activity in the
brain using small metal electrodes attached to the scalp [6]. With recent advances in battery
technology, EEG has become a more portable, reliable, and relatively inexpensive method
of monitoring brain activity compared to other methods [7].

Although EEG offers many advantages in recognizing emotions, it still has some
limitations. EEG has a very low spatial resolution in comparison to its temporal resolu-
tion. Furthermore, EEG signals suffer from poor signal-to-noise ratios (SNR) [8]. Besides
these limitations, EEG signals also have poor homogeneity and generalizability across
participants, which has hampered cross-subject emotion recognition studies [9]. Conse-
quently, most of the studies are aimed at developing subject-dependent systems rather
than subject-independent systems. Various approaches have also been studied to overcome
the limitations, which generally divide the entire emotion recognition pipeline into three
stages: signal preprocessing, feature extraction, and classification.

Today, several datasets for emotion recognition using EEG signals are available, of
which the most well-known are DEAP (A dataset for emotion analysis using EEG, physio-
logical, and video signals) [10], DREAMER (A Database for Emotion Recognition through
EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices) [7], SEED (SJTU
Emotion EEG Dataset with three emotion classes) [11], and SEED-IV (SJTU Emotion EEG
Dataset (SEED) with four emotion classes) [11]. The SEED and SEED-IV datasets were used
here as there are extensive studies on them that provide ground for comparison. Moreover,
to the best of our knowledge, this is the first time that spatio-temporal features have been
used in SEED and SEED-IV.

This paper aims to investigate subject-dependent emotion recognition using the SEED
and SEED-IV datasets. Spatial-temporal representations of EEG signals were used as the
input modality on which a pre-trained 3D-CNN model coupled with transfer learning
was used for feature extraction. To preserve the spatial and temporal information in the
EEG signals, the signals were preprocessed and given a 3D block representation based on
electrode arrangements.

The main contributions of this work are as follows:

• A 3D-CNN model pre-trained using transfer learning was used to extract features from
spatio-temporal 3D representations of EEG signals. The study used spatial information
from 62 electrodes to create input modality. Using 3D-CNN and transfer learning with
post-filtering, this is the first time that emotion classification has been performed on
the SEED datasets based on spatiotemporal features.

• Apart from the traditional fully connected layers (used for classifying after feature
extraction from CNN), other major classifiers, including k-nearest neighbor (KNN),
extreme learning machine (ELM), XGBoost, and random forest in hybrid models, were
also used. Furthermore, the post-filtering of output labels was studied.
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• A comprehensive set of results is presented to demonstrate the accuracy and effi-
ciency of the proposed approaches on the SEED and SEED-IV datasets. Both the
individual subject’s accuracy and the average subject’s accuracy across subjects are
reported. The reporting of each subject’s accuracy enhances transparency and provides
a baseline against which other researchers can compare their work. The computation
time to evaluate EEG signals is also reported to demonstrate the efficiency of the
proposed methodologies.

2. Related Works

The use of deep neural networks (DNNs) for emotion recognition has received con-
siderable attention and has achieved notable success in recent years. This section reviews
previous literature on emotion identification using EEG signals based on DNNs. Using
statistical features (mean, median, mode, and range) with shallow classifiers [12], 75%
accuracy was achieved on the DEAP dataset using Naive Bayes, KNN, decision trees, and
SVM. Qing et al. [13] achieved 74.87% accuracy on the SEED dataset and 62.63% on the
DEAP dataset using an ensemble model (EM) consisting of shallow classifiers, including
k-nearest neighbor (KNN), decision tree (DT), and random forest (RF), with a soft-voting
strategy. Chen et al. [14] proved that the DNN-based approaches outperformed shallow
classifiers in terms of performance in recognizing emotions. Tarán et al. [15] proposed
using a combination of sample entropy (SampEn), Tsallis entropy (TE), Higuchi fractal
dimension (HFD), and Hurst exponent (HE) with a multiclass least squares support vector
machine (SVM) model for their analysis. They employed empirical mode decomposition
(EMD)/intrinsic mode function (IMF) filters to clean the data, along with variational mode
decomposition (VMD) filters to ensure data integrity. They achieved an accuracy of 90.63%
on their dataset for four emotion classifications (happiness, sadness, fear, and neutral).
Using the CNN-SAE (sparse autoencoder)-DNN model in combination with the Pearson
correlation coefficient (PCC) between different channels as a feature, Liu et al. [16] achieved
96.77% accuracy on the SEED dataset, which is considered to be state-of-the-art.

To make use of the spatial information contained in EEG signals, several graph-based
techniques that use the signals’ spatial information were studied. Using differential entropy
(DE), power spectral density (PSD), differential asymmetric feature (DASM), rational
asymmetric feature (RASM), and differential causality (DCAU), Song et al. [17] proposed
a dynamic graph convolution network (DGCNN) model with handcrafted features (DE,
PSD, DASM, and DCAU) to classify emotions. They achieved an accuracy of 90.4% (three
emotions) on the SEED dataset. In a subsequent study by Zhang et al. [18], the same features
used by Song et al. for a graph convolutional broad network model were applied, and
the model’s accuracy increased to 94.24% on the SEED dataset. Zhong et al. [19] adopted
regularized graph neural networks (RGNN) as a means of computing pre-computed
differential entropy features of the SEED and SEED-IV datasets and achieved a state-of-the-
art performance of 79.34% for the SEED-IV dataset.

Convolutional neural networks (CNNs) are neural networks with one or more convo-
lutional layers. They are generally used for image processing, classification, segmentation,
and other autocorrelated data processing [20]. As a result of their computational efficiency,
CNNs are highly effective at detecting and learning important features without any in-
tervention from humans. CNNs can be classified based on their convolutional kernel
dimension. 2D CNNs use 2D convolutional kernels and utilize context across the height
and width of 2D frames (spatial features) to make predictions. However, they are inherently
incapable of leveraging information from adjacent frames. Three-dimensional CNNs solve
this problem, as they are the 3D equivalent of two-dimensional CNNs [21].

In recent years, 3D-CNN has achieved a considerable amount of success when it
comes to processing spatio-temporal information such as action recognition [1,7,22]. This
capability was also used in several studies to recognize emotions using 3D-CNN. 3D
convolutional kernels are capable of handling the voxel information from adjacent frames,
making them powerful models for learning representations of volumetric data, such as
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videos and 3D medical images (MRI, CT scan) [23]. 3D-CNN has been used in several
studies to effectively extract features from videos. Therefore, the current study used 3D-
CNNs to extract features from the 3D spatio-temporal representation of EEG data [6,24,25].
Salama et al. [24] used a 3D-CNN model to classify emotions, and a 3D representation of
the data was created for the inputs of the model. They achieved an accuracy of 87.44% for
arousal (two classes) and 88.49% for valence (two classes) on the DEAP dataset. A study
by Cho et al. [6] used two different end-to-end 3D-CNN architectures, C3D and R(2) + 1D,
to extract features in their study. They achieved an accuracy of 99.73% (4 classes) on the
DEAP dataset. The authors proposed the use of a novel method to represent EEG signals
in a 3D spatio-temporal block by setting the position of the channels at the sampling time
at their original positions, after which the interpolation of 2D EEG frames was used to
reconstruct the 3D signals. A transfer learning method was used by Cimtay et al. [26] to
recognize emotions based on a pre-trained Inception-Resnet-V2 model. They achieved a
cross-subject accuracy of 86.56% for two classes (positive-negative) and 78.34% for three
classes (positive-neutral-negative) on the SEED dataset. In [25], EEG data were extracted
from three international open-source datasets, such as DREAMER, SEED, and DEAP, to
classify emotions using 3D-CNN. The maximum mean classification rate was 97.64% using
SEED datasets.

Most earlier studies did not use the spatial information between the adjacent electrodes,
which, according to some studies, is an important aspect of the input. Unlike most studies
that have handcrafted features using different techniques like Pearson correlation coefficient
(PCC), Principal Component Analysis (PCA), Higuchi Fractal Dimension (HFD), entropy
studies, etc., for the input of the DNN, the current study created a simple 3D representation
using the raw EEG signals, which preserves both the spatial and temporal information of
the data. Additionally, this study completely relied on DNN’s ability to extract meaningful
features that could be fed into the classifier for the classification of emotions. Furthermore,
this work used a pre-trained 3D-CNN model with transfer learning as the DNN model
in the study. Earlier studies on SEED datasets that used 3D CNNs did not take spatial
information into account, alongside the transfer learning approach, in emotion recognition.
Some studies have used graph-based neural networks that use spatial information. The
novelty of this paper is the use of 3D CNNs with spatio-temporal features to recognize
emotion on SEED datasets. In the study, the spatial information from 62 electrodes was
used to create input modality. As far as we know, this is the first time that transfer learning
has been used on SEED datasets to classify emotions using spatio-temporal features with
3D-CNN and an ensemble classifier.

3. Dataset

The experiments were conducted using two datasets developed by SJTU: SEED and
SEED-IV. The SEED dataset is classified into three categories (positive, negative, and
neutral), and the SEED-IV dataset is classified into four categories (happiness, sadness, fear,
and neutral). The average score was calculated for each subject using subject-dependent
classification, i.e., each model was trained and tested individually for each subject. No
cross-validation was performed since average scores were reported across all subjects.
Phased evaluations of 3D MobileNet models were conducted for each of the 15 subjects in
an 80:20 split ratio.

3.1. SEED

A multimodal dataset called SEED [11] was developed by researchers in the Brain-like
Computing and Machine Intelligence (BCMI) laboratory at Shanghai Jiao Tong University
(SJTU). It consisted of EEG signals that were collected from 15 subjects (7 males and
8 females; mean age: 23.27 years; standard deviation: ±2.37). An ESI NeuroScan System
with 62 channels was used to record the subjects’ responses in response to 15 clips (around
4 min long) of a Chinese film, which were viewed by the subjects on their watches. The film
clips were carefully selected to evoke a range of emotions, such as positive, neutral, and
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negative ones. Each subject experimented three times, with an interval of approximately
one week between each repetition. Finally, the data were downsampled from 1000 to
200 Hz sampling rates, and a band-pass frequency filter of 0–75 Hz was applied to remove
noise and artifacts.

3.2. SEED-IV

As a multimodal dataset, SEED-IV [11] contains the EEG signals of 15 subjects, ranging
in age from 20 to 24 years old, with 7 males and 8 females. A 62-channel ESI NeuroScan
System was used to record EEG signals while subjects watched film clips. Seventy-two
short film clips of about two minutes each were used to induce four target emotions:
happiness, sadness, fear, or neutrality. The experiments were conducted in three sessions
with 24 trials per session (6 trials per emotion) on different days. Initially, the data were
collected at a sampling frequency of 1000 Hz, but the sample rate was later downscaled
to a sampling frequency of 200 Hz. The EEG dataset was processed with a bandpass filter
between 1–75 Hz to filter out the noise and remove artifacts.

4. Proposed Approach
4.1. Spatio-Temporal Representation of EEG

SEED and SEED-IV datasets were acquired using the 62-channel ESI NeuroScan
System to record the participant’s EEG signals. A one-dimensional signal (Amplitude vs.
time) was recorded by the system. In a film clip of T s, 200 × T samples were collected for
each of the 62 electrodes, with a sampling rate of 200 Hz.

A one-dimensional vector can be used to represent the electrode used to acquire the
EEG signals at a certain time (where t is the time in seconds, and t = 0, 1, . . . , N − 1), and
N is the total number of samples:

ν = [c1t, c2t, c3t, . . . , c61t, c62t] (1)

where cnt is the recording of the nth channel at the timestamp t.
The entire data can be represented by stacking such 1D vectors into a 2D vector of

dimension 62 × N as:
C = [ν0, ν, ν2, . . . , νN−2, νN−1] (2)

Many of the earlier studies [27–29] have used this 2D vector representation of EEG
signals, which, although containing temporal information, lacks spatial information and
the spatial distribution of electrodes. For these studies, information about adjacent chan-
nels and symmetrical channels is ignored. Multiple studies [5,6] have highlighted the
importance of this information.

Some works [5,6] have presented an imperfect representation of EEG signals that
maps electrode arrangements on the skull to a 2D plane. The method has been used for
14-channel (DREAMER) and 32-channel (DEAP) EEG datasets [5], which, in the current
study, was extended to 62-channel SEED and SEED-IV datasets.

As shown in Figure 1, channels were arranged in a 9 × 9 matrix, which represents
spatial information. It is noteworthy that this representation does not accurately portray
the actual arrangement, so the spatial information is slightly distorted.

In the 2D sparse representation, all the empty boxes indicate that the correspond-
ing electrodes are absent. The empty boxes were filled using interpolation to make the
representation dense. Interpolation was performed using radial basis functions (RBFs)
and Gaussian basis functions [6]. A simple illustration of the 2D representation of EEG
signals, the 2D-EEG signals after time interpolation, and the 3D-EEG representation is
shown in Figure 2.
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Figure 2. Illustration of spatio-temporal conversion: (a) 2D representation of raw EEG signals at time
t; (b) 2D representation of EEG signals after interpolation at time t.

The 3D EEG stream, S, is then created by stacking the 2D frames one after another.

S = [f t, f +1, f +2, . . . , f t+w−1] (3)

where f t is the 2D frame at timestamp t and w is the length of the time window.
Based on previous studies, one second was determined to be an appropriate time

window for recognizing emotions [6]. As a result, w (sampling frequency) was set to
200. Before concatenating into 3D EEG streams, the 2D frames were resized from 9 × 9 to
64 × 64 to make spatial dimensions comparable to temporal dimensions. Figures 3 and 4
show the average of all the subjects’ 2D representations of different emotions in the SEED-IV
and SEED datasets, respectively.
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4.2. Spatio-Temporal Learning Based on 3D-CNNs

A resource-efficient 3D-CNN network was used for emotion recognition in this study.
Based on the well-known resource-efficient 2D CNNs, 3D resource-efficient CNNs were
developed [32]. Several portable, wearable, wireless, low-cost, off-the-shelf devices are
available on the market today that allow for effective computing methods to be utilized in
everyday life. As lightweight networks, resource-efficient models are ideal for mobile and
embedded applications since they can be integrated with portable, wearable, EEG devices.
This work includes testing the following pre-trained models: 3D-Mobile Net, 3D-ShuffleNet,
3D-MobileNetv2, 3D-ShuffleNetv2, and 3D-EfficientNet for emotion recognition (available
at https://github.com/okankop/Efficient-3DCNNs (accessed on 3 January 2023). Among
these models, 3D-MobileNet reported the highest accuracy and the lowest computational
complexity [33]. Therefore, we implemented 3D-MobileNet-based transfer learning in
SEED datasets to recognize emotions.

The use of transfer learning is well-studied. Transfer learning is the process of im-
proving learning for a new task by transferring knowledge from a related task that has
already been learned [34]. In the past, there have been several studies that have used
transfer learning to recognize emotions. A study conducted by Feng K and Chaspari T
(2020) found that transfer learning can be applied to speech, video, and images, and to
physiological signals related to emotion [35]. According to [26], Cimtay et al. employed a
state-of-the-art pre-trained InceptionResNet model and achieved excellent performance on
the SEED and DEAP datasets. In this study, 3D MobileNet was pre-trained on the Jester
dataset for transfer learning. The Jester gesture recognition dataset contains labeled video
clips of humans performing basic, predefined hand gestures in front of a webcam or laptop
camera [22]. The 3D MobileNet network was further enhanced by the addition of dense
layers (fully connected layers) to provide greater depth and accuracy when classifying
complex data [26]. The weights of pre-trained 3D MobileNet models were frozen, and
only the dense layer weights were trained in transfer learning. As a result, the model was

https://github.com/okankop/Efficient-3DCNNs
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optimized to prevent overfitting and reduce computation time. The description of different
blocks of the proposed 3D-MobileNet architecture is given in Table 1, and the MobileNet
block is shown in Figure 5. The training parameters of the proposed 3D-MobileNet are
specified in Table 2. In Table 1, the input clip, due to the fact that the 3D MobileNet was
trained on RGB datasets, we concatenated the 1 × 200 (temporal) × 64 × 64 (spatial) data
three times to reach the required three channels.

Table 1. 3D-MobileNet architecture.

Layer/Stride Repeat Output Size

Input Clip 3 × 200 × 64 × 64
Conv(3 × 3 × 3)/s(1,2,2) 1 32 × 200 × 32 × 32

Block/s(2,2,2) 1 64 × 100 × 16 × 16
Block/s(2,2,2) 2 128 × 50 × 8 × 8
Block/s(2,2,2) 2 256 × 25 × 4 × 4
Block/s(2,2,2) 6 512 × 13 × 2 × 2
Block/s(1,1,1) 2 1024 × 13 × 2 × 2

AvgPool(13,2,2)/s(1,1,1) 1 1024 × 1 × 1 × 1
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Figure 5. MobileNet Block (D × H × W is depth × height × width, BN: Batch normalization, ReLU:
Rectified Liner Unit activation function).

ArgMax selects the label with the greatest probability in the last dense layer, which
consists of neurons equal to the number of output classes. In the model, the ReLu activation
function was used. ReLU is rectified linear unit activation function, and its abbreviation is
already included in Figure 5. Mathematically, it can be defined as g(z) = max {0, z}. Due
to its superior performance and ease of training, ReLu has become the default activation
function for many neural networks. Additionally, the softmax activation function was
used in the last dense layer to calculate the class probabilities. Table 3 shows the detailed
specification of the fully connected layer in the proposed model.
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Table 2. Properties of layers following the 3D MobileNet base model.

Parameters Settings

Base Model 3D MobileNet
No. of additional layers 4 Dense Layers

Optimizer Adam
Loss function Cross Entropy Loss

Max number of epochs 200
Max number of iterations 400,000

Shuffle True
Batch size 4

Learning Rate 1 × 10−4

Train-test split ratio 80:20

Environment Processor: Intel® Core™ i9-10920X CPU @ 3.50 GHz × 24,
GPU: Nvidia Corporation 2204, Pytorch

Number of classes 3 (positive, neutral, negative for SEED) and
4 (happiness, sadness, fear, neutral for SEED-IV)

Table 3. Fully connected layer specification for the model.

Layer (Type) Output Shape Connected to Activation Function

Dense 1 (None, 1024) convolution -
Dense 2 (None, 256) Dense 1 ReLu
Dense 3 (None, 120) Dense 2 ReLu
Dense 4 (None, # of classes) Dense 3 Softmax

After training the CNN model with the multiple-layer perceptron (MLP) classifier, the
model was used to extract features. Deep-learning features were collected using a dense
layer-1 (1024 neurons). Those features were then fed into other classifiers as input, which
were then trained. In this study, k-nearest neighbor (KNN), Support Vector Machine (SVM),
Extreme Gradient Boosting (XGB), Random Forest (RF), and Extreme Learning Machine
(ELM) were used as classifiers (decision layers) (Figure 6).
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• SVM: A supervised machine learning algorithm used for classification. The SVM
algorithm seeks to find an N-dimensional hyperplane that distinctly classifies the
data points.

• XGB: This machine learning library implements gradient-boosted decision trees
(GBDT) that are scalable and distributed. This machine-learning library performs
regression, classification, and ranking using parallel tree boosting.

• RF: It is a supervised machine learning algorithm that is widely used in classification
and regression. A decision tree is constructed from different samples, the majority
vote is taken for classification, and the average is taken for regression.
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• kNN: It is one of the simplest machine learning algorithms based on the supervised
learning technique. The method uses proximity to classify or predict the grouping of
an individual data point.

• ELM: They are feedforward neural networks with one hidden layer capable of learning
more quickly than gradient-based methods.

A grid search was employed to determine the best hyperparameters for the classifiers.
The results for all the above-discussed classifiers are presented in this study.

4.3. Post-Filtering on Output Classes

Due to the high sensitivity of EEG to noise, it is very important to filter the signals
prior to use. In previous studies on medical diagnostics, EEG recordings were smoothed
using various filters, such as median filters, mode filter, mean filter, smooth filters, etc.
Emotions are intense feelings that last for a short period [27]. Emotions are mental states
that affect physiological and psychological feelings. They have a natural beginning, a
natural lifespan, and a natural end. Approximately 90 s is the average duration of emotion
in the human brain, according to modern neurology [28]. It is reasonable to assume that the
emotions in a healthy individual with effective emotional regulation will remain constant
(or not change) for some small interval T. A prior study proposed post-filtering for output
classes based on this assumption [28]. The post-filtering process in this study is similar to
processes used in previous studies.

Figure 7 shows the EEG recording for 10 s and the post-filtering process. Nevertheless,
the window size is only five seconds. We illustrated the window size of five seconds
working on a 10 s EEG clip for illustration purposes. A study conducted by [26] suggests
that the emotional state remains the same for some short time interval T. They used a post-
filtering window size of six seconds for their analysis. A mode filter with a 5 s window size
was applied to the 10 s output labels. Models that predict incorrect labels are highlighted
in red. Labels predicted correctly by the model are green. A yellow label indicates that
the mode filter has changed the label. Using the model, the third label in window 1 was
predicted to be sadness (S). Based on the model, happiness (H) was predicted to be the mode
of emotions, so sadness (S) could be changed to happiness (H). Likewise, for Windows 2
and 3, we could change the fear (F) and neutral (N) predictions in the respective windows
to happiness (H) predictions. Here, the window shifts by one second each time.
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4.4. Performance Assessment

The objective of this study was to recognize emotions based on the subject’s emotions.
To maintain the balance of the dataset, the EEG recordings were split into an 80:20 training–
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test ratio for each subject. All 15 subjects were trained individually with the models. The
seed value was fixed to make a fair comparison between the models and to make the
results reproducible. The trained model was applied to the test dataset after training. The
performance of CNN-based hybrid models was evaluated using the following metrics.

(1) Accuracy = (TP + TN)/(TP + FP + FN + TN) (4)

(2) Precision = TP/(TP + FP) (5)

(3) Recall (Sensitivity) = TP/(TP + FN) (6)

(4) F1 Score = 2(RecCal ∗ Precision)/(Recall + Percision) (7)

where TP = true positive, TN = true negative, FP = false positive, and FN = false negative
The results reported were averaged across all subjects.

5. Experimental Results and Discussion

This section summarizes the main findings of this study on emotion recognition
using EEG signals for 3D-CNN MobileNet-based models. PyTorch was used to implement
3D MobileNet. An Intel® CoreTM i9-10920X CPU running at 3.50 GHz and an Nvidia
Corporation 2204 GPU running Ubuntu was used for the experiment. Accuracy and cross-
entropy loss values were used to evaluate the convergence of the model. The model weights
were saved at the point of convergence, i.e., the least loss value, to prevent overfitting.

5.1. 3D-CNN MobileNet Model with MLP Classifier (Traditional 3D-CNN Model)

Three-dimensional CNN models with MLP classifiers were trained for each subject.
After training the model, it was evaluated on a test dataset. For both datasets, the CNN-MLP
model produced results comparable to the state-of-the-art. The accuracy for the SEED-IV
dataset was 78.32%, and the accuracy for the SEED dataset was 88.58% for 15 subjects
(Tables 4a and 5a). Compared to the MLP classifier, the ELM reported higher accuracy for
both datasets compared to the other classifiers.

Table 4. (a). SEED-IV (4 classes) results for CNN hybrid models. (b). Confusion matrix of 3D-CNN
and ELM classifier for SEED-IV dataset.

(a)

Model Accuracy (%) Std. Dev (%) F1 Precision Recall

MLP 78.32 12.37 0.78 0.79 0.78
SVM 80.8 12.87 0.81 0.81 0.81

Random
Forest 79.77 12.41 0.8 0.8 0.8

XGB 80.32 12.65 0.8 0.8 0.8
kNN 81.29 12.36 0.81 0.81 0.81
ELM 81.6 12.04 0.82 0.82 0.82

(b)

Predicted Values

A
ct

ua
lV

al
ue

s

Neutral Sad Fear Happy
Neutral 450 39 23 37

Sad 49 451 37 14
Fear 30 31 408 29

Happy 19 29 28 352
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Table 5. (a). SEED (3 classes) results for CNN hybrid models. (b). Confusion matrix of 3D-CNN and
ELM classifier for SEED dataset.

(a)

Model Accuracy (%) Std. Dev (%) F1 Precision Recall

MLP 88.58 14.85 0.89 0.89 0.89
SVM 88.75 14.73 0.89 0.89 0.89

Random
Forest 88.64 15.05 0.89 0.89 0.89

XGB 88.76 14.74 0.89 0.89 0.89
kNN 89.05 14.75 0.89 0.89 0.89
ELM 89.18 14.72 0.89 0.89 0.89

(b)

Predicted Values

A
ct

ua
lV

al
ue

s

Positive Neutral Negative

Positive 326 21 19
Neutral 21 307 17

Negative 18 21 315

5.2. 3D-CNN MobileNet Hybrid Model

This phase involves extracting features from the trained models from Phase 1. The
extracted features were then used to train different classifiers such as SVM, random forest,
XG boost, KNN, and extreme learning machine. Hyperparameters for classifiers were
optimized using the grid search technique. Compared to the CNN-MLP model, the CNN
hybrid model showed significant improvement. However, the CNN-ELM hybrid model
performed better, with 81.60% accuracy for the SEED-IV dataset (Table 4a) and 89.18%
accuracy for the SEED dataset (Table 5a). The confusion matrices of the best classifier
output is shown in Tables 4b and 5b for SEED-IV, and SEED dataset, respectively.

5.3. 3D-CNN Model with Post-Filtering

In this phase, the output labels from phases 1 and 2 were post-filtered using mode
filters. Table 6 shows the results after applying post-filtering to the labels. Various window
sizes from 5 to 15 s were used for post-filtering. Increasing the window size resulted in a
significant increase in average accuracy (Figure 8). Due to post-filtering, the mispredictions
were corrected by changing the prediction with the window mode emotion. The perfor-
mance of the proposed 3D-CNN with ELM is shown in Tables 7 and 8 using the SEED-IV
and SEED datasets, respectively. In Table 8, only subject 6 reported a lower accuracy in
recognizing emotions among 15 subjects. There may be a few reasons as to why subject 6
does not perform well. Some of the reasons could be (a) the signals might be corrupted
by noises and other external interferences, (b) the subject is not cooperating during the
experiment, or that (c) the subject might have already participated in a similar kind of
experiment and that bias might affect the model.

Table 6. Post-filtering results for the SEED-IV dataset.

Dataset SEED-IV SEED

Post-Filter
Window

CNN-MLP
(%)

CNN-kNN
(%)

CNN-ELM
(%)

CNN-MLP
(%)

CNN-kNN
(%)

CNN-ELM
(%)

- 78.32 81.29 81.6 88.58 89.05 89.18
5 81.92 84.12 83.71 90.43 90.77 90.85
7 83.72 85.64 85.32 91.16 91.46 91.50
9 84.67 86.41 86.13 91.55 91.81 91.87

11 85.28 86.92 86.65 91.79 91.94 92.03
13 85.76 87.36 87.11 91.93 92.01 92.15
15 86.13 87.72 87.50 92.08 92.13 92.23
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Table 7. Subject-wise results for SEED-IV dataset (4 classes) using 3D-CNN + ELM model.

Subject Accuracy (%) Precision Recall F1-Score

1 77.22 0.77 0.77 0.77
2 59.65 0.6 0.6 0.6
3 84.78 0.85 0.85 0.85
4 91.45 0.91 0.91 0.91
5 60.16 0.6 0.6 0.6
6 86.17 0.86 0.86 0.86
7 87.70 0.88 0.88 0.88
8 85.67 0.86 0.86 0.86
9 78.67 0.79 0.79 0.79
10 85.97 0.86 0.86 0.86
11 75.79 0.76 0.76 0.76
12 75.35 0.75 0.75 0.75
13 85.04 0.85 0.85 0.85
14 93.33 0.93 0.93 0.93
15 97.18 0.97 0.97 0.97

Average 81.60 0.82 0.82 0.82

Table 8. Subject-wise results for SEED dataset (3 classes) using 3D-CNN + ELM model.

Subject Accuracy (%) Precision Recall F1-Score

1 85.25 0.85 0.85 0.85
2 87.61 0.88 0.88 0.88
3 93.95 0.94 0.94 0.94
4 88.94 0.89 0.89 0.89
5 94.84 0.95 0.95 0.95
6 38.20 0.38 0.38 0.38
7 85.84 0.86 0.86 0.86
8 97.05 0.97 0.97 0.97
9 91.45 0.91 0.91 0.91

10 96.76 0.97 0.97 0.97
11 94.54 0.95 0.95 0.95
12 94.10 0.94 0.94 0.94
13 94.40 0.94 0.94 0.94
14 94.99 0.95 0.95 0.95
15 99.85 0.99 0.99 0.99

Avg. with subject 6 89.18 0.89 0.89 0.89
Avg. w/o subject 6 92.83 92.79 92.79 92.79
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Table 9 compares the results of the current study with earlier studies on the SEED and
SEED-IV datasets. Many earlier studies have used graph neural networks and recurrent neu-
ral networks (RNNs) to classify emotions using SEED or DREAMER datasets [17,18,29,36].
To classify emotions, the researchers have introduced a broad learning system method in
graph convolutional neural networks [29]. Researchers have also studied different numbers
of EEG channels for detecting emotions in order to reduce the complexity of the emotion
recognition system. It was found that systems with fewer EEG channels are more accurate
at detecting emotions than systems with a greater number of channels. Spatio-temporal
information was recently used to classify emotions using facial expression data and EEG.
Subject-specific and subject-independent emotion classifications have been conducted by
some researchers using public databases [17]. Using spatio-temporal features, we were not
able to find any research that used transfer learning or ensemble classifiers to recognize
emotion. The comparable state-of-the-art results of this study demonstrate the capability
of the 3D-CNN model to extract and learn spatio-temporal information from EEG signals.
Additionally, it shows that pre-trained 3D MobileNet models with transfer learning can
extract features that can be fed into ELM and MLP classifiers.

Table 9. Performance comparison between different relevant studies on SEED and SEED-IV datasets.
The numbers in the table are the best accuracy that the study achieved.

Methods of Emotion Recognition SEED SEED-IV

SVM 83.99/09.92 56.61/20.05
GSCCA [29] 82.96/09.95 69.08/16.66

DBN [34] 86.08/08.34 66.77/07.38
STRNN [18] 89.50/07.63 -
DGCNN [17] 90.40/08.49 69.88/16.29
BiDANN [37] 92.38/07.04 70.29/12.63

EmotionMeter [31] - 70.58/17.01
BiHDM [38] 93.12/06.06 74.35/14.09
RGNN [19] 94.24/05.95 79.37/10.54

3D-CNN with PST-Attention [39] 95.76/04.98 82.73/08.96
EeT (S+T Attention) [40] 96.20/04.39 83.27/08.37

3D-CNN + MLP 88.58/14.85 78.32/12.37
3D-CNN + ELM 89.18/14.72 81.6/12.04

3D-CNN + MLP + Postfilter (5 s) 90.43/14.49 81.92/12.18
3D-CNN + ELM + Postfilter (5 s) 90.85/14.45 83.71/11.92

Based on the computation time required to evaluate one minute of EEG data at a
200 Hz sampling frequency, Tables 10 and 11 illustrate the performance of the proposed
CNN models. This time includes the time it takes to load the EEG data, load the CNN
model, preprocess the dataset, and extract and evaluate features. Tables 10 and 11 show the
averages across five trials to eliminate discrepancies. During one minute of EEG recording,
the proposed model recognized emotions in 8–8.5 s.

Table 10. Computation time in seconds for evaluating 1 min of 62-channel EEG recording at 200 Hz
sampling frequency.

Task SEED-IV Computation
Time (s)

SEED Computation
Time (s)

EEG (1-min) loading from hard disk 0.968 0.945
CNN model loading from hard disk 0.053 0.051

Preprocessing (including RBF
interpolation and creation of 3D blocks) 3.567 3.723

Deep-feature extraction from CNN
model (GPU) 2.911 2.768

Evaluation using MLP model (GPU) 0.638 0.594
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Table 11. Evaluation time of different classifiers (in s).

MLP RF ELM SVM kNN XGB

0.638 0.476 0.339 0.846 0.192 0.563

In the case of real-time implementation of emotion recognition using EEG signals,
some of the parameters listed below could be considered for accurate and robust emo-
tion detection:

• Latency: An emotion recognition system (ERS) must be highly responsive and recog-
nize the user’s emotions without delay. A high latency may hamper ERS performance
and effectiveness in real-time applications.

• Precision/Accuracy: To identify a particular emotion, it is imperative that the ERS
is sufficiently accurate to distinguish between different users’ emotions. It is also a
necessity to improve the user experience by making the ERS as accurate as possible.

• Adaptability and robustness: An emotion recognition system must adapt to identify
different users’ emotions. ERS performance should also not be affected by any external
or internal noise.

• User-Friendly: The ERS should be easy to use, and it needs to be convenient to
configure it so that it recognizes the emotions of different users depending on their
environment. If the setup is bulky and inconvenient to carry, people may not like to
use it.

Moreover, researchers face some challenges when developing real-time emotion recog-
nition systems for human–computer interactive devices:

• Data Processing: In real-time applications, efficient algorithms, and hardware are
required to process data in real-time.

• Generalizability: The model should be robust and capable of delivering high perfor-
mance to new users without prior knowledge.

• Integration: The integration of emotion recognition models into HCI architecture
remains a major challenge. A seamless and efficient method for feeding data from
the EEG setup into the model is necessary in the case of EEG-based emotion recogni-
tion systems.

It is important to note that this study has a few limitations. For example, this study uses
only 3D Efficient MobileNet pre-trained models with transfer learning. Other pre-trained
3D-CNN models could be explored for better results. Additionally, only subject-dependent
emotion recognition was investigated here, while subject-independent emotion recognition
remains a challenge. Furthermore, future works can delve into the study of the extracted
features and their explainability.

6. Conclusions

This study adopted the success of 3D-CNNs in video analysis, owing to their capacity
to extract and learn temporal features in addition to spatial features. Using 3D-CNN, the
EEG signals are represented in 3D spatio-temporal space by first converting the 1D raw
EEG streams into 2D spatial streams and then stacking the 2D spatial streams into 3D EEG
block streams. A 3D MobileNet network with transfer learning was used to extract and
learn features from 3D EEG blocks. Additional pools and dense layers were added to the
CNN network to enhance classification capabilities. In the SEED-IV dataset, four classes of
samples were classified: happiness, sadness, fear, and neutral, with an accuracy of 78.32%.
The SEED dataset showed an accuracy of 88.58% for classifying the samples into three
groups: positive, neutral, and negative.

Additionally, the performance of hybrid models that were fed the extracted features
from the 3D-CNN network into different classifiers (XG boost, random forest, support
vector machine, k-nearest neighbor, and extreme learning machine), in addition to the
MLP classifier (dense layers and pool layers), was examined. Compared to SEED-IV and
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SEED, 3D-CNN-ELM hybrid models delivered significant improvements in performance
with an accuracy of 81.60% and 89.18%, respectively. The emotions of a healthy person
vary very little, so it could be assumed that emotions will remain constant for a short
period. These studies were used to investigate the model’s performance when post-filtering
the output labels with mode filters. A time window ranging from 5 to 15 s was selected.
The accuracy of the model increased as the time window of the mode filter increased. A
CNN-ELM hybrid model that applied post-filtering to a 15-s window achieved an accuracy
of 87.50%. The proposed model could be used for emotion recognition in HCI-related fields,
healthcare, etc.
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