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Abstract: Alzheimer’s disease (AD) is associated with the abnormal connection of functional net-
works. Olfactory impairment occurs in early AD; therefore, exploring alterations in olfactory-related
regions is useful for early AD diagnosis. We combined the graph theory of local brain network
topology with olfactory performance to analyze the differences in AD brain network characteristics.
A total of 23 patients with AD and 18 normal controls were recruited for resting-state functional
magnetic resonance imaging (fMRI), clinical neuropsychological examinations and the University of
Pennsylvania Smell Identification Test (UPSIT). Between-group differences in the topological proper-
ties of the local network were compared. Pearson correlations were explored based on differential
brain regions and olfactory performance. Statistical analysis revealed a correlation of the degree of
cognitive impairment with olfactory recognition function. Local node topological properties were
significantly altered in many local brain regions in the AD group. The nodal clustering coefficients
of the bilateral temporal pole: middle temporal gyrus (TPOmid), degree centrality of the left insula
(INS.L), degree centrality of the right middle temporal gyrus (MTG.R), and betweenness centrality
of the left middle temporal gyrus (MTG.L) were related to olfactory performance. Alterations in
local topological properties combined with the olfactory impairment can allow early identification of
abnormal olfactory-related regions, facilitating early AD screening.

Keywords: Alzheimer’s disease; resting-state fMRI; olfaction; brain network; graph theory

1. Introduction

Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease that can cause
the hidden progressive cognitive decline. Currently, more than 80% of patients with
dementia have AD [1]. The clinical manifestations of AD include memory impairment,
cognitive decline, aphasia, and executive dysfunction [2]. Approximately 40 million people
worldwide have AD [3]. The pathological changes in AD are irreversible, and there is no
effective treatment [4]. Therefore, diagnosing and managing patients with AD as early as
possible is important to delay its progression [5].

Among various examinations, the most common diagnostic method for AD currently
used is neuropsychological examination. This method is a simple, rapid, and standard-
ized clinical detection testing tool. However, owing to the compensatory mechanism
of brain injury, it is difficult to distinguish the early stage of AD from normal aging by
neuropsychological examination, which greatly challenges an early clinical diagnosis.
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The combination of graph theory and resting-state functional magnetic resonance imag-
ing (fMRI) has become a powerful tool for studying brain separation and integration [6,7].
This method can quantitatively characterize the topological organization of brain net-
works [8,9]. For patients with neurological or psychiatric disorders, the resting-state fMRI
can be easily performed without requiring stimulus presentation or patient response. Mean-
while, the brain can remain in a state of wakefulness and allow for relaxed movements
during this period [10]. Through graph theory analysis of resting-state fMRI, lesions in
certain localized brain regions may show alterations in the early functional network, caus-
ing a subtle impact on the life of patients with AD. The different property values of a local
brain region reflect the connectivity of the different functions in this region, indicating the
specific regions that have changed under the influence of disease. Node-based metrics can
reflect changes in the response of tissues throughout the functional network and meticu-
lously measure the nodal regions which are abnormally characterized during information
transmission. Accordingly, the characteristics of the brain tissue have been revealed and the
differences between healthy and diseased states compared [11,12], helping patients with
targeted prognosis and treatment. This study aimed to provide a more objective clinical
basis for early diagnosis of AD.

In terms of early biomarkers of AD, olfactory dysfunction is present in 85% of patients
with early AD [13]. Therefore, it is an effective biomarker for early diagnosis. However, the
olfaction-related regions which are abnormal during AD transformation remain unclear.
In previous investigations, olfactory dysfunction and accelerated cognitive decline were
related to the transition in AD status [14]. Recent studies have shown that odor-recognition
tests can predict a decrease in cognitive ability [15,16]. This is a critical period in which
the patient’s olfactory function has just shown abnormal signs without being judged as
cognitive impairment. In this period, if the olfactory-related abnormal regions can be
screened from many abnormal regions, it will provide early evidence for diagnosing and
treating AD.

This study explored the early abnormal brain regions with significant differences in
the brain network, combined with olfactory dysfunction in the early stages of AD, and
examined the early abnormal brain regions related to olfaction. These observations aimed
to provide objective information for the early detection of AD. To this end, the clinical
neuropsychological examination and olfactory test results of patients with AD and healthy
normal elderly individuals were compared. Based on the differences in the local network
properties of the nodes, the key brain regions where abnormalities occurred were explored.
Moreover, AD brain function abnormalities and their effects on daily physiological and
cognitive activities were analyzed. We established a correlation between the olfactory test
scores and the nodal properties with significant differences, and the diseased brain regions
that may appear in the early stage related to the olfactory were screened.

2. Literature Review

Generally, the clinical diagnosis of AD is mainly based on the patient’s medical
history of patients, clinical neuropsychological examination, and imaging. However, the
compensatory mechanism of brain injury in patients poses great challenges to early clinical
diagnosis. Searching for early biomarkers of AD and analyzing objective medical images
have become the main research methods.

Many graph theory studies have focused on global network analysis during the rest-
ing state. This analysis method of the global network compared the small-world network
properties, efficiency, normalized clustering coefficient, and other metrics to derive alter-
ations in the integration of the entire brain network as the brain processes information [17].
Thus, from a global perspective, it can be concluded that the mechanisms of the functional
organization are disrupted in patients with AD, and cognitive dysfunction may be caused
by abnormal connectivity between different brain regions [18]. However, the specific re-
gions that have changed in AD cannot be obtained from global-level analysis. Functional
connectivity represents the temporal correlation between communication activities in dif-
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ferent regions [19]. Some studies have used nodal degree and local efficiency as the main
measures [20,21], focusing on functional interactions between various local levels of brain
organization. Based on the calculation of the local network, Zhang et al. found that the
betweenness centrality of the bilateral caudate nucleus and right superior temporal pole
increased in patients with AD after treatment [22]. Therefore, the local network perspective
in graph theory can be used to elucidate or gain insights into the characteristics of diseases.

Standardized behavioral examinations have shown that olfactory dysfunction may
already be manifested in the prodromal stages of AD [23]. Roberts et al., through the
comparison between baseline and follow-up diagnoses, found that cognitive impairment
and odor identification testing were strongly associated, and the olfactory recognition
impairment could be an early indicator of brain changes [24]. Devanand et al. suggested
that patients with olfactory identification deficits, especially with those lacking awareness of
olfactory deficits, are more likely to develop AD [25]. In addition, one hypothesis indicated
that olfactory defects in AD are directly related to the underlying neuropathology of the
early onset region [26]. Vasavada et al. considered that compared with visual, auditory,
and somatosensory regions, lesions in local brain regions related to olfactory structures in
pathology, such as the inferior medial temporal region, have existed in the earliest stages of
the disease [27]. Accordingly, this study combined olfactory dysfunction with local brain
network alterations to explore abnormal olfaction-related regions.

3. Materials and Methods
3.1. Participants

A total of 41 participants including 23 patients with AD and 18 normal controls (NC)
were recruited and divided into two groups for this experiment. All participants provided
voluntary informed consents according to the standards set by the Ethics Committee of the
First Hospital of Jilin University. Furthermore, after obtaining a complete explanation of the
experimental purpose and the basic procedure of the fMRI scan according to the protocol
approved by the Institutional Research Review Committee, the participants provided
written informed consent. In this study, a series of standardized clinical neuropsychological
examinations were performed to evaluate the participants’ cognitive abilities. There were
three participants in the AD group whose cognitive abilities were insufficient to complete
the examinations and whose scores were not obtained. Therefore, they were not included
in the statistical analysis. The Mini-Mental State Examination (MMSE) [28] has a full score
of 30, which can be used for a simple cognitive assessment of patients with cognitive
impairment. The Montreal Cognitive Assessment (MoCA) [29] is characterized by a simple
process, short duration, and easy acceptance. The total score is 30 points, and a score of
26 or more indicates normal cognition. Impairment of memory and executive function
is evaluated by Memory and Executive Screening (MES) with a total score of 100 [30].
Moreover, it should be noted that education level had little effect on the score. The Clinical
Dementia Rating (CDR) [31] acts as an evaluation index of patient cognition; its score is
represented by the range of 0 (no dementia), 0.5 (suspected), 1 (mild), 2 (moderate) and
3 (severe), respectively. The Boston Naming Test (BNT) [32] provides a comprehensive
assessment of language ability, with scores greater than 22 considered normal. To explore
the impact of differences in olfactory function among the two groups, we performed
the University of Pennsylvania Smell Identification Test (UPSIT) [33] assessment on the
participants. On a scale of 40, 35–40 points indicate normal smell, 31–34 points indicate
mild olfactory dysfunction, 26–30 points indicate moderate olfactory dysfunction, and
19–25 points indicate severe olfactory dysfunction. Demographic and neuropsychological
examinations were conducted individually for each participant by professional evaluators
of neuropsychological research.

3.2. fMRI Data Acquisition

The resting-state fMRI data were collected using a Philips Ingenia 3.0T scanner at
the First Hospital of Jilin University. During this process, each participant was required
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to avoid head movement and close their eyes without thinking or falling asleep. It took
8 min for each scan of the 240 functional volumes to acquire the fMRI data. The specific
parameters were as follows: repetition time (TR) = 2000 ms; echo time (TE) = 30 ms; flip
angle (FA) = 90◦; field-of-view (FOV), 224 × 224 × 138 mm3; matrix size, 64 × 63 mm2;
slice thickness = 3.5 mm, and 33 slices. All original image files were available for subse-
quent analysis.

3.3. Data Preprocessing

fMRI data were preprocessed using the Statistical Parametric Mapping (SPM12,
http://www.fil.ion.ucl.ac.uk/spm/, accessed on 8 June 2020) and the Data Processing
Assistant for Resting-State fMRI (DPARSF, http://rfmri.org/DPARSF, accessed on 20 June
2020). The first 10 time points were discarded to eliminate the initial transit signal fluctua-
tions and reduce participants’ adaptation to the circumstances. The following functional
images were processed through a standardized data preprocessing process, including a
slice-timing correction to correct the difference in acquisition time between layers of a
volume and the realignment of head movement with the first volume. Due to the inclu-
sion of the patients, the participants’ head movements were controlled at 3.0 mm in any
dimension and 3.0◦ in any direction. The remaining images were spatially normalized
to the Montreal Neurological Institute (MNI) space with an Echo Planar Imaging (EPI)
template and resampled to a voxel size of 3 × 3 × 3 mm3. The images were smoothed
with a Gaussian kernel of 8 mm full width at half maximum (FWHM) to decrease spatial
noise. The linear trends removed movement-related noise after realignment or instrumental
instability. Finally, temporal bandpass filtering (0.01 Hz ≤ f ≤ 0.1 Hz) was performed to
reduce the effects of low-frequency drift and high-frequency noise.

3.4. Construction of Functional Brain Network

Functional brain networks were constructed based on the regions of interest (ROIs).
An anatomical automatic labeling (AAL, http://www.cyceron.fr/freeware/, accessed
on 11 January 2021) brain template was used to parcellate the brain into 90 regions of
the cerebrum and 26 regions of the cerebellum (Table 1 shows part of the brain region
abbreviations). Here, we mainly describe the regions of the cerebrum. These regions were
formed by applying multiple linear regression analysis and functional connection mapping
to processed resting-state fMRI data. Subsequently, a mean time series was extracted from
90 cerebral regions, and the Pearson correlation coefficient was calculated to estimate the
functional correlation among the time series [34]. Each participant generated a 90 × 90
correlation matrix. The correlation matrix was thresholded and was set at 0.10 to 0.50
with a partition interval of 0.01 to obtain a binarized matrix. A graphical model of each
participant’s brain functional network was constructed using a binary matrix. We explored
the functional relationships between the brain regions by analyzing these binary matrices.

Table 1. Abbreviations for brain regions.

Abbreviation Region Name

ACG Anterior cingulate and paracingulate gyri
ANG Angular gyrus
HIP Hippocampus

IFGoperc Inferior frontal gyrus, opercular part
INS Insula
ITG Inferior temporal gyrus

LING Lingual gyrus
MCG Median cingulate and paracingulate gyri
MTG Middle temporal gyrus

ORBinf Inferior frontal gyrus, orbital part
PHG Parahippocampal gyrus
REC Gyrus rectus
SPG Superior parietal gyrus

TPOmid Temporal pole: middle temporal gyrus

http://www.fil.ion.ucl.ac.uk/spm/
http://rfmri.org/DPARSF
http://www.cyceron.fr/freeware/
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3.5. Network Analysis

Topological properties of the corresponding brain networks were determined using
the graph theoretical network analysis toolbox (GRETNA, http://www.nitrc.org/projects/
gretna, accessed on 16 February 2022). Through graph theory, network architecture was
used to analyze the nodal metrics of the resting-state fMRI. Nodal local efficiency, nodal
efficiency, nodal clustering coefficient, degree centrality, and betweenness centrality were
calculated to evaluate the local characteristics of each cortical region in the functional
networks of the two groups. Nodal local efficiency refers to information dissemination
among a node’s direct neighbors, reflecting the network’s fault tolerance. The nodal
efficiency represents the average difficulty of a node from other nodes in the network.
The higher the efficiency of a node, the easier it is to transmit information to the other
nodes. The clustering coefficient of a node is used to measure the degree of network
clustering and is related to neighboring communication. This measures the possibility
that the neighbors of a node are neighbors. Degree centrality describes the centrality of a
node in the network; the node with the largest degree is considered the core node of the
network. Degree centrality reflects the importance of a node within a network. Similar to
nodal degree centrality, another parameter used to describe the importance of a node in
a network is betweenness centrality. This is a related and usually more sensitive metric,
which is defined as the fraction of all the shortest paths in the network that pass through a
given node. It is a demonstration of their ability to connect [35,36].

3.6. Statistical Analysis

Statistical analysis was performed using SPSS 25 software (IBM Statistical Package
for the Social Sciences, Inc., Chicago, IL, USA). The calculation of network properties did
not depend on a specific threshold, and the network sparsity thresholds were selected
from 0.10 to 0.50. Statistical analysis was performed by calculating the average values of
the area under the curve. Topological measurements of the two groups were statistically
compared using a two-tailed independent sample t-test. A two-tailed χ2 test was used for
gender comparison. Pearson correlation analysis was used to determine the correlation
coefficients between the two sets of scales or ordinal variables. However, when the data
were identified as being non-normally distributed, Spearman correlation analysis was used.
The correlation calculations included the correlations between the neuropsychological
measures and UPSIT scores as well as correlations between topological measurements with
significant differences and UPSIT scores. A value of p < 0.05 was considered a statistically
significant difference.

4. Results
4.1. Demographic and Neuropsychological Measures

Table 2 provides the demographic and neuropsychological summary of the AD and
NC groups, and no significant differences were found in age, gender or education level
between the two groups. The neuropsychological examinations (MMSE, MoCA, MES, CDR,
and BNT) showed significant differences between the two groups (independent sample
t-test, all p < 0.001). The average scores of the NC group in the MMSE, MoCA, MES, and
BNT groups were higher than those of the AD groups. Based on the CDR results, the
average score of the AD group was between mild and moderate cognitive impairment,
while the NC group had normal cognition. Moreover, the UPSIT scores of the groups of
participants were significantly different, with the AD group having lower scores than the
NC group.

http://www.nitrc.org/projects/gretna
http://www.nitrc.org/projects/gretna
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Table 2. Demographic and neuropsychological data of the study participants.

AD (n = 23) NC (n = 18) t/χ2 p

Age 66.69 ± 7.03 63.44 ± 8.16 1.368 * 0.179
Gender (M/F) 8/15 4/14 0.770 # 0.380

Education 10.95 ± 4.18 10.94 ± 3.78 0.010 * 0.992
MMSE 18.76 ± 5.82 27.82 ± 2.18 −6.583 * p < 0.001
MoCA 13.47 ± 5.21 23.29 ± 3.23 −7.105 * p < 0.001
MES 45.47 ± 17.94 85.70 ± 13.89 −7.579 * p < 0.001
CDR 1.59 ± 0.78 0.20 ± 0.25 7.800 * p < 0.001
BNT 12.40 ± 7.75 22.58 ± 3.16 −5.373 * p < 0.001

UPSIT 13.13 ± 5.09 23.23 ± 5.87 −5.742 * p < 0.001
AD, Alzheimer’s disease. NC, normal controls. MMSE, Mini-Mental State Examination; MoCA, Montreal
Cognitive Assessment; MES, Memory and Executive Screening; CDR, Clinical Dementia Rating; BNT, Boston
Naming Test; UPSIT, University of Pennsylvania Smell Identification Test. *, two-tailed independent sample t-test;
p, p-value; #, χ2 test.

4.2. Relationships between UPSIT Scores and Neuropsychological Measures

Pearson correlations between the UPSIT scores and neuropsychological measures are
shown in Figure 1. UPSIT scores were correlated with all five neuropsychological measures,
which were positively correlated with MMSE (r = 0.617, p < 0.001), MoCA (r = 0.654,
p < 0.001), MES (r = 0.620, p < 0.001), and BNT (r = 0.523, p = 0.001) scores, and they were
negatively correlated with CDR (r = −0.579, p < 0.001) scores.
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Figure 1. Pearson correlation between the University of Pennsylvania Smell Identification Test
(UPSIT) scores and clinical neuropsychological examination scores in two groups; p < 0.05 was the
statistical test analysis result of Pearson correlation.

4.3. Nodal Properties

The correlation matrices and functional connectivity patterns of the two groups are
shown in Figure 2. The nodal properties of the functional brain networks were calculated
based on these correlation matrices. To investigate the alterations in whole-brain node
metrics between the two groups, a two-tailed independent sample t-test was used. Figure 3
presents the results of the five nodal properties, of which 21 nodes showed significant
differences. Five nodal local efficiency calculation results were obtained: ORBinf.L, PHG.R,
SPG.R, ANG.R, and TPOmid.R. In PHG.R, SPG.R, and TPOmid.R, the nodal local efficiency
values in the AD group were lower than those in the NC group. Eight significant differences
were found in the nodal efficiency calculation results: bilateral IFGoperc, bilateral INS,
ACG.L, ANG.R, TPOmid.R, and ITG.R. Except for the TPOmid.R and ITG.R regions in the
temporal lobe, nodal efficiency in the AD group was higher than those in the NC group.
There were four significant differences in the calculation results of the nodal clustering
coefficient: PHG.R, SPG.R, and bilateral TPOmid. The values in the AD group were all
lower than those in the NC group. Through calculations, it was found that the 12 nodal
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regions had significant differences in degree centrality. These were bilateral IFGoperc,
ORBinf.L, REC.R, INS.L, ACG.L, HIP.L, ANG.R, MTG.R, TPOmid.R, and bilateral ITG.
In the statistical results, the AD group’s REC.R, HIP.L, MTG.R, TPOmid.R, and bilateral
ITG degree values were smaller than the NC group. On the contrary, the other six regions
with significant differences were all larger than the NC group. Seven were counted in
betweenness centrality, IFGoperc.R, REC.L, MCG.R, bilateral LING, MTG.L, and ITG.R.
Among them, four values, REC.L, MCG.R, MTG.L, and ITG.R were lower in the AD group
than in the NC group, and the other three values were greater in the AD group than in the
NC group. It should be noted that the TPOmid.R region had four significant differences
in the statistical results for the five properties. Moreover, the significantly different nodes
appearing in the temporal lobe region and the property values of the AD group were all
smaller than those of the NC group. The locations of these nodal regions in the brain are
shown in Figure 4.
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Figure 2. Correlation matrices of the functional brain networks in two groups. The correlation
matrices of the brain function networks of group Alzheimer disease (AD) and normal controls
(NC) were calculated based on 90 regions in the AAL90 template. The brain regions of the AAL90
template are assigned, where red represents the frontal lobe, yellow represents the parietal lobe,
green represents the occipital lobe, purple represents the temporal lobe, brown represents the insula,
orange represents the limbic system and blue represents the subcortex.
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Figure 4. Plots of regions on the cortical surface area. In AAL90, (a) nodal local efficiency, (b) nodal
efficiency, (c) nodal clustering coefficient, (d) degree centrality and (e) betweenness centrality nodal
properties have significant differences between the two groups; p < 0.05 was the statistics of two-tailed
independent sample t-test analysis results. When comparing each property, red and blue represent
the increase or decrease in node property values. The size of the sphere represents the property value.
Using BrainNet Viewer software, nodes are mapped to the cortical surface.

4.4. Relationships between the UPSIT Scores and Nodal Properties

Pearson correlation analysis was used to calculate the relationship between the UPSIT
scores and the five nodal properties, and significant differences were found between the
two groups. As shown in Table 3, the correlation between the UPSIT scores and nodal
properties was significantly different between the AD and NC groups. Among these, five
nodal properties were correlated with UPSIT scores. Node TPOmid.L (r = 0.320, p = 0.047)
and TPOmid.R (r = 0.383, p = 0.016) from the nodal clustering coefficient were positively
correlated with UPSIT scores. In evaluating degree centrality and UPSIT scores, there was
a negative correlation in the INS.L (r = −0.317, p = 0.049) and a positive correlation with the
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MTG.R (r = 0.417, p = 0.008). In addition, the MTG.L (r = 0.446, p = 0.004) of betweenness
centrality was related to UPSIT scores. Figure 5 shows the cortical surface and related
scatterers, corresponding to Pearson-related nodes in the AD and NC groups.

Table 3. UPSIT scores effects on nodal regions.

Properties Regions r p

Nodal Clustering Coefficient TPOmid.L 0.320 0.047
Nodal Clustering Coefficient TPOmid.R 0.383 0.016

Degree Centrality INS.L −0.317 0.049
Degree Centrality MTG.R 0.417 0.008

Betweenness Centrality MTG.L 0.446 0.004
The p-value obtained through Pearson correlation.
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5. Discussion

Significant differences were found between the AD and NC groups in the scores of neu-
ropsychological statistics and UPSIT olfactory detection scores, and the two types of scores
showed a correlation trend. Combined with graph theory analysis of resting-state fMRI,
specific brain functional network differences between brain regions were calculated, which
were characterized by changes in different properties. Moreover, the relationship between
local cortical regions that showed differences in olfactory performance was also explored.

5.1. Decrease in Cognitive Level and Olfactory Function

The AD and NC groups showed significant differences in neuropsychological examina-
tions and UPSIT scores, confirming the decline in the cognitive and olfactory identification
in AD. Although several neuropsychological evaluation scores were different, the results
showed that the AD group’s cognitive level decreased significantly in learning, memory,
executive function, and language expression. As depicted in Figure 1, the relevance of the
associated with the results of UPSIT score and neuropsychological examinations showed
that the olfactory recognition function gradually declined with the aggravation of cogni-
tive impairment. This indicates that odor recognition examinations have potential use in
screening for AD. They can also be used for the early detection of people at cognitive risk.
In summary, the olfactory recognition function can be used as a sensitive indicator for the
assessing of AD [24,37,38].
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5.2. Alteration in Nodal Network Topology

The nodal network topology measurement method can be used to evaluate the im-
portance of a single node region for different nodal properties. This study used five nodal
properties to compare the two groups in a multifaceted manner for local region transitions.
Compared with a single property, incorporating different connectivity metrics into the net-
work analysis of the characteristics can help complement information and capture regional
characteristics more comprehensively. Significant alterations in some functional regions
existed for each of the five nodal properties. The alterations were widely distributed in most
cortical regions and spread throughout the cerebral cortex. The increases and decreases in
the two groups of values in the same region were different. As shown in Figure 4, the clus-
tering coefficient values of nodes affected by the AD group tended to decrease compared to
those of the normal participants. As an index to measure the degree of network clustering,
a decrease in the clustering coefficient also indicates that the connection between the node
and neighboring nodes is decreasing, and the information transmission capacity is also
weakened. These regions can continue to integrating local functions to maintain the balance
of brain operations. As shown in Figure 3, the obtained results were similar to those of
previous studies, and some regions in the frontal and temporal lobes showed significant
characteristic increases and decreases [39]. These regions with significant differences will
become our focus.

Recent studies have reported that increased functional connectivity in the frontal
lobe is associated with the maintenance of episodic memory [40–42]. According to the
calculated results in Figure 3, there were significant differences between the two groups
in the bilateral IFGoperc and ORBinf.L of the inferior frontal gyrus. The values in the AD
group were greater than those in the NC group. It is widely accepted that IFGoperc is
involved in the maintenance of memory [43,44] and odor recognition [23]. Based on the
above results, the bilateral IFGoperc showed significant alterations due to the influence
of AD. The connections with other regions increased, and the information transmission
capacity improved. Meanwhile, the degree of collectivization decreased, and the status and
role of the network increased. Moreover, it is well known that the inferior frontal gyrus
could participate in the maintenance of memory, involving the integration of information
accompanied by the encoding and unlocking of episodic memory [41]. The inferior frontal
gyrus plays a key role in interference and helps to maintain cognitive control processes. In
addition, some studies suggest that REC is associated with alexithymia, cognitive empathy,
and successful memory performance [45]. In conclusion, it was confirmed that some frontal
gyrus regions could be affected by AD, playing an important role in studying the effect of
AD on memory.

The AD and NC groups showed significant differences in the temporal lobe’s bilateral
MTG, bilateral TPOmid, and bilateral ITG. These regions in the AD group showed a
downward trend compared to those in the NC group. These regions involve high-level
cognitive functions such as episodic memory, attention, motivation, self-awareness, and
audiovisual integration [46]. The effect of AD on the temporal lobe has been proven
in many documents [47,48]. For example, Dai et al. found that the AD group had a
reduced degree centrality of nodes in the right superior temporal pole, TPOmid.R, and
ITG.R [49]. Cognition refers to how people acquire, process, and apply information through
perception. Alterations in temporal lobe regions are associated with the appearance of
objective cognitive impairment [47]. This was also consistent with the results of the clinical
neuropsychological examinations. Moreover, the temporal pole is known to be involved in
recognizing olfactory odors and regulating different cognitive functions, such as attention,
recognition, emotion, and memory [20]. Notably, in Figure 3, we found that the two groups
were present in the regional assessment of the four properties of TPOmid.R, indicating
that TPOmid.R plays a considerable role in the brain topology network and is the potential
center of the neural substrates related to cognitive reserve. In general, compared to other
lobes in AD, the topological network properties of the partial regions in the temporal lobe
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decreased significantly. This could provide valuable information for the development and
early diagnosis of AD.

AD is characterized by memory and cognitive impairment, which is related to the
observed abnormalities in HIP, PHG, and other related regions. In this study, our results
showed that some limbic system regions altered network topology, including HIP.L, PHG.R,
ACG.L, and MCG.R. In a previous histopathological study, the limbic system degenerated
in the early stages of AD [50]. Moreover, Pili et al. pointed out that HIP is one of the
earliest brain regions to be altered in AD, and that the extent of abnormalities may reflect
the disease severity [51]. It is responsible for encoding long-term memories and assisting
spatial navigation in AD. HIP.L showed a decrease in degree centrality compared to NC.
The degree of coupling in the HIP.L of AD was disrupted. The function of the PHG mainly
involves memory creation and the recall of visual scenes. PHG.R of AD showed a decrease
in the nodal local efficiency and clustering coefficient. The communication and information
transmission efficiency of the PHG.R was decreased. The cingulate region is the first to
be affected by AD [52]. ACG in the limbic system has subregional differences in many
previous neuropsychiatric and neurodegenerative diseases brain network studies [53,54].
The increase in the regional activities of ACG.L could be interpreted as a mechanism com-
pensating for olfactory memory tasks. MCG.R is the key region for proactive rather than
reactive action control. The betweenness centrality of this region decreased, indicating
that the control ability also decreased. In addition, the INS is thought to be involved in
emotional processing and arousal, including awareness of one’s physical state, decision
making, and other executive processes [55]. INS is also believed to direct the regulation
of cerebral circulation, thereby helping maintain memory [56,57]. The increase in nodal
efficiency and the topology with surrounding nodes all prove that the INS had disequilib-
rium in the control of sensation, memory, and visceral control. The bilateral LING in the
occipital lobe is closely related to visual recognition and plays an important role in episodic
memory [58]. In the parietal lobe, SPG involves discerning aspects of sensation, such as
shape, roughness, size, texture and memory of the position of an object in space [59]. ANG
is related to language processing, mathematics, and other cognitive skills. In summary,
the results obtained are consistent with the clinical manifestations of AD. The abnormali-
ties in these regions may indicate disease progression and confirm the demographic and
neuropsychological results.

5.3. Interaction between Olfactory Performance and Nodal Alteration Region

Olfactory ability is closely associated with brain function and health. However, al-
terations in olfactory abilities are often overlooked. Researchers believed that the risk of
cognitive decline above the olfactory performance threshold is reduced in elderly peo-
ple [60]. Studies of AD olfactory disorders found that the impairment of olfactory-related
regions [61,62] could not completely cause the anosmia in the olfactory function of pa-
tients with AD. There remains residual capacity for additional recruitment. Impairment of
odor identification is an early sign of the brain losing its ability to repair itself. Therefore,
after obtaining the abnormal brain regions, the UPSIT scores for selecting or stratifying
were calculated using Pearson correlation to screening the main regions with olfactory
impairment [63].

The results in Table 3 displayed that the local nodal properties with significant differ-
ences in correlation with UPSIT scores in the two groups were mainly found in the INS.L
and local regions of the temporal lobe. This proved that the function of some local regions
in the AD group had changed compared with the normal elderly group, leading to a decline
in olfactory function. The degree centrality of INS.L was negatively correlated with UPSIT
scores, and the degree centrality values of INS.L in the AD group were higher than those
in the NC group. INS is involved in the perceptual processing of odor characteristics.
Previous order fMRI studies have shown a significant increase in INS activation during the
response to pleasant and unpleasant odors [64,65]. This suggests that the INS responds to
the hedonics of odors and is involved in processing the emotional aspects of odors. This
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reflects the role of the INS.L region in olfaction. Although the olfactory function of patients
with AD showed a downward trend in the UPSIT, it prompted the improvement of INS.L
in olfactory recognition analysis. The alteration of INS.L nodal properties may have been a
key local region in the early stages of AD.

Middle temporal lobe structures are well known to be significantly atrophic in
AD [66,67]. Moreover, bilateral MTG is associated with odor memory, odor recognition,
and odor processing [68]. Accordingly, the correlation between the decreased property
values of the bilateral MTG region and UPSIT scores in the AD group confirmed a decrease
in olfactory function. In addition, in neuroimaging literature, the temporal pole can connect
the emotional processing of olfactory stimuli with mentalizing or theory of mind and
combine emotional responses with highly processed sensory stimuli. The temporal pole
collects information obtained by the sense of smell, perceives and remembers the acquired
information, and makes visceral emotional responses [49,69]. The memory function of
this region allows the storage of perception–emotion connections, forming the basis of
personal semantic memory. As shown in Table 3, the bilateral TPOmid in the two groups
was associated with olfactory processing and feedback. However, the decreasing trend
of UPSIT scores and nodal clustering coefficient values of bilateral TPOmid in the AD
group confirmed that patients with AD had different performances in odor discrimination.
Therefore, the study of olfactory-related alterations in local brain regions may be useful
for improving the early discovery of AD and may further promote the early treatment
interventions for AD.

5.4. Limitations

Although the current research results have confirmed that AD affects the alterations
in regional brain function and olfactory-related brain network dysfunction, this study has
some limitations. First, in terms of data collection, the amount of data collected from
the participants was not large. Here, we only compared and analyzed participants in
the AD and NC groups. In the future, we will continue to collect data and try to recruit
participants with intermediate transition states, such as subjective cognitive decline and
mild cognitive impairment, to explore the gradual progression of AD. In addition, we plan
to increase the task fMRI experimental design. More in-depth research on the olfactory
system should be carried out. The combination of olfactory detection and fMRI can provide
more objective evaluation information for exploring early biomarkers of AD from the
behavioral and imaging aspects. Furthermore, this approach could also be considered for
studying neurodegenerative diseases such as dementias and tauopathies.

6. Conclusions

We applied graph theory to analyze the differences in the resting-state fMRI brain
network between patients with AD and healthy elderly individuals as well as the difference
in the effect of alterations in olfactory function on local brain regions. Five nodal properties
were used to evaluate abnormalities in local regions. The calculated local regions with
significant differences correlated with the UPSIT scores; that is, the local regions related
to olfaction that may appear in the early stage of AD were obtained. Our study suggests
that as the nodal properties of many local regions are altered, there is a gradual decrease in
olfactory discrimination and an increase in cognitive impairment. In summary, olfactory
dysfunction is an early symptom of AD. Combining a simple, quick, and cost-effective
olfactory test with localized abnormal functional brain regions will provide new directions
for early diagnosis and more time for patient treatment.
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