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Abstract: Cognitive coping strategies to deal with anxiety-provoking events have an impact on
mental and physical health. Dispositional vigilance is characterized by an increased analysis of
the threatening environment, whereas cognitive avoidance comprises strategies to inhibit threat
processing. To date, functional neuroimaging studies on the neural underpinnings of these coping
styles are scarce and have revealed discrepant findings. In the present study, we examined automatic
brain responsiveness as a function of coping styles using functional magnetic resonance imaging.
We administered a perceptual load paradigm with contemptuous and fearful faces as distractor
stimuli in a sample of N = 43 healthy participants. The Mainz Coping Inventory was used to assess
cognitive avoidance and vigilance. An association of cognitive avoidance with reduced contempt
and fear processing under high perceptual load was observed in a widespread network including
the amygdala, thalamus, cingulate gyrus, insula, and frontal, parietal, temporal, and occipital areas.
Our findings indicate that the dispositional tendency to divert one’s attention away from distressing
stimuli is a valuable predictor of diminished automatic neural responses to threat in several cortical
and subcortical areas. A reduced processing in brain regions involved in emotion perception and
attention might indicate a potential threat resilience associated with cognitive avoidance.

Keywords: avoidant coping; vigilant coping; repression; sensitization; fMRI; magnetic resonance imaging

1. Introduction

Anxiety is an emotional state that is characterized by high physiological arousal, vig-
ilance, and the subjective experience of distress and apprehension, prompted by distant
and unpredictable threats [1,2]. In general, anxiety is considered as an adaptive emo-
tion that serves the maintenance of safety and well-being [3]. However, when feelings of
anxiety become persistent and excessive, individuals may have a higher risk for cardio-
vascular diseases [4] or may even be diagnosed with an anxiety disorder when symptoms
lead to functional impairments in daily life [5]. Coping strategies in response to stress-
ful events have been implicated in the pathogenesis of mental and physical disorders
(e.g., [6–8]). Therefore, coping skills are potential targets for prevention or intervention
programs [9]. There are inter-individual differences in the dispositional use of coping
strategies to deal with anxiety-inducing situations. Krohne [10] has suggested in his model
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of coping modes (MCM) for threatening situations two dimensions of dispositional coping
behavior: vigilance and cognitive avoidance. Vigilance is characterized by an intense search
for information related to the threatening event. In contrast, cognitive avoidance denotes
the disposition to inhibit the processing of threatening information by directing attention
away from threat cues that can be of external or internal nature. Factor analyses have
confirmed the assumption that vigilant and cognitive avoidant strategies are moderately
(negatively) related, but constitute independent dimensions of dispositional coping with
anxiety [11,12]. In the MCM, Krohne [10] has claimed that anxiety-inducing incidents
are characterized by the presence of aversive stimulation and ambiguity, which can trig-
ger emotional arousal and experiences of uncertainty regarding the occurrence of threats.
Vigilance is a coping strategy that is supposed to reduce uncertainty and the probability
of bad surprises. Cognitive avoidance aims at the reduction of intense anxious arousal
by shielding the individual from aversive stimulation. In the MCM, it is suggested that
individuals with a low tolerance for experienced uncertainty are inclined to make use of
a vigilant coping style. Thus, vigilant individuals monitor their environment intensely
to be prepared for the occurrence of potentially threatening information. On the other
hand, individuals that are highly susceptible for anxious arousal are supposed to avoid
danger cues. Individuals scoring high in vigilance but low in cognitive avoidance have
been designated as sensitizers. Individuals who consistently employ cognitive avoidance
but not vigilance have been designated as repressors [11]. There is evidence for an over-
lap between the coping style classifications according to Krohne [10] and according to
Weinberger et al. [13]; see Egloff and Hock [14] and Krohne et al. [11]. The simultaneous
utilization of scales to assess social desirability and trait anxiety has been proposed by
Weinberger et al. [13] to classify repression and sensitization based on median splits or
cut-off scores. Within the framework of Weinberger et al.’s [13] theory of coping strategies,
it is assumed that repressors report low scores in anxiety, as they avoid the awareness
of their own anxiety, while they display high repressive defensiveness. In response to
stress, repressors are characterized by discrepancies among low self-reported distress but
high levels of autonomic arousal. Despite some differences in the theoretical foundations,
Krohne’s [10] and Weinberger et al.’s [13] methods appear to assess related constructs,
in particular with respect to repression and sensitization. Thus, findings based on both
assessment procedures might be comparable [14], but see Kohlmann [15] for contradictory
findings. The classificatory system of Weinberger et al. [13] is category-based, which has
been criticized (e.g., [16]), whereas Krohne et al. [11] have provided with the Mainz Coping
Inventory (MCI), a dimensional measure to assess cognitive avoidance and vigilance.

Neuroimaging research on vigilant and cognitive avoidant coping styles in the frame-
work of Krohne [10] is scarce and revealed heterogeneous findings. Most studies have
investigated brain activation as a function of coping styles during threat processing by
comparing individuals categorized as repressors with individuals categorized as sensitizers.
This categorical approach provided interesting insights regarding neural differences be-
tween repressors and sensitizers. During the passive viewing of visible or briefly displayed
emotional faces, repressors have exhibited heightened responsivity to fearful faces in the
anterior cingulate cortex (ACC) and in the temporo-occipital visual system, relative to
sensitizers [17]. On the other hand, sensitizers have demonstrated exaggerated responsivity
to angry faces in the frontal cortex and increased amygdalar reactivity in response to visible
fearful faces. During an explicit emotion processing task, where very briefly presented
facial emotions had to be labeled, repressors have shown stronger activity than sensitizers
in frontal and temporo-parietal areas in response to angry and fearful faces [18]. Similar
findings have been reported for the explicit threat-evaluation of visible emotional faces [19].
Here, repressors exhibited heightened activity in response to angry but not fearful faces
in the temporo-parietal and frontal cortex, compared to sensitizers. Stronger activations
in repressors may indicate an intensified processing of specific threatening stimuli, but
may also represent increased attentional control or emotion regulation efforts to enable
task performance (see also [17–19]). There is also evidence for stronger activations in
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repressors compared to sensitizers in the amygdala and insula during fear conditioning
with electrical stimulation [20]. Higher activations in these emotion-related brain areas
were accompanied by stronger responses in the ventral ACC and ventromedial PFC, brain
regions that have been implicated in emotion evaluation, emotion-related learning, and
emotion regulation [21,22]. In sum, studies using categorical approaches partly point to
heightened reactivity in prefrontal, temporal, parietal, and occipital areas in repressors
relative to sensitizers. Higher responsivity to threat appears to depend strongly on the
emotional quality of the stimulus, as angry faces produce more homogeneous findings
than fearful faces.

Vigilance appears to be positively related to trait anxiety, whereas cognitive avoidance
shows a negative correlation with anxiety [11,15,23,24]. However, none of the reported
imaging studies on coping styles have considered a potential influence of anxiety.

Given the background information that vigilant and cognitive avoidant strategies
are not conceptualized as opposite poles of a continuum, but as independent dimensions
of dispositional coping [11,12], it is surprising that only one study used a dimensional
approach to predict brain responsiveness to emotional faces by both coping styles, each
independently. Leehr et al. [25] have used in a large sample an automatic emotion pro-
cessing task, where individuals had to match the identity of threatening or neutral faces.
Thus, the emotional quality of the faces was not relevant for task performance. Here, no
relation among cognitive avoidance and brain responsiveness to fearful and angry faces
was observed. A cerebral hyper-responsiveness in high cognitive avoidance could not be
confirmed. High vigilance was associated with diminished activity in the anterior cingu-
late gyrus in response to angry, but not fearful, faces. A recent study on brain structural
correlates of vigilant and cognitive avoidant coping styles linked volumetric alterations in
the thalamus to both strategies to manage anxiety-provoking situations [24]. The thalamus,
along with the amygdala, has been implicated in an automatic alerting system when faced
with potential threat-related cues [26], in which the thalamus sends coarse information of
potential danger signals to the amygdala (e.g., [27,28]). Günther et al. [24] found high vigi-
lance to be related to volumetric increases in the thalamus, whereas reduced thalamic gray
matter volume was found in cognitive avoidance. The heterogeneity of previous findings
might partly be attributed to different methodologies (e.g., extreme group comparisons or
dimensional approaches) and variations in applied experimental tasks in functional mag-
netic resonance imaging (fMRI) studies (e.g., controlled or automatic emotion processing
with varying stimulus durations). The inconsistent results point out the importance of
further research.

Faces and their emotional content appear to be processed fast and efficiently by the hu-
man visual system [29,30]. In general, threat-related stimuli were shown to have an impact
on improved behavioral control capabilities [31] and to activate a distributed brain network
including the amygdala, insula, and inferior frontal and temporal gyrus; see [32] for an
overview. There is evidence that emotional stimuli capture attention involuntarily [33,34]
and that their valences are evaluated automatically [35]. However, the automatic processing
of emotionally salient stimuli appears to depend on the availability of sufficient attentional
resources (e.g., [36,37]). According to the Load Theory ([38,39], see [40] for an overview),
the processing of task-irrelevant distractors is prevented when high task demands or a
large amount of task-relevant information leave no spare perceptual capacity. In this case,
attention to threat distractors is inhibited due to a lack of processing resources. Interest-
ingly, brain responsiveness to emotional face distractors under different perceptual-load
conditions has been shown to be modulated by non-clinical [37] and clinical anxiety [41].

To our knowledge, no previous study investigated the effects of attentional load on
the neural processing of threat distractors as a function of dispositional coping styles. In
the present study, functional magnetic resonance imaging (MRI) scans were selected from
healthy individuals with varying degrees of vigilant and cognitive avoidant coping strate-
gies while they performed a perceptual load task with contemptuous, fearful, and neutral
faces. Fearful faces are considered as biologically salient stimuli that signal potential threats
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in the environment [42], whereas contempt has been characterized as a hostile emotion [43],
which can imply disapproval and rejection [44]. Previous neuroimaging studies, which
used a dimensional approach [24,25], pointed to associations between coping styles and
brain functional and structural alterations in the ACC and the thalamus. Thus, the ACC and
thalamus were chosen as our regions of interest (ROIs). We expected increased thalamic
and reduced anterior cingulate responsiveness to threat faces in vigilance, and decreased
thalamic reactivity in cognitive avoidance. Due to heterogeneous results from earlier stud-
ies with differing experimental designs, we used an exploratory whole-brain approach
to examine the relationship between vigilant/avoidant coping and brain responsiveness
under low and high perceptual load.

2. Materials and Methods
2.1. Participants

Forty-five healthy volunteers participated in this study. All participants had to be
native German speakers with a normal or corrected-to-normal visual acuity. Participants
were recruited via public notices in canteens and libraries and online advertisement in
social networks. Exclusion criteria for study participation were a history of neurological or
psychiatric diseases, MRI contraindications, head trauma involving loss of consciousness,
and left-handedness. To exclude potential diagnoses of past or current Axis I disorders, the
Structured Clinical Interview for DSM-IV Axis I disorders (SCID-I; [45]) was administered.

Two participants had to be excluded, as they were extreme scorers in overall hit rates
(>4 SD below the mean), which was mainly due to omission errors indicating an inattentive
task performance. The final sample included N = 43 subjects (22 women), with a mean age
of 23.81 years (SD = 3.59) and a mean school education of 12.09 years (SD = 0.48). When all
tasks were completed, participants received financial compensation.

2.2. Psychometric Measures

Cognitive avoidance and vigilance were assessed by the Mainz Coping Inventory
(MCI; 11.23). The MCI is as a stimulus-response inventory that consists of 80 items. Eight
anxiety-evoking scenarios are described, including ego threat (e.g., giving a speech) and
physical threat (e.g., an encounter with dubious people at night), and for each scenario,
five vigilant strategies, such as “anticipation of negative events” and “information search”
(e.g., “I think about what questions might be asked after the speech” or “I watch the
dubious people closely”) and five cognitive avoidant strategies, such as “re-interpretation”
and “attentional diversion” (e.g., “I prefer to talk with friends about something other than
the speech”) are administered. For each scenario, participants are instructed to state on a
true-false scale which of the mentioned strategies they would prefer. Across all situations
and items, sum scores are calculated separately for the vigilance and cognitive avoidance
scales.

Levels of trait anxiety were measured with the trait version of the State-Trait Anxiety
Inventory (STAI; [46]). Questionnaire characteristics of the final sample and correlations
between the psychometric measures are presented in Table 1. Vigilance and cognitive
avoidance showed a moderate negative relationship. Moreover, trait anxiety was positively
correlated with vigilance and negatively correlated with cognitive avoidance.

Table 1. Descriptive statistics and correlations (df = 41) between psychometric measures.

Coping Trait Anxiety

M (SD) MCI-CAV STAI

MCI-VIG 22.00 (6.80) −0.41 ** 0.35 *
MCI-CAV 23.75 (5.11) - −0.36 *
STAI-trait 35.05 (6.82) - -

* p < 0.05; ** <0.01 (two-tailed) MCI = Mainz Coping Inventory; VIG = Vigilance scale, CAV = Cognitive avoidance
scale; STAI = State-Trait Anxiety Inventory.
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2.3. fMRI Experiment: Perceptual Load Task

The automatic emotional face processing task, with a low and high perceptual load
condition, was adapted from Bishop et al. [37]. Stimuli consisted of photographs of
24 actors (12 men) picturing either fear, contempt, or neutral facial expressions, chosen from
the Radboud Faces database [47]. Six additional actors depicting neutral faces were used for
an initial practice task. Subjects were told that they would perform a letter search task and
were instructed to respond as accurately as possible. We were primarily interested in brain
responsiveness to emotional expressions, not reaction times. Conscious awareness of an
erroneous response appears to elicit activity in the ACC (e.g., [48]). To avoid interferences
with error-related brain responsiveness, we aimed at a low number of overall error trials
and did explicitly request accurate, but not necessarily fast, responses from the participants.
Responses were given on a fiber optic response pad in each hand via button presses with
the left and right index finger.

The duration of each trial was 3 s and it started with a fixation cross that was shown for
500 ms, followed by 1000 ms of face and letter presentation; see Figure 1. The emotional or
neutral face stimulus was a task-irrelevant distractor that was superimposed by a string of
six letters. The participants had to identify the target letters X and A. In the low perceptual
load condition, the string was entirely composed of target letters (e.g., six As). In the
high perceptual load condition, a single target letter was randomly mixed with non-target
letters (T, H, U, M, W), increasing attentional search requirements. A gray screen where the
assignment of the letter responses to the buttons was depicted followed for 1.5 s.
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Depicted is the sequence of events within trials of the perceptual load task in the low
load condition (top illustration) and high load condition (lower illustration). Distractor
stimuli were contemptuous, fearful, or neutral faces. Targets were the letters X or A.

The task comprised 24 blocks (4 per condition) of 6 trials. Trials within a block were
randomized with respect to the target letter, but were constant regarding the load condition
(low vs. high) and facial emotional expression (fearful, contempt, neutral). We balanced
the presentation frequencies of actors across the experiment. Each block lasted for 18 s and
was followed by a 12 s blank screen. Two fixed counterbalanced sequences were chosen
for the trials to avoid stimulus order effects. Presentation® software was used for stimulus
presentation and to record responses.
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2.4. MRI Acquisition and Preprocessing

Structural and functional MR images were selected using a 3 T scanner (Magnetom
Trio, Siemens, Erlangen, Germany) with a 20-channel coil. Structural images were ob-
tained with a T1-weighted 3D MP-RAGE [49] with the following imaging parameters:
TI 900 ms, TR 1900 ms, TE 2.65 ms, flip angle 9◦, spatial resolution of 0.8 × 0.8 × 1 mm3,
and two averages. Blood oxygen level dependent (BOLD) contrast sensitive images were
collected using T2*-weighted echo-planar imaging (EPI) sequence (matrix 642; resolu-
tion 3.5 × 3.5 × 3.5 mm3; TR 2.54 s; TE 30 ms; flip angle 90◦; interleaved acquisition of
40 slices along the AC-PC plane; 237 images). To preprocess and analyze MRI data SPM8
(http://www.fil.ion.ucl.ac.uk/spm/, accessed on 14 November 2013) was used. The first
four functional volumes were discarded to allow longitudinal magnetization to reach
equilibrium. Preprocessing included motion-correction, slice time-correction, and co-
registration. Anatomical images were segmented, including normalization to the Montreal
Neurological Institute (MNI) template. The normalization parameters were then applied
to the functional EPI series (resulting in a re-sampled voxel size of 3 × 3 × 3 mm3). A
temporal high-pass filter (128 s) was applied. Functional data were smoothed (Gaussian
kernel size = 6 mm).

2.5. Data Analyses

Mean accuracy was high with 97% (SD = 0.03%), and overall hit rates were not
significantly correlated with the vigilance scale (MCI-VIG) or the cognitive avoidance
scale (MCI-CAV), (r(41) = 0.25, p = 0.11 and r(41) = −0.07, p = 0.67, respectively). Cop-
ing styles were not related to effects of emotion on accuracy (hit rate neutral minus hit
rate emotion) in the different perceptual load conditions (see Supplementary Table S1).
A 2 (perceptual load condition: low vs. high) × 3 (emotion condition: fear, contempt,
neutral) analysis of variance with repeated measures and hit rates as dependent variables
revealed no significant main effects for load and emotion, or interactions (all ps > 0.21).
Thus, hit rates were not influenced by the cognitive load condition or emotion condition,
probably due to ceiling effects in task performance.

Functional MRI data were analyzed by modeling the onset and duration of 18 s for
each block. Regressors were convolved with a hemodynamic response function for the six
conditions (contempt-low load, contempt-high load, fear-low load, fear-high load, neutral-low
load, neutral-high load). First-level t-contrasts were calculated for the low load condition
by contrasting the contempt and fear condition with the neutral one, separately. The same
was done for the high load condition, where contempt and fear were each contrasted with
the neutral condition. These contrasts were chosen to determine whether activations were
clearly triggered by the emotional content of facial expressions, under low and high load
separately. First-level t-contrasts (and following second-level main effect analyses) were also
calculated for the load factor, where the low load condition was contrasted to the high load
condition of the same emotion (e.g., contempt under low load vs. contempt under high load).
These contrasts allow conclusions about activations elicited by task demands under a certain
emotional condition and are reported in Table S2 in the Supplementary Materials.

For the second-level analyses, one-sample t-tests were performed to determine main
effects of contemptuous expressions (vs. neutral ones) under low load and under high load,
and of fearful expressions (vs. neutral ones) under low load and under high load. Contrast
images were entered into regression models with the respective individual MCI-VIG and
MCI-CAV scores as regressors of interest. One regression model was calculated per coping
style and per contrast. Due to the evidence that trait anxiety is associated with vigilant and
cognitive avoidant coping strategies, STAI scores and sex were also entered in these models
to regress out a possible influence.

Exploratory whole-brain analyses were conducted with a voxel-wise threshold at
p < 0.001 (uncorrected) and an additional cluster-level threshold of p < 0.05, family-wise-
error (FWE) corrected. ROI analyses were carried out for the bilateral thalamus and ACC.

http://www.fil.ion.ucl.ac.uk/spm/
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To create an anatomically defined mask, the WFU Pickatlas [50] was used (according to [51]).
For ROI analyses, the statistical threshold was set to p = 0.05, FWE-corrected.

3. Results
3.1. Neural Main Effects
3.1.1. Main Effects of Threatening Faces under Low Perceptual Load

Across all participants, contemptuous faces (compared to neutral faces) that were pro-
cessed under low perceptual load conditions significantly evoked activation in the left superior
and bilateral inferior parietal lobule (BA40), the right middle temporal and fusiform gyrus,
the right inferior frontal gyrus (BA9), and the thalamus see Table 2. Fearful faces produced no
significant brain activations relative to neutral faces under low perceptual load.

Table 2. Threat main effects: Brain regions showing increased activation in response to threatening
(vs. neutral) faces under low and high perceptual load.

Hemisphere Peak T-Value Peak-Level Cluster Cluster-Level Peak MNI

puncorrected
Size

(Voxels) pFWE x y z

Low perceptual load - - - - - - - -
Contempt > neutral - - - - - - - -

Superior extending to
inferior parietal lobule R 5.61 <0.001 183 0.004 42 −55 55

Middle temporal extending
to fusiform gyrus R 5.23 <0.001 536 <0.001 57 −46 −5

Inferior frontal gyrus R 5.33 <0.001 278 0.003 45 26 22
Inferior parietal lobule

(BA40) L 5.10 <0.001 183 0.004 −42 −52 55

Inferior temporal gyrus L 4.57 <0.001 171 0.005 −42 −49 −17
Thalamus (ROI) L 3.69 <0.001 1 0.04 9 −28 1
Fear > neutral - - - - - - - -

- - - - - - - - -
High perceptual load - - - - - - - -
Contempt > neutral - - - - - - -

- - - - - - - - -
Fear > neutral - - - - - - -

Inferior frontal extending to
precentral gyrus L 4.73 <0.001 230 0.003 −51 17 19

Superior temporal gyrus R 4.89 <0.001 267 0.001 −57 −43 13
Superior temporal gyrus L 5.33 <0.001 217 0.004 −57 −46 13

Cerebellum R 4.62 <0.001 419 <0.001 42 −67 −29

Neuroanatomical labels, hemisphere, peak voxel t- and p-values, cluster extent, cluster-level p-values, and
coordinates in MNI space are presented. Activation clusters are yielded by one-sample t-tests and are significant
at p = 0.001 (uncorrected) and a cluster-level threshold of pFWE < 0.05.

3.1.2. Main Effects of Threatening Faces under High Perceptual Load

Contemptuous (vs. neutral) faces produced no significant brain activations under high
load conditions. Fearful faces, compared to neutral faces, significantly evoked activations
in the left inferior frontal gyrus, extending to the precentral gyrus, in the bilateral superior
temporal gyrus, and the cerebellum; see Table 2.

3.2. Relationship among Brain Activation to Threat Faces and Coping Styles
3.2.1. Vigilance

ACC and thalamus ROI-based analyses and whole-brain analyses showed no signifi-
cant associations between a vigilant coping style and activations in response to contemptu-
ous (vs. neutral) or fearful (vs. neutral) faces under low or high load conditions.
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3.2.2. Cognitive Avoidance

Exploratory whole-brain regression analyses and thalamus ROI-analyses with the
cognitive avoidance scale did not reveal associations with brain reactivity to contemptuous
(vs. neutral) or fearful (vs. neutral) faces under the low load condition.

In thalamus ROI-based regression analyses under high load conditions, cognitive
avoidance was negatively correlated with responsiveness in the thalamus to contemptuous
(vs. neutral) and fearful (vs. neutral) faces: peak voxel xyz: −6 −10 16, cluster size: 2,
T-score = 3.79, pFWE = 0.03, and peak voxel xyz: −3, −13, 3, cluster size: 3, T-score = 4.25,
pFWE = 0.01, each respectively.

In exploratory whole-brain regression analyses for contemptuous faces in the high load
condition (see Table 3 and Figure 2), cognitive avoidance showed a negative correlation
with activity in large clusters including the left postcentral gyrus, extending to the bilateral
precentral (BA6), middle and inferior frontal gyrus (BA8); the bilateral insula, and bilateral
superior temporal gyrus; the bilateral lingual gyrus, parahippocampal gyrus, and calcarine
sulcus (primary visual cortex); the precuneus, supramarginal and inferior parietal gyrus, and
amygdala and thalamus. More clusters were revealed in the right anterior and middle cingulate
gyrus (BA32), extending to the superior medial frontal cortex (BA8 and 9), in the bilateral
supplementary motor area (BA6), extending to the medial frontal and middle cingulate gyrus,
and also in the right postcentral gyrus, extending to the inferior parietal gyrus.

Table 3. Brain regions showing a negative correlation with cognitive avoidant coping style in response
to threatening faces under high perceptual load.

Hemisphere Peak T-Value Peak-Level Cluster Cluster-Level Peak MNI

puncorrected
Size

(Voxels) pFWE x y z

Contempt (vs. neutral) - - - - - - - -
Left postcentral gyrus,

extending to the following
regions:

L/R 6.29 <0.001 5770 <0.001 −63 −10 16

Bilateral precentral (BA6),
superior, and middle frontal

gyrus (BA8)
L/R 5.18 <0.001 - - −51 −1 16

Bilateral posterior and
anterior insula L/R 6.14 <0.001 - - 42 −4 4

Bilateral lingual and
parahippocampal gyrus,

calcarine sulcus and
precuneus

L/R 5.16 <0.001 - - −18 −55 1

Bilateral superior temporal
gyrus L/R 5.38 <0.001 - - −48 −37 19

Bilateral supramarginal and
inferior parietal gyrus L/R 4.67 <0.001 - - −63 −19 37

Amygdala L/R 3.46 <0.001 - - −27 −7 −11
Thalamus L 3.79 <0.001 - - −6 −10 16

Dorsal anterior and middle
cingulate gyrus (BA32),

extending to medial frontal
cortex (BA6,8,9)

R 4.59 <0.001 214 0.002 9 35 28

Bilateral supplementary
motor area (BA6), extending
to the left medial frontal and

middle cingulate gyrus
(BA31)

L/R 4.51 <0.001 221 0.001 −12 −7 52

Right postcentral gyrus
extending to inferior

parietal gyrus
R 4.13 <0.001 158 0.008 33 −40 58
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Table 3. Cont.

Hemisphere Peak T-Value Peak-Level Cluster Cluster-Level Peak MNI

puncorrected
Size

(Voxels) pFWE x y z

Fear (vs. neutral)
Subcentral gyrus, extending

to the following regions: L/R 5.67 <0.001 3634 <0.001 45 −19 22

Bilateral superior temporal
gyrus L/R 4.69 <0.001 - - 45 −10 −2

Posterior insula R 4.81 <0.001 - - 45 −10 1
Precentral gyrus R 4.68 <0.001 - -

Bilateral posterior cingulate L/R 3.77 <0.001 - - 12 −40 28
Bilateral lingual gyrus,
cuneus and precuneus L/R 5.05 <0.001 - - 15 −43 −5

Amygdala R 3.49 <0.001 - - 27 −4 −11
Thalamus L/R 4.25 <0.001 - - −3 −13 −2

Bilateral anterior cingulate
gyrus (BA25, 32) L/R 4.75 <0.001 353 0.001 −3 17 −5

Fusiform gyrus L 4.22 <0.001 307 <0.001 −36 −46 −23
Postcentral gyrus R 4.49 <0.001 161 0.008 12 −43 73

Postcentral extending to
superior temporal gyrus L 4.41 <0.001 110 0.03 −36 −19 28

Neuroanatomical labels, hemisphere, peak voxel t- and p-values, cluster extent, cluster-level p-values, and
coordinates in MNI space are presented. Activation clusters are yielded by regression analyses and are significant
at p = 0.001 (uncorrected) and a cluster-level threshold of pFWE < 0.05.
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Figure 2. Results from whole-brain regression analyses with cognitive avoidance predicting decreased
brain responsiveness to contemptuous and fearful faces under high load. (A) Sagittal and coronal
images in neurological orientation showing the negative relationship between cognitive avoidance
and responsivity to contemptuous (vs. neutral) faces under high perceptual load. Depicted are
activation clusters in the right superior medial frontal and cingulate gyrus (BA32), supplemental motor
area (BA6), precuneus, cuneus, and lingual gyrus (top left), in the right precentral (BA4), inferior frontal
gyrus, and parietal and superior temporal lobes (top middle), and in the insula, postcentral gyrus,
superior temporal gyrus, left amygdala, and supplementary motor area (top right). (B) Sagittal, coronal,
and axial images showing the negative correlation between cognitive avoidance and activation in
response to fearful (vs. neutral) faces under high perceptual load. Depicted are activation clusters in the
precentral, supramarginal, and superior temporal gyrus (lower left), in the insula, subcentral gyrus, and
superior temporal gyrus (lower middle), and in the posterior insula, superior temporal gyrus, calcarine,
and middle occipital gyrus (lower right). The voxel-wise threshold was set to p = 0.001 (uncorrected)
with a cluster-level threshold of p < 0.05, FWE-corrected. Color bar: t-values.



Brain Sci. 2023, 13, 618 10 of 18

During the processing of fearful (vs. neutral) faces under high load, cognitive avoid-
ance was significantly and negatively associated with brain activity in a large cluster
including the right insula and subcentral gyrus, the superior temporal gyrus, and precen-
tral gyrus, and bilateral posterior cingulate gyrus, thalamus, and bilateral lingual gyrus,
cuneus, and precuneus. Additional clusters showing a negative correlation were also
revealed in the postcentral gyrus, in the fusiform gyrus, and the bilateral anterior cingulate
gyrus.

Following a reviewer’s suggestion, we calculated further regression analyses with the
respective vigilance or cognitive avoidance scale as additional covariate to control for. The
result pattern did not substantially change, but the overall number of activated voxels was
slightly reduced. When additionally controlling for a potential influence of vigilant coping
style, cognitive avoidance was no longer related to diminished activity in the anterior
cingulate gyrus in response to fearful faces.

4. Discussion

With the present study, we aimed to examine the relationship between coping strate-
gies in anxiety-provoking situations and automatic brain responsiveness to threatening
facial expressions in case of low and high task demands. For the first time, a perceptual
load task with contemptuous and fearful faces was administered in a non-clinical sample
of young adults with varying degrees of vigilant and cognitive avoidant coping styles. The
processing of threatening faces can be assumed to be automatic in our used paradigm, since
the facial expressions were task-irrelevant distractor stimuli [52]. We aimed to shed light
on coping styles as predictors of automatic brain reactivity to threat stimuli under low and
high attentional load, after controlling for a potential influence of trait anxiety. In the low
perceptual load condition, contemptuous faces, but not fearful faces, elicited activations in
the parietal, temporal, and inferior frontal cortex. These brain regions have been previously
shown to be activated in response to negative pictures during low perceptual load [53].
During low perceptual load, coping styles did not influence brain activity in response to
contemptuous or fearful faces. Under high perceptual load, fearful faces, but not contemp-
tuous faces, elicited increased activity in frontal and temporal areas, and in the cerebellum.
Interestingly, temporal and frontal activation was also modulated by coping style. Individu-
als with a disposition to cognitively avoid anxiety-inducing information showed decreased
brain reactivity to contempt and fear in several areas including the superior temporal gyrus,
the anterior and posterior insula, the thalamus, the amygdala, the parieto-occipital lobe
(supramarginal and inferior parietal gyrus, precuneus, cuneus), the anterior, middle and
posterior cingulate gyrus, and pre- and postcentral gyrus. Additionally, reduced activations
in cognitive avoiders have been observed during the processing of contemptuous faces in
the superior and middle frontal and medial frontal gyrus. Despite a moderate negative
correlation between vigilance and cognitive avoidance, only the avoidant coping style
contributed to the prediction of automatic brain responsiveness to threat under high atten-
tional load. Contrary to findings from Leehr et al. [25], our hypothesis of reduced anterior
cingulate responsiveness in vigilance was not confirmed. Only individuals who tend to
inhibit the processing of distressing external or internal stimuli and divert their attention
away from them showed reduced activity in a widespread neural network implicated
in emotion and attention. This reduced responsiveness in cognitive avoidance was only
observed during high attentional load and was not influenced by trait anxiety.

As a subcortical brain structure, the thalamus is involved in the early visual encoding
of salient stimuli and plays an important role in the selection of information from the
environment that can be relevant for further processing [54,55]. The thalamus has con-
nections with the prefrontal and temporo-parietal cortices and with the amygdala [56,57].
The amygdala plays a key role in the fast detection of potential threats, and is involved
in the recruitment of attentional resources and guidance of attention in the presence of
salient stimuli [54,58,59]. A subcortical route has been suggested through which the amyg-
dala receives direct sensory input from the thalamus [27,54,57]. In contrast, Pessoa and
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Adolphs [60] have proposed that the thalamus receives multimodal information from
cortical regions and conveys biologically significant information to cortical regions, which
activate the amygdala.

A previous study demonstrated a reduced thalamic gray matter density in cognitive
avoidance [24]. Reduced thalamic and amygdalar responsiveness in individuals scoring
high in cognitive avoidance may indicate a lower sensitivity to distracting threat stimuli
and a lower capacity for the maintenance of attention to these stimuli. Of note, in the
present study, findings in the thalamus were restricted to a relatively small cluster and
should be considered as preliminary.

High cognitive avoidance was associated with reduced reactivity in visual processing
areas (i.e., cuneus, lingual gyrus, see [61]) that have also been implicated in emotional face
processing [62,63]. Diminished reactivity to threat distractors in cognitive avoiders was also
observed in the inferior parietal cortex and supramarginal gyrus. These parietal brain areas
appear to be involved in emotion regulation, such as reappraisal and suppression [22,64,65],
probably by directing attention to relevant stimuli (e.g., [64]). Indeed, the ventral regions of
the parietal cortex along with the precuneus (e.g., [66]) have been suggested to play a role
in visuo–spatial attention [67], particularly in involuntary and bottom-up driven shifts of
attention [68]. This proposed function is in line with increased activity in these brain areas
during the non-conscious or automatic perception of fearful faces [69]. Additionally, the
supramarginal gyrus appears to be recruited during the judgment of facial emotions [70].
Further, the superior temporal gyrus is supposed to be involved in the visual analyses and
encoding of emotional facial expressions (e.g., [30,62,71]), and activity within this area has
been linked to fear and anxiety [32].

It is conceivable that the visual processing and encoding of threat-related distractors
and their capability to capture attention under high load is diminished in cognitive avoid-
ance. Blunted responsiveness in the pre- and postcentral gyrus (i.e., the premotor and
primary somatosensory cortex) may also indicate a reduced perception and recognition
of threat faces in avoiders, since both brain regions have been implicated in the affective
evaluation of facial expressions [30,71]. We have also observed in cognitive avoidance
a reduced reactivity in the posterior cingulate gyrus. The posterior cingulate gyrus has
been discussed as part of the default mode network [72] and appears to be involved in
the evaluation of the affective valence of stimuli [73], in self-related processing, and in
social evaluation (e.g., see [74] for an overview). Particularly, deactivations in the posterior
cingulate gyrus have been described as a neural correlate of task-related attention [72].
Thus, decreased responsivity may indicate a more external focus on task demands and
more efficient cognitive functioning in individuals with a disposition to cognitively avoid
anxiety- inducing stimuli. However, no evidence emerged in our study that coping styles
were associated with improved or impoverished task performance in case of low or high
perceptual load. Thus, a more efficient processing style and a reduced encoding of threat
distractors on the neural level in avoidant coping style did not exert an influence on the
behavioral performance.

Individuals who scored high in cognitive avoidance also responded less to contemp-
tuous and fearful faces in the posterior insula. The posterior insula has been ascribed to
various functions, such as sensory-motor processing and the collection of interoceptive,
emotional, and environmental data [75]. Menon and Uddin [76] have proposed a basic
function of the posterior insula in the regulation of physiological reactivity, but it has also
been suggested that the posterior insula engages in primary interoceptive processes [77,78]
and in the representation of aversive bodily and emotional stages [79]. Activity within the
posterior insula has also been associated with the judgment of emotions in faces [80] and
attention to the emotional relevance of stimuli [81]. In addition, contemptuous faces elicited
less activation in cognitive avoiders in the anterior insula, which has been implicated in
attention, salience evaluation, emotional awareness, and in the integration of interoceptive
information [75,77]. Reduced insular responsiveness in high cognitive avoidance may
represent a less internally orientated processing of emotional or bodily states, which were



Brain Sci. 2023, 13, 618 12 of 18

induced by threat faces, or reduced attention to their relevance. This interpretation falls in
line with reduced activity in the posterior cingulate and supramarginal gyrus, which have
also been implicated in attention to one’s own emotional states [82].

Another brain region where individuals with a cognitive avoidant coping style man-
ifested less activity in response to contemptuous faces included the dorsal anterior and
middle cingulate gyrus, and the dorsomedial prefrontal cortex (PFC). The dorsal ACC and
dorsomedial PFC have been suggested to support attention processes and performance
monitoring and to play a role in voluntary emotion regulation [83] and conflict monitor-
ing [84]. There is also convincing evidence that the dorsal ACC and dorsomedial PFC
are engaged in fear appraisal and the generation of fear responses (e.g., [84,85]), in the
evaluation of negative valences [86], and the anticipation of unpredictable threats [87].
Earlier findings point to a role of the dorsal ACC in subliminal face processing [88] and in
cardiovascular responsivity to emotional face stimuli [89] and stressors [90]. Higher activity
in the dorsal ACC and dorsomedial PFC has been linked to the processing of disapproving
facial expressions in individuals with high rejection sensitivity [91] and to the experience of
distress during social rejection [92]. Thus, individuals with a disposition to avoid threat-
related information might demonstrate a lower sensitivity and autonomic responsiveness
to facial expressions of contempt, which imply disapproval and rejection [44]. It is also
conceivable that reduced activity in these brain areas indicates less effort to regulate emo-
tion perception or to monitor emotional conflicts. Individuals with an avoidant regulation
style might show an impaired ability to disengage attention and regulate the processing of
task-irrelevant threat distractors under high load. However, in this case, one would expect
heightened activations in emotion-related brain areas to accompany decreased emotion
regulation efforts. An alternative interpretation of reduced ACC and PFC responsiveness to
contempt might be a lower demand for emotional conflict monitoring or emotion regulation
due to the diminished processing of threat distractors in subcortical and primary visual
areas in cognitive avoidance.

Taken together, according to our results, individuals who are inclined to withdraw
their attention from anxiety-inducing information and to inhibit their further processing
manifest decreased activity in a brain network implicated in the processing of emotionally
relevant information. Our findings suggest reduced visual processing and encoding of
distracting and threatening social stimuli, and less attention allocation and weaker emo-
tional responsiveness to them. However, this reduced sensory analysis of threat signals
and diminished emotional responsiveness in cognitive avoidance was only observed dur-
ing high attentional load. Leehr et al. [25] have found no relationship among cognitive
avoidant coping style and automatic brain responsiveness to emotional faces in a task with
relatively low cognitive demands. This is in line with our null results in the low percep-
tual load condition. These data suggest that coping styles only modulate the processing
of threatening information when perceptual resources are limited. One may speculate
that coping-related inter-individual differences in threat encoding occur at a very early
pre-attentive level, with a reduced distractor encoding in low (relative to high) cognitive
avoidance at this processing stage. However, under the condition of spare attentional
capacity (i.e., low load), salient distractors may be encoded at later processing stages in all
individuals, irrespective of their dispositional use of coping strategies. Our results appear
contradictory to findings by Paul et al. [18] and Rauch et al. [19], which pointed to enhanced
processing of threat faces in prefrontal and temporo-parietal areas in repressors, relative to
sensitizers. Several methodological differences might have contributed to the discrepancies.
Importantly, earlier tasks required the participants to attend to and evaluate emotional
expressions, whereas in our task emotional expressions served as task-irrelevant distractor
stimuli. Dimensional approaches to investigate neural correlates of coping styles might also
produce different results than category-based approaches where high scorers in cognitive
avoidance and vigilance are compared to each other. In general, findings on functional
substrates of strategies to cope with anxiety-provoking situations remain inconsistent and
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highlight the importance of future research. Further investigations appear worthwhile,
since coping styles can have important implications for physical and mental health.

Schwerdtfeger and Rathner [93] suggested that repression constitutes a rather mal-
adaptive strategy to cope with aversive events. According to the authors, a strategy to
deny problems that require a solution or to divert one’s attention away from them may
circumvent adaptive problem-focused approaches. Grant et al. [94] have provided evidence
for a relationship among cognitive avoidance in response to stressful life events and anxiety.
However, Coifman et al. [95] and Bonanno et al. [96] have reported protective effects of
repressive coping on mental health, when individuals are confronted with adverse life
events. It has been stated that cognitive avoidance serves the purpose of decreasing anxious
arousal and should be preferred by people who have a low tolerance for intense emotional
states [97]. Indeed, some studies have suggested a higher sensitivity and autonomic re-
sponsivity in the face of threats in repression (e.g., [20,98,99]), but other studies could not
confirm this assumption [100,101]. It appears that repression and cognitive avoidance in
response to stressful events are broadly defined constructs in the literature, comprising
strategies such as denial, resignation, avoiding thoughts about problems, and avoiding the
awareness of one’s own anxiety, but also attentional diversion, re-interpretation, and ac-
centuating positive aspects of the situations [13,97,102]. These constructs vary significantly
in their operationalization. In several studies, different coping questionnaires [20,94,98]
were used, or repression has been operationalized as a discrepancy score between self-
reported perception of distress and actual physiological responses (e.g., [95,99]), or as a
combination of low self-reported trait anxiety and high defensiveness [100,101]. Within
Krohne’s [10] MCM, cognitive avoidance and vigilance strategies are elaborated in the
context of anxiety-inducing events with varying degrees of controllability. Cognitive
functions that are subsumed under cognitive avoidance are, for example, attentional diver-
sion, re-interpretation, denial, minimization, and self-enhancement (see [97]). Importantly,
cognitive avoidance according to Krohne [10] is conceptually distinct from (behavioral)
avoidance of anxiety-inducing situations, which is a common symptom in clinical anxiety
that perpetuates the disorder [5]. Vigilance comprises strategies such as information search,
anticipation of negative events, planning, and situation control [97]. It is plausible that the
success of each strategy and its long-term consequences on physical and mental health
depend on the degree to which threat situations can be controlled. Cognitive avoidance has
been suggested as an appropriate strategy when dealing with uncontrollable threats [97].
In contrast, individuals who employ a vigilant coping style are inclined to have an intoler-
ance of uncertainty, which has been suggested as a transdiagnostic causal mechanism of
anxiety-related conditions [103].

Whereas earlier findings pointed to enhanced processing of emotional faces in a frontal
and temporo-parietal brain network in healthy individuals with a disposition to employ
a cognitive avoidant coping style relative to sensitization (e.g., [18]), our results indicate a
diminished capacity to perceive and attend to threat distractors in cognitive avoidance. This
relationship was not influenced by trait anxiety. Thus, dispositional strategies to cope with
anxiety-evoking situations and anxious arousal in a cognitive avoidant manner can explain
incremental proportions of variance in automatic brain activity elicited by threat faces.

Our findings of reduced activation in cognitive avoidance might have relevance within
the framework of non-clinical and clinical studies on anxiety. Increased activation in the
dorsolateral PFC, posterior cingulate, parietal, and temporo-occipital areas have been im-
plicated in an anxious temperament and in social anxiety disorder [104–107]. Furthermore,
in contrast to healthy controls, patients with panic disorder, specific phobias, and social
anxiety disorder appear to exhibit elevated activity within the anterior and midcingulate
gyrus in response to feared stimuli [108–110]. This hyperactivity was shown to be resolved
after psychotherapy [110]. Our finding of reduced automatic brain responsiveness to
negative distractor stimuli might indicate a more favorable processing style in cognitive
avoidance and might be a resilience factor. However, it remains to be clarified in future
studies whether a cognitive avoidant strategy that relies on attention allocation away from
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anxiety-inducing situations and from bodily responses to them, as well as on denial, min-
imization, reappraisal, and the accentuation of positive aspects of a threat situation can
be clearly assigned as an adaptive or maladaptive way of coping. It remains speculative
whether cognitive avoidance increases the risk for physical and mental health issues or
can be considered as a protective factor. Our results indicate a neural response pattern to
emotional stimuli that appears incongruous to brain activations that have been observed in
pathological anxiety.

Our study has several limitations. We have investigated young, healthy, and well- edu-
cated participants. Our results cannot be generalized to other populations. In our experiment,
24 trials were presented per condition. An increased trial number may enhance the statistical
power. However, one has to consider potential neural habituation effects with an increased
task length and repetition of stimuli [111]. With a sample size of N = 43 we were only able
to detect moderate and large effects. To test their validity, our findings need to be replicated
in larger samples and merged in meta-analyses. We operationalized vigilant and cognitive
avoidant coping by means of the Mainz Coping Inventory [11,23]. Future studies on physio-
logical or neural responsiveness and health outcomes that are moderated by coping styles
might benefit from the simultaneous application of different measures and operationalization
of cognitive avoidance. The cross-sectional design of our study does not allow speculations
about the direction of the effects. Longitudinal studies may investigate whether altered neural
reactivity is a mechanism in the manifestation of inter-individual differences in coping styles
or might be the consequences of down-regulated perception and attention in individuals who
prefer cognitive avoidant anxiety regulation styles in their daily lives.

5. Conclusions

In sum, we have demonstrated in individuals with a disposition to cognitively avoid
anxiety-inducing information reduced reactivity to distracting threat faces in a widespread
subcortical and cortical brain network that is involved in attention and emotion perception.

It might be concluded from our findings that individuals who employ a cognitive
avoidant regulation style have a less sensitive threat detection system when attentional
resources are limited. The diminished threat processing may indicate a potential resilience
against transient danger signals in the environment and may be a neural basis of inter-
individual differences in the vulnerability to mental disorders.
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