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[T I N

Abstract: Background: It is crucial to understand the neural feedback mechanisms and the cognitive
decision-making of the brain during the processing of rewards. Here, we report the first attempt for a
simultaneous electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) study in
a gambling task by utilizing tensor decomposition. Methods: First, the single-subject EEG data are
represented as a third-order spectrogram tensor to extract frequency features. Next, the EEG and
fMRI data are jointly decomposed into a superposition of multiple sources characterized by space-
time-frequency profiles using coupled matrix tensor factorization (CMTEF). Finally, graph-structured
clustering is used to select the most appropriate model according to four quantitative indices. Results:
The results clearly show that not only are the regions of interest (ROIs) found in other literature
activated, but also the olfactory cortex and fusiform gyrus which are usually ignored. It is found
that regions including the orbitofrontal cortex and insula are activated for both winning and losing
stimuli. Meanwhile, regions such as the superior orbital frontal gyrus and anterior cingulate cortex
are activated upon winning stimuli, whereas the inferior frontal gyrus, cingulate cortex, and medial
superior frontal gyrus are activated upon losing stimuli. Conclusion: This work sheds light on the
reward-processing progress, provides a deeper understanding of brain function, and opens a new
avenue in the investigation of neurovascular coupling via CMTE.

Keywords: simultaneous EEG—fMRI; reward processing; tensor factorization; data fusion; blind

source separation

1. Introduction

Reward processing is central to emotional decision-making and risk-taking [1]. It is
often used in mental health diagnoses as many psychiatric disorders are accompanied by
certain deficiencies while processing rewards [2,3]. Yet, comprehending how the brain
processes rewards still remains a non-trivial outstanding question. A typical reward-
processing progress is made up of two parts: the anticipation and the outcome phase, each
of which involves several subprocesses that co-occur on different time scales. Reward
anticipation usually involves the cognitive operations that precede the arrival of a reward,
including incentive evaluation, probability estimation, and motor preparation. On the other
hand, reward outcome corresponds to those operations triggered by the actual delivery of a
reward, such as hedonic feelings, reward value updating, and behavioral reinforcement [4].
The gambling task is a well-established classic paradigm suitable for studying the cognitive
processes of reward processing, which are usually investigated by EEG and fMRI. The
EEG data analysis of reward processing often relies on event-related potentials (ERPs),
time-frequency analysis, and blind source separation (BSS) [5]. Foti et al. [6] used the EEG
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to track ERPs associated with reward processing. Glazer et al. [7] studied ERPs associated
with reward processing as well as EEG time-frequency components. Sambrook et al. [8]
used BSS to isolate most sources of ongoing brain activity without a priori knowledge
about source signals or mixing processes. An analysis of fMRI data for reward processing
generally employs the general linear model (GLM). Jauhar et al. [9] used the GLM to obtain
brain regions associated with reward processing from fMRI data.

Studies have found that various brain regions and networks are involved in these
processes. The main network here is the so-called reward system, which includes the
nucleus accumbens, ventral tegmental area, substantia nigra, amygdala, the basal forebrain,
and prefrontal cortex. Moreover, activity in the hippocampus and parahippocampal gyrus
seems to be associated with punishment. There are also brain areas that react to arousal
during risk-taking behavior, regardless of whether the outcome is positive or negative,
including the orbitofrontal cortex, insula, and head of the caudate [10]. Similarly, the
ventral striatum, cingulate cortex, and insula show activation in response to reward [9].
Furthermore, the reward degree during reward processing positively correlates with brain
activation in the bilateral striatum [11]. Because of this intricacy, it is necessary to combine
complementary neuroimaging techniques to understand how the brain processes the
rewards fully.

The EEG and fMRI are two of the most popular non-invasive brain imaging techniques
used in cognitive science that help describe underlying brain networks and neurobiological
processes. The EEG can reveal fast brain dynamics due to its excellent temporal resolution
(millisecond level). However, its spatial resolution is low. In contrast, the fMRI can reflect
precise functional changes in brain activity due to its satisfactory spatial resolution (mil-
limeter level), while the temporal resolution is very poor. It is therefore of vital importance
to find a way to fuse complementary different brain imaging techniques [12,13], such as
the emerging field of deep learning-based fusion [14]. Currently, there are three main EEG-
fMRI fusion methods: EEG source localization based on fMRI constraints [15,16]; fMRI
prediction based on EEG information [17]; and symmetric fusion methods that simultane-
ously interpret data from both modalities [18]. Among these, the symmetric fusion methods
are mainly used to separate the sources of EEG and fMRI data using joint decomposition
methods such as ICA and CCA [19]. Such techniques have already benefited numerous
branches of cognitive neuroscience, including the prediction and localization of epileptic
lesions [20] and coupling mechanisms between EEG and fMRI [21]. Dehghani et al. [22]
implemented EEG neurofeedback with simultaneous fMRI to understand the effect of
neurofeedback on brain activity and the interaction of whole brain regions involved in
emotion regulation. To date, only a research team has investigated reward processing using
simultaneous EEG-fMRI fusion techniques and obtained more accurate results than using
either the EEG or fMRI [23].

BSS methods that use matrices as input, such as ICA, can separate multivariate signals
into additive components based on the assumption that they are statistically independent.
However, this approach is deficient in exploiting the inherent multiway nature of these
data [24]. Studies in only two dimensions, temporal and spatial, cannot reveal the inherent
higher-order structure of the data nor the interdependence of the different dimensions. EEG
and fMRI data are inherently multidimensional, which means they include information
about time, different voxels or channels, subjects, trials, etc. For the EEG, the signal can
be expanded along additional patterns in order to reveal more potential information. This
multidimensional nature of EEG and fMRI data suggests the use of tensor models rather
than matrix models.

Tensor decomposition models can improve the ability to extract spatiotemporal pat-
terns of interest, facilitate neurophysiologically meaningful interpretations, and produce
unique representations under mild conditions [25]. In addition, tensor methods are able to
make predictions more robustly in the presence of noise than matrix-based methods [26].
Due to the superiority of tensor analysis methods on multidimensional neuroimaging data,
the CMTF was proposed [27], which is a unique coupled BSS method. The BSS method
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views EEG and fMRI data as a superposition of various physiological and non-physiological
sources [28]. It is inherently adapted to higher-order data presented as a tensor, which can
capture the rich structure in the data. On this basis, the CMTF can also estimate the shared
components between the two modal data and perform symmetric processing of EEG and
fMRI to achieve a true fusion.

The CMTF method has been applied in several EEG and fMRI fusion areas. Van
Eyndhoven et al. [29] used the CMTF to make inferences on the localization of the ictal
onset zone in refractory focal epilepsy based on simultaneous EEG and fMRI recordings.
Mosayebi et al. [30] applied the CMTF to a real dataset of an auditory oddball paradigm
and found that the CMTF method had better results and higher performance than the
N-way partial least square (N-PLS) method. Hunyadi et al. [31] used the CMTF method for
epilepsy studies to explore epileptic network activity and obtained more stable results than
jointICA. Rivet et al. [32] used the CMTF method to study the ocular artifacts in EEG data.
Acar et al. [33] used the CMTF method to capture the difference between schizophrenic
patients and healthy controls in brain activity patterns. Mosayebi et al. [34] employed the
CCMTF method for an analysis of the emotion regulation paradigm.

Since many matrix and tensor decompositions must be solved using non-convex
optimization-based algorithms, these algorithms may converge to a local optimum. There-
fore, the decomposition needs to be computed with multiple initializations to verify that
the decomposed components are reproducible in the optimization. Clustering algorithms
are needed to cluster the results of multiple decompositions to assess the reliability or
stability of the decomposition.

In this paper, the unknown neurovascular coupling between electrophysiological
phenomena, measured by EEG, and hemodynamic changes, captured by blood oxygen
level-dependent (BOLD) signals, is explained using the hemodynamic response function
(HRF). EEG data were expanded into a tensor (time points x frequencies x channels) and
then decomposed along a common temporal dimension with fMRI matrix data using CMTFE.
After using graph-structured clustering, the best model was selected by four quantitative
metrics: CORCONDIA, reproducibility, similarity, and significance. Neural imaging data
from multiple modalities were jointly decomposed as a superposition of multiple sources
to extract shared information and distinguish between similarities and differences in
modalities. The simultaneous EEG-fMRI data of reward-processing decomposition results
were interpreted in four dimensions: time, frequency, channel, and region of interest (ROI).
This is the first attempt to apply tensor decomposition to simultaneous EEG and fMRI data
in a gambling task. The fact that the CMTF method can reveal the inherent higher-order
structure of the data and the interdependence of the different dimensions makes it possible
to discover additional ROIs which were previously ignored in other literature during the
processing of rewards.

2. Materials and Methods

Using the CMTF method, the simultaneous EEG-fMRI data were jointly decomposed
to capture ROIs activated by reward processing. The collected data then underwent
a sequence of preprocessing, dimensional expansion of EEG data, CMTF, and model
selection. After using graph-structured clustering, the best model was selected by four
quantitative metrics, CORCONDIA, reproducibility, similarity, and significance, to obtain
the fMRI components (ROI factors) and the corresponding EEG components (frequency
factors, channel factors, and time factors). Figure 1 depicts the complete process from data
preprocessing to the results.
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Figure 1. Using the CMTF method, the simultaneous EEG-fMRI data were jointly decomposed
to capture ROIs activated by reward processing. The collected data went through preprocessing,
dimensional expansion of EEG data, CMTF, and model selection. After using graph-structured
clustering, the best model was selected by four quantitative metrics, CORCONDIA, reproducibility,
similarity, and significance, to obtain the fMRI components (ROI factors) and the corresponding EEG
components (frequency factors, channel factors, and time factors).

2.1. Subjects

The following inclusion criteria were applied: (1) 18 to 25 years of age; (2) normal or
corrected normal vision; (3) right-handed. The following exclusion criteria were applied:
(1) use of corticosteroids and psychotic drugs within the past 30 days; (2) current or previous
history of neurological, medical, or psychiatric disorders; (3) current or previous history
of neurosurgery, head injury, cerebrovascular injury, or traumatic brain injury involving
loss of consciousness; (4) presence of learning disability; (5) presence of claustrophobia;
(6) refusal to give informed consent; and (7) presence of magnetic implants in the body.

Twenty healthy, right-handed subjects with an average age of 23 years (17 men and
3 women; range 19—25 years; SD £ 1.48) were involved in this study; we previously stud-
ied them in [23]. Subjects had normal or corrected normal vision without a history of
neurological, medical, or psychiatric disorders. The ethics committee (Changzhou Univer-
sity, Changzhou, China) approved the experiment, and all subjects signed an informed
consent form before the experiment. They received comprehensive instructions about the
gambling task. Following the examination, each subject was interviewed to ensure the task
was handled appropriately and to learn more about the gambling strategy applied. Subjects
were asked to share their thoughts and theories about the experimental setup. Incorrect
handling of the paradigm, for example, consistently pressing buttons at the wrong time or
misinterpreting the task, could lead to subject exclusion, but this never occurred for the
tested subjects. The subjects” complete clinical data are shown in Table 1.
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Table 1. Subject data.
Patient Gender Age Degree of Myopia Dominant Hand
Sub 01 male 21 no myopia right
Sub 02 male 23 no myopia right
Sub 03 female 19 300 (left, right) right
Sub 04 male 20 no myopia right
Sub 05 male 22 no myopia right
Sub 06 male 21 no myopia right
Sub 07 male 21 no myopia right
Sub 08 male 22 no myopia right
Sub 09 male 23 no myopia right
Sub 10 male 22 no myopia right
Sub 11 male 22 no myopia right
Sub 12 male 20 300 (left, right) right
Sub 13 female 20 no myopia right
Sub 14 male 21 275 (left, right) right
Sub 15 male 25 no myopia right
Sub 16 male 23 no myopia right
Sub 17 male 21 250 (right), 150 (right) right
Sub 18 male 25 no myopia right
Sub 19 female 22 no myopia right
Sub 20 male 22 no myopia right

2.2. Gambling Task

A classic gambling task [35] was designed using E-prime 3.0 software (Psychology
Software Tools, Pittsburgh, PA, USA). The experimental procedure consisted of 8 recurrent
tasks, each containing 10 trials, for a total of 80 trials, consisting of random presentations of
winning and losing stimuli. A single-trial flow is shown in Figure 2. Two identical doors
would appear simultaneously on the screen, one corresponding to a win (+USD 2.0) and the
other to a loss (—USD 1.0). Subjects were instructed beforehand to always choose the door
that they thought would lead to winning the money using an MRI-compatible response
box. The computer would randomly select a door if the subject did not make a timely
choice. A 2000 ms gaze point and a 2000 ms feedback arrow came afterward. A green up
arrow indicated a win, and a red down arrow a loss. At the end of the arrow feedback, the
center of the screen would display the subject’s current cumulative score. After each trial,
subjects were given a 4000 ms break. Before the formal experiment, subjects were required
to complete two exercises, including both winning and losing stimuli, to facilitate their
understanding of the experimental procedure. A complete round of the task would last
18 min 40 s.

+ V| =

two identical doors gaze point feedback arrow score have a rest
4000ms 2000ms 2000ms 2000ms 4000ms
time

Figure 2. Single-trial flow is as follows. Two identical doors would appear simultaneously on the
computer screen, one corresponding to a win (+USD 2.0) and the other to a loss (—USD 1.0). Subjects
were instructed beforehand to always choose the door they thought would win money using an
MRI-compatible response box. The computer would randomly select a door if the subject did not
make a timely choice. A 2000 ms gaze point and a 2000 ms feedback arrow came afterward. A green
up arrow indicated a win, and a red down arrow a loss. At the end of the arrow feedback, the center
of the screen would display the subject’s current cumulative score. After each trial, subjects were
given a 4000 ms break.
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2.3. Data Acquisition

The acquisition system consisted of two parts: the EEG data recording room and the
MRI data scanning room. The synchronized data acquired included EEG, ECG, fMRI, and
sMRI. A clock synchronization box was used to ensure the synchronicity of the data. EEG
data were recorded by Net-Station (Electrical Geodesics Inc., Eugene, OR, USA) according
to the international 10-10 electrode distribution system using a 64-channel MR-compatible
electrode cap (HydroCel Geodesic Sensor Net; Electrical Geodesics, Inc., Eugene, OR, USA),
sampled at 250 Hz, with Cz reference. In the data collection period, the impedance of all
electrodes was kept below 50 k(). MRI data were acquired on 3T MR scanners (Philips
Medical Systems, Best, The Netherlands) with an echo time (TE) of 35 ms, a repetition time
(TR) of 2 s, and a flip angle of 90°. Twenty-four consecutive slices were scanned sequentially
with a slice thickness of 4 mm and a field of view (FOV) of 230 x 180 mm?. The voxel size
of the structural MRI images was 1 x 1 x 1 mm?3.

The experiments were conducted in the hospital’s MRI scanning room. Electrode
caps were MR-compatible, and the amplifier was placed in the MRI scanning room. A
clock synchronization box was used to ensure the synchronicity of the EEG and fMRI data.
During the experiment, the subject lay flat in the MR scanner, watched the gambling task
on the screen, and chose the door which he thought would win by pressing a button.

2.4. Data Preprocessing

The EEG data quality can be severely compromised when recording inside the MR
environment [36], so denoising is necessary. The collected EEG data were preprocessed
using EEGLAB [37] to remove artifacts such as fMRI gradient artifacts, pulse artifacts,
and power-frequency interference. First, fMRI gradient and pulse artifacts were removed
using the FMRIB plug-in for EEGLAB, provided by the University of Oxford Centre for
Functional MRI of the Brain (FMRIB) [38,39]. Next, a bandpass filter with cutoff frequencies
of 1 Hz and 30 Hz was applied to remove direct current drift and high-frequency artifacts
unrelated to neuronal oscillations. A 50 Hz notch filter was applied to the data to remove
electrical line noise. The fMRI scan markers (“TREV”) were used to segment the EEG data,
and the baseline was corrected so that the number of EEG segments and fMRI volumes
were equal. Then, the EEG data were average referenced. Finally, components related to
blinking, motion, and components not associated with neurological data were removed by
ICA [40].

The fMRI data were preprocessed with the DPABI toolbox [41]. First, the fMRI data
were converted from the DICOM (Digital Imaging and Communications in Medicine)
format to the NIfTT (Neuroimaging Informatics Technology Initiative) format. Then, the
fMRI images were slice-time-corrected, motion-corrected, normalized to MNI (Montreal
Neurologic Institute) space, and resampled to a voxel size of 3 x 3 x 3 mm?, smoothed
using a Gaussian kernel of 8 mm full width at half maximum (FWHM), and filtered
(0.01-0.08 Hz). Among them, fMRI data with head movement amplitude more than 2 mm
horizontal movement or 2 degrees rotation angle were considered as poor data quality
and were therefore discarded. Finally, 90 ROIs were extracted according to the AAL
template [42], and the average activation intensity of each ROI was calculated separately to
obtain one BOLD time series for each ROL

2.5. Higher-Order Data Representation

To reveal the interdependence between different data dimensions, we represented the
EEG and fMRI data as a third-order tensor and a two-dimensional matrix, respectively, and
then decomposed them jointly. Due to its capacity to preserve the data’s inherent multiway
properties, this method differs from the conventional joint decomposition.

A tensorization strategy based on time-frequency transformation was used to convert
the EEG data into a third-order tensor (time points x frequencies x channels). A spec-
trogram for each segment (length equal to the repetition time of the fMRI data) of each
channel was calculated as the third dimension of the EEG data using Thomson’s multitaper
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method [43]. From 1 Hz to 30 Hz, the s?uared Fourier amplitudes were averaged into
0.5 Hz bins. Thus, an EEG tensor X € R5*Ir*lc was obtained that was synchronized in
time with the fMRI data. Figure 3 depicts the formation of the EEG tensor.
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Figure 3. A tensorization strategy based on time-frequency transformation was used to convert the
EEG data into a third-order tensor (time points x frequencies x channels). A spectrogram for each
segment (length equal to the repetition time of the fMRI data) of each channel was calculated as
the third dimension of the EEG data using Thomson’s multitaper method. From 1 Hz to 30 Hz, the
squared Fourier amplitudes were averaged into 0.5 Hz bins. Thus, an EEG tensor was obtained and
was synchronized in time with the fMRI data.

The fMRI data Y € R%*" were represented as a two-dimensional spatiotemporal
matrix (time points x ROls), storing the time series of each ROL. Since the EEG data were
segmented according to the fMRI scan, i.e., the number of segments of the EEG data was
the same as the number of volumes of the fMRI data, the EEG and fMRI data were aligned
with each other in the “time” mode.

2.6. Modeling the Hemodynamic Response Function

Although EEG and fMRI data were acquired simultaneously, the electrophysiological
changes corresponding to the same neural process captured by the EEG were much faster
on the time scale compared to the sluggish BOLD signal fluctuations. The neurovascular
coupling of the relationship between these two complementary signals can be described by
convolution with an HRF. In this paper, the HRF was parametrically estimated from the
data [44]: one of many methods for modeling the HRF. As shown in Figure 4, the contribu-
tion of the EEG source to the BOLD signal of the ROI was represented by convolving the
EEG data with an a priori unknown, ROI-specific HRF.
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Figure 4. The CMTF method decomposes the sources shared in both modal data. The EEG tensor is
decomposed into R components, each consisting of a temporal signature s,, spectral signature f,, and
spatial (channel) signature c¢,. The fMRI data are decomposed into a convolution of R components
and HRE, each consisting of a temporal signature s, and spatial (ROI) signature v;.

2.7. Coupled Matrix Tensor Factorization

The CMTF method proposed by Van Eyndhoven et al. [29] jointly decomposes the
EEG tensor X and the fMRI matrix Y into a set of sources (also called “components”). The
CMTF model can be described as:

R
X=&XK+ex =&)Y s,ofroc,+ex =&[S,F,C]+ex 1)
r=1

@

g=1
&[H;S ... HS]® [BT © VI] + [N, P] + E;,

X € RE*Ir*L is the third-order EEG tensor (time points x frequencies x channels),
where I; is the number of time points, I ¢ is the number of frequency bins, and [ is the
number of channels. X is the low-rank approximation of X, which is the sum of R rank-
1 terms of the canonical polyadic decomposition (CPD) [45]. €, is the residual. Each
rank-1 term s, o f; o ¢, is the outer product (o) of time points, frequencies, and channels’
signatures, denoting the component corresponding to a source. [S, F, C] describes the CPD
model composed of factor matrices S € RE*R, F ¢ RI7*R and C € RE*R, which hold the
temporal, spectral, and EEG spatial signatures in the columns.

Y € RE*I is the fMRI matrix (time points x ROIs), where I is the number of time
points and I, is the number of ROIs. Y is the low-rank approximation of Y and is the sum
of R rank-1 terms. E, is the residual. The coupling arises from the temporal signature s,
which is shared in the EEG and fMRI decompositions. Hy is the HRF matrix, V is the fMRI
spatial factor matrix, and B is the HRF basis coefficient matrix. The temporal signatures s,
are weighted with the spatial signatures v, for each source’s BOLD temporal signatures
after convolution by HRE. To accommodate the additional structural changes in the fMRI
data unrelated to electrophysiological dynamics, a rank-Q low-rank term [N, P] that is
not coupled to the EEG decomposition is added to the fMRI decomposition. The coupling
component of Y is described using RK non-independent rank-1 terms. Each rank-1 term
(Hgsr) o (bg * vy) represents the convolution of the temporal signatures of the rth source
with the kth basis function.

The diagram in Figure 4 illustrates the decomposition method in Equations (1) and (2).

J(S,F,C,B,V,0) = &Bx| X = X} + ByllY = YIF + 72l Axll + 9912yl ®)



Brain Sci. 2023, 13, 485

90f19

st Hy = &T () = T(,H 9(k>))
Ay = &[Ax1 ... AxR]
Axr = &||Sr||2'||fr”2'HCrT||2 @)
Ay = &[)\%1 )\y/R]
Ayr = & Yy [|bx* or |2

Equation (3) is minimized iteratively to estimate all model parameters. The cost
function | consists of two data fit terms and two regularization terms. By, By, 7x, vy denote
positive weights and Ay, Ay are vectors that maintain the amplitude of each source in the
EEG and fMRI data, respectively. The squared Frobenius norm of the residuals gives a
good fit of the low-rank estimation term to the data. The L1 regularization term penalizes
excessive source amplitudes and refines the model.

2.8. Model Selection

Most algorithms have their theoretical global optimal solutions for adaptive BSS al-
gorithms. The algorithms may, however, also converge to a locally optimal solution due
to interference from issues such as noise. The CP decomposition of the tensor should
ideally be the same for each decomposition, but in practice, the results are likely different.
Since there is no guarantee that the cost function | can converge to the global optimum,
it is crucial to choose a good starting point to obtain a reliable solution. To obtain an
excellent initial factor [S, F, C] in the CMTF model, 50 times decompositions of the EEG
data were performed according to the CP model using the Tensorlab toolbox [46] for differ-
ent numbers of components R. The Gauss-Newton iteration method [47] (cpd_nls with
2000 iterations, 400 conjugate gradient iterations for the step computation, and tolerance
on the relative cost function update of 108, in Tensorlab 3.0 (Vervliet N, Leuven., Belgium))
was run for each decomposition to find a stable solution using a random initial factor. The
results of 50 independent CP decompositions were then used as the initialization for CMTF
of the EEG and fMRI data to iteratively optimize Equation (3) using the Quasi-Newton
methods [48] (sdf_minf with 1000 iterations, and tolerance on the relative cost function up-
date of 1078, in Tensorlab 3.0 (Vervliet N, Leuven., Belgium)). This method decomposed the
EEG and fMRI data along a common temporal dimension. The data from both modalities
shared temporal patterns, which were the coupling mechanisms in the decomposition.

The CMTF decomposed the joint EEG and fMRI data into R components, each with
4 factors, namely, a frequency factor corresponding to the EEG frequency dimension, a
channel factor corresponding to the EEG channel dimension, a time factor corresponding
to the EEG—MRI coupling time dimension, and an ROI factor corresponding to the fMRI
ROI dimension.

For each subject, the CMTF component set with the most appropriate number of
components R needed to be selected.

As shown in Figure 5, for each number of components R, the results [S, F,C, V] of
50 runs of the CMTF were analyzed using the graph-structured clustering algorithm [49]
to obtain multiple component clusters, with the higher cardinality of a cluster being the
more stable and plausible. The central clustering component of the component cluster was
used to represent that component cluster, and the component that best represented that
component number R was selected.

The selection of component number R was performed using four indicators:

1.  CORCONDIA [50]: the CORCONDIA is computed for the EEG tensor in combination
with EEG components [S, F, C], which describes how well the CP decomposition
of a given number of components is appropriate for a given tensor and a given
factor. Furthermore, 100% indicates an adequate model, and below 80% indicates an
inappropriate model;

2. Reproducibility of components: the cardinality of the component most relevant to the
time course of the stimulus is calculated, and clusters of components with cardinality
greater than 10 are retained;
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50 times CMTF | [,
using independent

initialization

3. Similarity to the time course of the stimulus: the time course of the paradigm stimulus
is constructed. If a stimulus (losing/winning) is available at a time point, it is 1.
Otherwise, it is 0. The correlation between the time component and the time course
of the paradigm stimulus is calculated, and the higher the correlation, the better the
model fits;

4.  Significance of spatial components: a statistical non-parametric map (SnPM) is calcu-
lated based on the spatial signature v,. The familywise error (FWE) rate is controlled
by setting the significance threshold at « = 0.05. A higher statistical score indicates
that the model is more suitable for the component.

It is worth noting that different models may score well on different indicators, so the
ranking of the models is inevitably ambiguous.
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Figure 5. For each number of components R, the results [S, F,C, V] of 50 runs of the CMTF were
analyzed using the graph-structured clustering algorithm to obtain multiple component clusters, with
the higher cardinality of a cluster being the more stable and plausible. The central clustering compo-
nent of the component cluster was used to represent that component cluster, and the component that
best represented that component number R was selected.

3. Results

The best model was selected manually for each of the 20 subjects based on the four
indicators of model selection upon different stimuli. The component in each model chosen
as the stimulus-related component had the highest similarity to the time course of the
stimulus. For the best model, statistical non-parametric maps (SnPMs) were created for
the spatial signatures v, of the stimulus-related components to calculate ROI activation.
For different stimuli, the occurrence of activated ROIs known to be associated with that
stimulus was counted for all subjects. The activated ROIs were drawn using the BrainNet
Viewer toolbox [51].

When stimulated by winning or losing, the sources associated with reward processing
generated a neural signal. The frequency factor explains the frequency information of this
neural signal, the channel and ROI factors explain the area of diffusion of this neural signal,
and the temporal factor explains the intensity of this neural signal over time.

3.1. Winning and Losing Stimuli

The CMTF method was used to decompose the components associated with both
winning and losing stimuli.

For subject 13, the four indicators of the CMTF model were calculated as shown in
Figure 6. The x-value indicates the number of components used in the model. Based on the
selection guidelines, a component number of two was chosen. Figure 7 shows the results
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of two components, the first of which was stimulus-related. The frequency spectrum of
the stimulus-related component showed higher energy in both the theta band (4-8 Hz)
and alpha band (8-12 Hz). The topographic and the activation maps of the brain regions
were overall consistent. Activation in the olfactory cortex, insula, anterior cingulate and
paracingulate gyrus, posterior cingulate gyrus, parahippocampal gyrus, amygdala, inferior
occipital gyrus, and caudate nucleus could be seen. A small activation in the orbital middle
frontal gyrus and the orbital inferior frontal gyrus was also observed.

02

01571

01

0057

similarity reproducibility

100 99.476 95 304 g3 6ss 13.433 45 945

10688 10.994 10.946

2 3 4 5 6 2 3 4 5 6
CORCOMDIA(%) significance
Figure 6. The four indicators of the CMTF model of different numbers of components for subject 13
were calculated. According to the model selection guidelines, a component number of 2 was chosen
to analyze the CMTF results for this subject.
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Figure 7. The CMTF results for subject 13 demonstrate the temporal signature s,, spectral signature f;,
and spatial (channel) signature ¢, of 2 sources in the EEG domain and activation of the ROI associated
with both winning and losing stimuli.
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The presences of activated ROIs known to be associated with both winning and
losing stimuli were counted for all subjects, as shown in Table 2. It can be seen that
activation was present in the orbitofrontal cortex of all subjects. Meanwhile, activation was
present in the insula and amygdala in almost all subjects. In most subjects, activation was
present in the anterior cingulate cortex and caudate nucleus. In addition, 18 subjects had
activation in the olfactory cortex; 17 subjects had activation in the posterior cingulate gyrus,
parahippocampal gyrus, inferior occipital gyrus, and fusiform gyrus; and 14 subjects had
activation in the rectus gyrus.

Table 2. Partial activated ROISs of all subjects of both winning and losing stimuli.

. Orbitofrontal Anterior Cingulate Caudate
Subject Cortex Insula Cortex Amygdala Nucleus

Sub 01
Sub 02
Sub 03
Sub 04
Sub 05
Sub 06
Sub 07
Sub 08
Sub 09
Sub 10
Sub 11
Sub 12
Sub 13
Sub 14
Sub 15
Sub 16
Sub 17
Sub 18
Sub 19
Sub 20

<

L L

L K
LUl L

Ul Ll Ll
LU Ll L <

NG NN NN, NN NN NG N SO NN NS

3.2. Winning Stimulus

The CMTF method was used to decompose the components associated with the
winning stimulus.

Figure 8 shows the calculated four indicators of the CMTF model for subject 16. A
component number of two was selected following the model selection principles, of which
the first was stimulus-related. The results are shown in Figure 9. The spectrum of the
stimulus-related component had an energy peak in the delta band (0.5-4 Hz), whereas
the second component peaked in the beta band (12-30 Hz). The topographic and ROI
activation maps of the stimulus-related components were generally consistent. There was
activation in the olfactory cortex, intraorbital superior frontal gyrus, rectus gyrus, insula,
anterior cingulate and paracingulate gyrus, caudate nucleus, and putamen. There was a
small amount of activation in the dorsolateral superior frontal gyrus, cuneus, amygdala,
and supramarginal gyrus.

The occurrence of activated ROIs known to be associated with the winning stimulus
was counted for all subjects, as shown in Table 3. Activation was present in almost all
subjects’ anterior cingulate cortex and caudate nucleus. Activation was present in the
supramarginal gyrus and the putamen in most subjects. A small number of subjects
had activation in the DLPFC and cuneus. In addition, 18 subjects had activation in the
amygdala; 17 in the rectus gyrus, olfactory cortex, intraorbital superior frontal gyrus,
inferior occipital gyrus, and insula; and 16 subjects had activation in the fusiform gyrus
and parahippocampal gyrus.
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Figure 8. The four indicators of the CMTF model of different numbers of components for subject 16

were calculated. According to the model selection guidelines, a component number of 2 was chosen
to analyze the CMTF results for this subject.
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Table 3. Partial activated ROISs of all subjects of winning stimulus.
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3.3. Losing Stimulus

The CMTF method was used to decompose the components relevant to the stimulation
of loss.

The four indicators of the CMTF model of different numbers of components for subject
1 were calculated as shown in Figure 10. A component number of five was selected to
analyze the CMTF results of this subject by the model selection principles. The results are
shown in Figure 11. The second of the five components was the stimulus-related component.
The frequency spectrum of the stimulus-related component showed an energy peak in
the delta band (0.5-4 Hz). The first component showed an energy peak in the theta band
(4-8 Hz). The rest of the components showed energy peaks in the beta band (12-30 Hz).
The topographic maps of stimulus-related components and brain area activation maps
were generally consistent. There was activation in the olfactory cortex, insula, posterior
cingulate gyrus, parahippocampal gyrus, amygdala, and fusiform gyrus. There was a small
activation in the triangle inferior frontal gyrus and orbital inferior frontal gyrus.
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Figure 10. The four indicators of the CMTF model of different numbers of components for subject 1
were calculated. According to the model selection guidelines, a component number of 5 was chosen
to analyze the CMTF results for this subject.
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Figure 11. The CMTF results for subject 1 demonstrate the temporal signature s,, spectral signature
fr, and spatial (channel) signature c, of 5 sources in the EEG domain and ROI activation associated
with the losing stimulus.
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The occurrence of activated ROIs known to be associated with the losing stimulus was
counted for all subjects, as shown in Table 4. Activation was present in the inferior frontal
gyrus of all subjects. Activation was present in the cingulate cortex in almost all subjects.
Activation was present in the insula of most subjects. In addition, there was activation in
the rectus gyrus and amygdala in 18 subjects; the inferior occipital gyrus in 17 subjects; the
parahippocampal gyrus in 16 subjects; and the fusiform gyrus, the olfactory cortex, and the
medial superior frontal gyrus in 15 subjects.

Table 4. Partial activated ROISs of all subjects of losing stimulus.

Subject Inferior Frontal Gyrus Insula Cingulate Cortex

Sub 01
Sub 02
Sub 03
Sub 04
Sub 05
Sub 06
Sub 07
Sub 08
Sub 09
Sub 10
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Sub 20
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4. Discussion

Reward processing was investigated by taking advantage of the CMTF method’s
ability to capture the higher-order structure and the complementary nature of multimodal
data. The results were presented in four dimensions: the temporal dimension, which reveals
how reward is processed over time; the frequency dimension that shows the potential
oscillatory rhythmicity of reward processing, which helps distinguish brain processes or
functions by frequency bands; the channel dimension that examines the topography of
scalp activity; and the ROI dimension which gives an idea about the regional activation.

The mesocorticolimbic pathway comprises the ventral striatum, nucleus accumbens,
orbitofrontal cortex, dorsal striatum (including the caudate nucleus, etc.), medial pre-
frontal cortex, and amygdala. It has been revealed that it is heavily involved in reward
processing [52]. Using the CMTF analysis for both winning and losing stimuli, activation
was found in the orbitofrontal cortex for all subjects; in the insula, olfactory cortex, poste-
rior cingulate gyrus, parahippocampal gyrus, inferior occipital gyrus, fusiform gyrus, and
amygdala for almost all subjects; and in the rectus gyrus, anterior cingulate cortex, and
caudate nucleus for most subjects. While the result agrees well with the literature [53-55], it
does unveil some information that has never been reported before. For example, we found
that the olfactory cortex, inferior occipital gyrus, and fusiform gyrus were also activated
when winning and losing, which was not mentioned in other studies. The olfactory cortex
is part of the limbic system, which is involved in processing emotions, forming memories,
and linking the senses to memories and emotions [56]. This could be the reason why it was
activated. In the meantime, the inferior occipital and fusiform gyrus were activated most
likely because they are associated with vision, such as processing color information, face
and body recognition, and word recognition [57,58], which were all heavily involved in the
gambling task utilized in this study.
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When comparing winning and losing stimuli, we found that the former led to greater
brain activation in parts of the reward system and areas involved in reward anticipation,
decision-making, and impulse control. For example, activation was present in the superior
orbital frontal gyrus and part of the reward system (anterior cingulate cortex and caudate
nucleus) for almost all subjects; in the supramarginal gyrus and the putamen for most
subjects; and in the cuneus for a small number of subjects. In contrast, activation in risk
aversion and uncertainty management areas was increased for the losing stimulus. For
instance, activation was present in the inferior frontal gyrus for all subjects, the cingulate
cortex for almost all subjects, and the medial superior frontal gyrus for most subjects. The
result agrees well with the one from McClure et al. [52], where activation was spotted in
the caudate nucleus and anterior cingulate cortex when winning but in the inferior frontal
gyrus when losing. Moreover, Knutson et al. [59] found that expected wins led to increased
activation in the cuneus and caudate nucleus, but unexpected losses activated the insula.
Yazdi et al. [60] found that unexpected wins were associated with increased brain activation
in the supramarginal gyrus and the putamen, which are regions associated with surprise.
These findings are all consistent with the results of this paper.

In comparison with the EEG-informed fMRI analysis of the fusion results [23], the
CMTF method showed stronger activation for both winning and losing stimuli in both
insula and olfactory cortex. For winning stimuli, greater activation was shown in the supra-
marginal gyrus. In addition, activation of the inferior occipital gyrus and fusiform gyrus
during winning and losing was found, possibly because they are associated with vision.

Overall, the CMTF successfully extracted meaningful components associated with
stimuli. The CMTF can estimate features and statistical maps of multiple components,
which provides a powerful advantage over a classical EEG/fMRI correlation analysis.
As we demonstrated in our experiments, artificial influences may be isolated in separate
components, which can reduce their impact on stimulus mapping in the brain.

5. Conclusions

This paper investigates the simultaneous EEG-fMRI data of reward processing using
the CMTF method. The CMTF method takes advantage of multimodal data complemen-
tarity and preservation of interdependencies of different dimensions to simultaneously
study the neural activity of the human brain during reward processing from three per-
spectives: temporal, frequency, and spatial. Not only were the activations in ROIs found
in other literature discovered, but also in the olfactory cortex and fusiform gyrus, which
were previously ignored. The results help explore the neurovascular coupling of reward
processing, and also improve the understanding of brain function. Note that this study
assumes that the factors shared by the EEG third-order tensor and the fMRI matrix are
identical. This might not be the exact case, even though they do share similar covariances.
The sample size is also relatively small due to the complexity and difficulty of EEG—{MRI
fusion experiments. A new objective function to capture the shared components in EEG
and fMRI will be studied and constructed in future works.
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