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Abstract: Paired associative stimulation (PAS) increases and decreases cortical excitability in primary
motor cortex (M1) neurons, depending on the spike timing-dependent plasticity, i.e., long-term
potentiation (LTP)- and long-term depression (LTD)-like plasticity, respectively. However, how
PAS affects the cortical circuits for the agonist and antagonist muscles of M1 is unclear. Here, we
investigated the changes in the LTP- and LTD-like plasticity for agonist and antagonist muscles
during PAS: 200 pairs of 0.25-Hz peripheral electric stimulation of the right median nerve at the wrist,
followed by a transcranial magnetic stimulation of the left M1 with an interstimulus interval of 25 ms
(PAS-25 ms) and 10 ms (PAS-10 ms). The unconditioned motor evoked potential amplitudes of the
agonist muscles were larger after PAS-25 ms than after PAS-10 ms, while those of the antagonist
muscles were smaller after PAS-25 ms than after PAS-10 ms. The y-aminobutyric acid A (GABA4)-
and GABAg-mediated cortical inhibition for the agonist and antagonist muscles were higher after
PAS-25 ms than after PAS-10 ms. The cortical excitability for the agonist and antagonist muscles
reciprocally and topographically increased and decreased after PAS, respectively; however, GABA
and GABAg-mediated cortical inhibitory functions for the agonist and antagonist muscles were less
topographically decreased after PAS-10 ms. Thus, PAS-25 ms and PAS-10 ms differentially affect the
LTP- and LTD-like plasticity in agonist and antagonist muscles.

Keywords: paired associative stimulation; long-term potentiation; agonist-antagonist muscle;
magnetic stimulation; human

1. Introduction

Functional interactions between the primary motor cortex (M1) neurons are critical for
human movement. Paired associative stimulation (PAS) has been widely used in recent
decades to induce synaptic plasticity in M1 neurons, in which electrical peripheral nerve
stimulation is paired with M1 stimulation [1,2]. In spike timing-dependent plasticity,
synaptic potentiation is increased (long-term potentiation [LTP]) if the presynaptic spikes
precede postsynaptic action potentials [3], whereas synaptic potentiation is decreased
(long-term depression [LTD]) if the postsynaptic spikes precede the presynaptic action
potentials [4,5]. Previous studies [1,2,6,7] have suggested that PAS induces LTP- and LTD-
like plasticity through spike timing-dependent plasticity. Specifically, if the peripheral
input precedes M1 stimulation due to peripheral electrical nerve stimulation at 25 ms (PAS-
25 ms) before the transcranial magnetic stimulation (TMS) over M1, PAS can result in an
increased cortical excitability (LTP-like plasticity) [1,8,9]. In contrast, if the peripheral input
follows M1 stimulation due to peripheral electrical nerve stimulation at 10 ms (PAS-10 ms)
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before the TMS over M1, cortical excitability is reduced (long-term depression (LTD)-like
plasticity) [1,2]. Additionally, the synaptic plasticity induced by PAS is suggested to follow
topographical rules [2,6,10], because the homologous connection of the somatosensory
cortex and M1 has a high topographical specificity [11]. Previous studies [12-15] have also
suggested that PAS induces the selective reinforcement of y-aminobutyric acid B (GABAg)-
ergic cortical circuits. The topography-specific LTP- and LTD-like plasticity of PAS persists
after stimulation [9,16,17]. Therefore, PAS can be applied to patients with motor control
deficits, such as stroke [18], Parkinson’s disease [19,20], and Huntington’s disease [21].

In motor control, layers III and V of M1 bidirectionally connect different muscle rep-
resentations [22]. The output from the common M1 site could diverge onto agonist and
antagonist muscles with different “gain” [17,23-26], and the stimulation of the M1 region
could elicit particular movements [27,28]. Therefore, movements, including those of the
agonist and antagonist muscles, could be controlled by a network within the M1 [22,23].
Specifically, the control of agonist-antagonist muscles is crucial for smooth and precise
motor control [24,29,30]. Several studies have suggested that the motor representations of
M1 can be reorganized during motor training [31-35] and that competition with antagonist
muscle representations could occur by the expansion of the trained agonist muscle repre-
sentation [31,36,37]. However, the changes in representations for the agonist and antagonist
muscles after PAS remain unclear. Therefore, despite the fact that functional interaction in
M1 is crucial for human movement, the changes induced by PAS in the cortical circuits for
agonist-antagonist muscle representations of M1 remain unknown.

If horizontal cortical projections for the agonist and antagonist muscles are topograph-
ically present in M1 in healthy people and PAS induces LTP- and LTD-like plasticities in
M1 circuits, PAS may simultaneously change the cortical circuits controlling the agonist
and antagonist muscles in M1. Specifically, we hypothesized that if the administration of
PAS-25 ms with peripheral median nerve stimulation and TMS over agonist flexor carpi
radialis (FCR) muscle representation topographically induces a simultaneous increase in
cortical excitability for the agonist FCR muscle and a decrease in cortical excitability for
the antagonist extensor carpi radialis (ECR) muscle in healthy people. We further hypoth-
esized that GABAg-mediated cortical inhibitory functions for agonist FCR muscle may
be specifically increased after PAS-25 ms in healthy people. Exploring how PAS affects
the plasticity of M1 circuits for the agonist and antagonist muscles may increase our un-
derstanding of the organization processes of these muscles and expand previous findings.
Therefore, this study aimed to investigate the changes in LTP- and LTD-like plasticity for
agonist-antagonist muscle representations during PAS in healthy people.

2. Materials and Methods
2.1. Participants

To calculate the sample size, 80% statistical power, with an effect size of 0.35 and a
two-sided o-level of 0.05 for the detection of changes in motor evoked potential (MEP) am-
plitudes, were used. G*Power 3.0 [38], based on these parameters, estimated a sample size
of 13. Therefore, 15 healthy volunteers who were not taking any medication and without
any risk of adverse events for TMS [39] were recruited (9 women, 6 men; age, 27.9 £ 10.6
[mean =+ standard deviation (SD)] years; height, 163.6 £ 8.7 cm; weight, 60.1 &= 8.9 kg;
and body mass index, 22.4 & 2.6). The Edinburgh Handedness Inventory [40] confirmed
right-handedness, with a mean laterality quotient of 1.0 &= 0.1 (mean =+ SD) points.

Our experimental procedures were approved by the Research Ethics Committee of
the Tokyo Kasei University (approval code SKE2019-7) and followed the principles of
the Declaration of Helsinki. All participants provided written informed consent prior to
participation. In addition, all experiments were performed following the “Guidelines for
TMS/tES clinical services and research through the COVID-19 pandemic” [41].
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2.2. Experimental Setup

Each participant was seated in a chair, with the right arm hanging to the side of
the body trunk and the forearm held in place by a cushioned support with belts. The
relaxed wrist could freely flex and extend. After wrist flexion and extension, the wrist
gravitationally returned to the starting position. The left arm was comfortably placed on
the armrest of the chair.

2.3. Electromyographic Recordings

The skin over the right flexor carpi radialis (FCR) muscle and extensor carpi radialis
(ECR) muscle was cleaned with alcohol to reduce electrical resistance. The double dif-
ferential surface electrodes (FAD-DEMG]1, 4Assist, Tokyo, Japan) were then placed over
the FCR and ECR muscles. The MEPs from the FCR and ECR muscles were amplified
by 100, bandpass-filtered at 10-2000 Hz, digitized at 10 kHz with a PowerLab system
(ADInstruments, Dunedin, New Zealand), and stored in a solid-state drive.

2.4. Transcranial Magnetic Stimulation

Participants wore a tight-fitting cap, and intersecting nasion—inion and interaural
lines on the cap were marked with a pen to localize the vertex (Cz), in accordance with
the international 10-20 system. The Magstim 200 (Magstim, Whitland, UK) stimulators
delivered TMS as a monophasic current waveform via a cable to the figure-of-eight coil on
the participant’s head. To induce the current from the posterolateral to the anteromedial left
brain, the coil was placed tangentially to the scalp, and the handle pointed backward and
sideways at approximately 45° from the midline. The resting motor threshold (RMT) was
determined as the minimum stimulus intensity required to produce a peak-to-peak MEP of
at least 50 1V in each of the relaxed FCR or ECR muscles in 5 of the 10 consecutive trials.

2.5. Motor Representational Map

We did not use the magnetic resonance imaging (MRI) scanner and neuronavigation
system because, although these systems can anatomically detect the motor hand area of
the precentral gyrus [42,43], they could not anatomically distinguish agonist FCR and
antagonist ECR muscle representations. Therefore, to map the agonist and antagonist
muscle representations, 25 positions of a 6 x 6 cm? grid with 1.5-cm spacings were marked
on a participant’s head, with a center 6 mm anterior and 57 mm lateral from the Cz, based
on previous studies [25]. At each scalp position, the MEPs evoked by five stimulations at
120% of the RMT of each FCR or ECR muscle were recorded in a clockwise spiral course
of a 5-s interstimulus interval. We computed the center of amplitude (CA) of each FCR or
ECR muscle to determine the coordinates with reference to Cz [17,24-26,44], according to
Equation (1):

A= [Rom Lo (1)

where t is the number of TMS, x; and y, are the TMS coordinates, and a; is the peak-to-
peak MEP amplitude. CAs correspond to the locations of the relative excitable neuron
populations projecting to each FCR or ECR muscle.

2.6. Paired Associative Stimulation

Prior to PAS, the threshold of perception for electrical stimulation was assessed. We
placed the bipolar electrode of an electrical stimulator (DS3 Isolated Current Stimulator;
Digitimer Ltd., London, UK) on the median nerve at the anterior part of wrist, with the
cathode proximal to the anode. The threshold of perception was determined to be the
minimum stimulus intensity that the participant first and once perceived with certainty as
the stimulus, when electrical square-wave pulses with a 2000-us duration were altered via
1-mA increments and decrements.

PAS was then delivered via the electric stimulation of 200 pairs of peripheral median
nerves and TMS at the CA of the FCR muscle (frequency, 0.25 Hz) [6,17,45-47]. During
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PAS, square-wave pulses with a duration of 2000 ps at thrice the perceptual threshold were
applied. The TMS applied to the left M1 at CA for the FCR muscle was evoked with 130%
of the FCR muscle’s RMT. The interstimulus interval between the electrical stimulation and
TMS was 25 ms (PAS-25 ms) and 10 ms (PAS-10 ms), as previous studies have noted that a
25-ms interstimulus interval was required to induce an LTP-like increment in corticospinal
excitability [1,2,8,16,17,48], whereas a 10-ms interstimulus interval was required to induce
a LTD-like reduction in cortical excitability [8,16,49-52]. PAS-25 ms and PAS-10 ms were
performed on two different days, with a break of at least one day in between.

2.7. Cortical Excitability Recordings

Previous studies suggested that PAS may induce the reinforcement of cortical excitabil-
ity in GABA- and GABAg-ergic cortical circuits [9,17]. Therefore, unconditioned MEPs,
GABA -mediated short-interval intra-cortical inhibition (SICI), and GABAg-mediated
long-interval intra-cortical inhibition (LICI) were measured at CA of each FCR (i.e., ago-
nist) or ECR (i.e., antagonist) muscle before and after PAS-25 ms and PAS-10 ms [2,53-55].
Unconditioned MEPs were evoked at the CA of each FCR or ECR muscle at 120% of the
RMT value. For SICI, the stimulus intensity for the first conditioning pulse was set at
80% of the FCR muscle’s RMT, whereas the second test pulse was set at 120% of the FCR
muscle’s RMT. An interstimulus interval of 2.5 ms was used to test SICI [53-55]. For
LICI, the stimulus intensity was set at 120% of the RMT for both the conditioning and test
stimuli, and 100 ms was used as the interstimulus interval [2,56-58]. A total of 30 trials of
unconditioned MEP, SICI, and LICI measurements (10 trials each) at a frequency of 0.2 Hz
were recorded randomly.

2.8. Data Analysis

The outliers of the peak-to-peak MEP amplitudes were checked using Tukey’s fences,
and values greater than 1.5 times the interquartile range of each participant’s initial dataset
were excluded from the initial datasets [59]. The blank cells removed by the outliers were
linearly interpolated. Then, the local linear trend model (LLT) was used to estimate the
dynamic state of the peak-to-peak MEP amplitudes. The LLT assumes that the trend
from observational values (Equation (2)), level (Equation (3)), and slope (Equation (4)) is
calculated as follows:

or =l + & 2
lLev1=1li+se+u; 3)
St+1 = St + Ut 4)

where t is the number of TMS, o; is the observational value, & is random variable, I;
is the level, s; is the slope, and u; and v; are the disturbances in the level and slope,
respectively [55].

2.8.1. Immediate Modulatory Effects during PAS

Previous studies [60,61] noted that MEP amplitudes randomly fluctuated between
TMS. We predicted that PAS would induce an increment in the MEP amplitudes with
random fluctuation. Therefore, a linear regression model with a random fluctuation was
constructed as follows:

Y=o+ Pt + et )

where t is the number of PAS; « is the y-intercept of the peak-to-peak MEP amplitudes,
reflecting initial cortical excitability; B is the slope of the peak-to-peak MEP amplitudes,
reflecting changes in the cortical excitability; and & is the random variation, reflecting the
inherent fluctuation of peak-to-peak MEPs.

We tested the fit of the time course of the mean actual peak-to-peak MEP amplitudes
and used a linear regression model based on the coefficient of determination (R?). To
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evaluate the immediate or real-time effect of PAS-25 ms and PAS-10 ms, the slope (B) was
extracted from the linear regression model.

2.8.2. Retardative Modulatory Effects after PAS

To classify the change in cortical excitability after PAS as either retardative or delayed
modulatory effects, the conditioned and unconditioned peak-to-peak MEP amplitudes (i.e.,
SICI and LICI) were normalized to the baseline data as follows:

NA(f,t) = Dft) — B§) (6)

B(f)

where NA denotes the normalized MEP amplitude, D denotes the actual peak-to-peak
MEP amplitude at time ¢ during PAS, and B denotes the mean actual peak-to-peak MEP
amplitude before PAS. A large positive value indicates a large increase in the peak-to-peak
MEPs compared with that in the baseline period before PAS.

2.9. Statistical Analysis

After normality testing using the Kolmogorov-Smirnov test, a parametric paired ¢
test or a nonparametric Wilcoxon rank sum test was used to compare the slope of the
cortical excitabilities for the FCR or ECR muscles induced by PAS-25 ms and PAS-10 ms for
immediate modulatory effects during PAS and to compare the differences in normalized
peak-to-peak MEP amplitudes among cortical excitabilities for the FCR or ECR muscles
induced by PAS-25 ms and PAS-10 ms for retardative modulative effects after PAS. Data
analysis was conducted using the SciPy package in the Python environment (Python
Software Foundation, Wilmington, DE, USA), and R 3.4.0 (The R Foundation, Vienna,
Austria). Data are expressed as the means =+ standard errors of the mean (SEM). Statistical
significance was set at p < 0.05.

3. Results
All participants completed all experiments without any side effects from PAS.

3.1. Motor Representational Map

The mean representational maps and CA values for the FCR and ECR muscles are
shown in Figure 1. The maps for the FCR and ECR muscles overlapped and were changed
after both PAS-25 ms and PAS-10 ms. The CA values for the FCR and ECR muscles are
shown in Table 1. The CA values of the FCR and ECR muscles were not identical before
and after both PAS-25 ms and PAS-10 ms.

Table 1. Center of amplitude of peak-to-peak MEP amplitudes before and after PAS.

Center of Amplitude (mm)

FCR ECR
Anteroposterior = Mediolateral Anteroposterior =~ Mediolateral
Before PAS-25 ms —56.2+ 1.6 49+17 —55.7+ 1.6 31£18
Before PAS-10 ms —55.6 £12 51+23 —55.0=£1.1 43+22
After PAS-25 ms —57.8+1.4 43+18 —56.9 £ 1.6 35+19
After PAS-10 ms —571+12 59+22 -572+10 54420

The values are the mean =+ standard error of the mean. The vertex (Cz) reflects the coordinate origin. MEP,
motor evoked potential; PAS-25 ms, paired associative stimulation with a 25-ms interstimulus interval between
peripheral electrical stimulation and TMS; PAS-10 ms, paired associative stimulation with a 10-ms interstimulus
interval between peripheral electrical stimulation and TMS; FCR, flexor carpi radialis; ECR, extensor carpi radialis.
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A. Mean FCR contour before PAS-25ms  B. Mean ECR contour before PAS-25ms C. Mean FCR contour after PAS-25ms D. Mean ECR contour after PAS-25ms
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Figure 1. Mean contours of the FCR (A) and ECR (B) muscles before PAS-25 ms, those of FCR
(C) and ECR (D) muscles after PAS-25 ms, those of the FCR (E) and ECR (F) muscles before PAS-
10 ms, and those of the FCR (G) and ECR (H) muscles after PAS-10 ms. The color code of each contour
denotes the MEP amplitudes. Black circles denote the mean CA, and the error bar denotes the SEM.
The vertex (Cz) reflects the coordinate origin. FCR, flexor carpi radialis; ECR, extensor carpi radialis;
PAS-25 ms, paired associative stimulation with a 25-ms interstimulus interval between peripheral
electrical stimulation and TMS; PAS-10 ms, paired associative stimulation with a 10-ms interstimulus
interval between peripheral electrical stimulation and TMS; MEP, motor evoked potential; SEM,
standard error of the mean.

3.2. Immediate Modulatory Effects during PAS

Figure 2 depicts the time-oriented changes in the unconditioned peak-to-peak MEP
amplitudes of the FCR and ECR muscles as the immediate modulatory effects during
PAS-25 ms and PAS-10 ms. Table 2 shows the « and  values in Equation (5). The linear
regression model had moderate to high R? values among the mean actual MEP amplitudes
and predicted MEP amplitudes derived from the model (R? = 0.150-0.722, all p < 0.0001).
The B values of the regression model for ECR MEP during PAS-10 ms were significantly
steeper than those during PAS-25 ms (Wilcoxon rank sum test, p = 0.002). Although the B
values of the regression model for FCR MEP during PAS-10 ms were steeper than those
during PAS-25 ms, the results were not significant (Wilcoxon rank sum test, p = 0.412).

Table 2. Assessment of the model fit.

Condition Muscle Pt B R? p

PAS-25 ms FCR 0.367 £0.138  0.001 £ 0.000 0.411 <0.0001
ECR 0.472 £0.088  0.000 £ 0.000 0.150 <0.0001

PAS-10 ms FCR 0.399 £0.197  0.002 + 0.001 0.722 <0.0001
ECR 0.520 £0.111  0.001 £ 0.000 0.644 <0.0001

The values are the mean + standard error of the mean.
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Figure 2. Grand-averaged time-series of the MEP amplitudes of FCR (A) and ECR (B) during
PAS. The red and blue solid lines indicate the mean actual MEP amplitudes during PAS-25 ms
and PAS-10 ms, respectively. The colored areas indicate the standard error of the mean. The red
and blue dashed lines indicate the mean predicted MEP amplitudes during PAS-25 ms and PAS-
10 ms by the linear regression model, respectively. The slopes of the MEP amplitudes for the FCR
(C) and ECR (D) muscles during PAS. The slopes of MEP amplitudes for the ECR muscle were
significantly steeper during PAS-10 ms than those during PAS-25 ms. MEP, motor evoked potential;
FCR, flexor carpi radialis; ECR, extensor carpi radialis; PAS-25 ms, paired associative stimulation with
a 25-ms interstimulus interval between peripheral electrical stimulation and TMS; PAS-10 ms, paired
associative stimulation with a 10-ms interstimulus interval between peripheral electrical stimulation
and TMS. *: p < 0.05.

3.3. Retardative Modulatory Effects after PAS

Peak-to-peak MEP amplitudes and values of RMT, SICI, and LICI obtained for the
FCR and ECR muscles before and after PAS are shown in Table 3 and Figure 3. Group
NA values for the FCR and ECR muscles before and after PAS-25 ms and PAS-10 ms are
shown in Figure 4. The Kolmogorov-Smirnov test demonstrated that the MEP amplitude
lacked normality (each NA value for the FCR or ECR muscle before and after PAS-25 ms
or PAS-10 ms: all p < 0.05). Therefore, nonparametric testing was used for comparison of
the NA values for each FCR or ECR muscles after PAS-25 ms and PAS-10 ms treatments.
The Wilcoxon rank sum test showed the NA values of the unconditioned MEP for FCR for
PAS-25 ms were significantly larger than those for PAS-10 ms, whereas the NA values of
the unconditioned MEP for ECR for PAS-25 ms were significantly smaller than those for
PAS-10 ms (Wilcoxon rank sum test: FCR, p = 0.001; ECR, p < 0.0001). The NA values of
SICI for FCR for PAS-25 ms were significantly smaller than those for PAS-10 ms, and the
NA values of SICI for ECR for PAS-25 ms were also significantly smaller than those for
PAS-10 ms (Wilcoxon rank sum test: FCR, p = 0.002; ECR, p < 0.0001). The NA values of
LICI for ECR for PAS-25 ms were significantly smaller than those for PAS-10 ms (Wilcoxon
rank sum test: p < 0.0001). Although the NA values of LICI for FCR were also smaller than
those for PAS-10 ms, significance was not reached (Wilcoxon rank sum test: FCR, p = 0.451).

Table 3. MEP amplitudes and RMT, SICI, and LICI values for the FCR and ECR muscles before and
after PAS.

Before PAS-25 ms After PAS-25 ms Before PAS-10 ms After PAS-10 ms

FCR

ECR FCR ECR FCR ECR FCR ECR

RMT (%)
Uncond (mV)
SICI (mV)
LICI (mV)

583 +£2.5
0.33 +0.03
0.13 £ 0.02
0.04 +0.00

56.6 £1.9 570+£19 546+ 1.6 58.7+£23 553+ 1.8 59.6 £2.1 56.1 £1.7
0.53 + 0.04 0.31 £ 0.03 0.54 + 0.04 0.34 +0.02 0.43 + 0.03 0.34 +0.02 0.47 + 0.03
0.22 £ 0.02 0.14 £+ 0.02 0.29 £ 0.02 0.15 £ 0.02 0.26 £+ 0.02 0.20 £ 0.02 0.31 £ 0.03
0.15 + 0.02 0.03 + 0.00 0.17 +0.02 0.08 +0.01 0.14 + 0.02 0.08 +0.01 0.14 + 0.02

The values are the mean =+ standard error of the mean. MEP, motor evoked potential; RMT, resting motor threshold;
SICI, short-interval intra-cortical inhibition; LICI, long-interval intra-cortical inhibition; FCR, flexor carpi radialis;
ECR, extensor carpi radialis; PAS, paired associative stimulation; Uncond, unconditioned MEP amplitudes.
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A. FCR MEP before PAS-25ms
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Figure 3. Scatter charts of MEP amplitudes for FCR (A) and ECR (B) before PAS-25 ms, those for FCR
(C) and ECR (D) after PAS-25 ms, those for FCR (E) and ECR (F) before PAS-10 ms, and those for FCR
(G) and ECR (H) after PAS-10 ms at the individual level. Unconditioned MEP amplitudes were higher
than the conditioned MEP amplitudes (i.e., SICI and LICI conditions). MEP, motor evoked potential;
FCR, flexor carpi radialis; ECR, extensor carpi radialis; PAS-25 ms, paired associative stimulation with
a 25-ms interstimulus interval between peripheral electrical stimulation and TMS; PAS-10 ms, paired
associative stimulation with a 10-ms interstimulus interval between peripheral electrical stimulation
and TMS; Uncond, unconditioned MEP amplitude; SICI, short-interval intracortical inhibition; LICI,
long-interval intracortical inhibition.
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Figure 4. Bar graphs of NA values for the unconditioned MEP for FCR (A) and ECR (B) muscles,
SICI for FCR (C) and ECR (D) muscles, and LICI for FCR (E) and ECR (F) after PAS-25 ms and
PAS-10 ms at the group level. The unconditioned MEP for FCR for PAS-25 ms were larger than
those for PAS-10 ms, whereas the unconditioned MEP for ECR for PAS-25 ms were smaller than
those for PAS-10 ms. The SICI and LICI for both FCR and ECT for PAS-25 ms were smaller than
those for PAS-10 ms. NA, the normalized motor evoked potential amplitude; MEP, unconditioned
motor evoked potential; Uncond, unconditioned MEP amplitude; SICI, short-interval intracortical

inhibition; LICI, long-interval intracortical inhibition. *: p < 0.05.
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4. Discussion

We measured the changes in the MEP amplitude related to the M1 circuits” plasticity
for the agonist and antagonist muscles, induced by PAS-25 ms and PAS-10 ms to test the
hypothesis that PAS should topographically induce an increment of cortical excitability
for the agonist FCR muscle and a decrement of cortical excitability for the antagonist ECR
muscle in healthy people. This method was also used to test whether GABAg-mediated
cortical inhibitory functions for the agonist FCR muscle were specifically increased after
PAS-25 ms in healthy people. The results of this study revealed the following: (a) the
MEP amplitudes of both the agonist (FCR) and antagonist (ECR) muscles were increased
during PAS-10 ms, (b) the unconditioned MEP amplitudes for the agonist FCR muscle
after PAS-25 ms were larger than those after PAS-10 ms, whereas the unconditioned MEP
amplitudes for the antagonist ECR muscle after PAS-25 ms were smaller than those after
PAS-10 ms, and (c) the GABA p-mediated SICI and GABAg-mediated LICI for both the
agonist and antagonist muscles after PAS-25 ms were smaller than those after PAS-10 ms.
These systematic observations provided evidence that PAS-25 ms and PAS-10 ms had
different effects on the LTP- and LTD-like plasticity for the agonist and antagonist muscles.

The first additional new observation in our study was that the cortical excitabilities for
the agonist and antagonist muscles increased more during PAS-10 ms than PAS-25 ms as
an immediate effect. Several studies [2,8,16] have suggested that cortical excitability for the
agonist muscle increased and decreased during PAS-25 ms and PAS-10 ms, respectively.
However, some studies have reported no such changes in excitability during PAS-25 ms
and PAS-10 ms treatment [46,62,63], while another noted contradictory effects of PAS: a
decrement of cortical excitability during PAS-25 ms and an increment of cortical excitability
during PAS-10 ms [64]. Therefore, the effects of PAS-25 ms and PAS-10 ms remain a topic
of contention. One of the reasons for these inconsistencies may be the inherent random
fluctuation of MEPs [60,61] and changing the representational maps with PAS. The coil
position for appropriately eliciting MEPs from the agonist and antagonist muscles was
systematically determined using CA. Relating to the systematic MEP measurements, to
induce the topographical modulatory effects of PAS, PAS-25 ms and PAS-10 ms were com-
posed by the pairing of peripheral median nerve stimulation and TMS at the CA for the
agonist FCR muscle. As a result, PAS was applied with the appropriate TMS coil position.
Additionally, to detect the dynamic states of cortical excitability, we used the LLT model,
thus eliminating the confounding factor of amplitude fluctuations during MEP evaluations.
These were thought to be the basis for successfully observing cortical excitability for the
agonist and antagonist muscles during PAS. In fact, our study noted that the MEP am-
plitudes of the agonist (FCR) and antagonist (ECR) muscles were increased more during
PAS-10 ms than PAS-25 ms. Homeostatic plasticity, based on the Bienenstock—-Cooper—
Munro theory [1,65,66], assumes a bidirectional synaptic plasticity, with the threshold for
the induction of LTP and LTD varying. According to the Bienenstock—-Cooper—-Munro
theory, the threshold decreases with low levels of previous postsynaptic activity, indicating
LTP induction, and vice versa with high levels of previous postsynaptic activity, indicating
LTD induction. One possible explanation for the increase and decrease in cortical excitabil-
ities during PAS-10 ms and PAS-25 ms, respectively, in our study;, is that the threshold
decreases with low levels of postsynaptic activity during PAS-10 ms, but the threshold
increases with high levels of postsynaptic activity during PAS-25 ms.

In retardative modulatory effects, previous studies [2,6] reported that unconditioned
MEP amplitudes for the targeted agonist muscle increased more than those for the non-
target muscle after PAS, indicating the topographic specificity of PAS. Furthermore, a previ-
ous study [10] reported that MEP amplitudes for the targeted agonist muscles increased,
whereas those for non-targeted antagonist muscles were not significantly changed before
and after PAS. In expanding on the findings of previous studies [6,10], the unconditioned
MEP amplitudes for the agonist (FCR) and antagonist (ECR) muscles were reciprocally
more and less increased after PAS-25 ms, whereas they were reciprocally less and more
increased after PAS-10 ms as a retardative effect in our study. This is the second new finding
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in our study. A previous study [22] reported horizontal axon collaterals connecting different
forelimb representations in M1. The representational map areas for the agonist and antago-
nist muscles overlap [23,24]. These studies suggest that the horizontal cortical projections
interconnecting functionally-related neuronal clusters within M1 regulate the agonist and
antagonist muscles, and that the somatosensory cortex inputs to M1 may diverge onto the
FCR and ECR muscle representations due to peripheral electrical stimulation [22-24]. As a
result, M1 facilitates the passage of la inhibitory interneurons from the corticospinal tract
or inhibitory volleys that travel from M1 to the antagonist muscle motor neurons [24,29,30].
One possible explanation for reciprocally increased and decreased MEP amplitudes for
the agonist FCR and antagonist ECR muscles in our study is that peripheral median nerve
electrical stimulation provides an input to the FCR representation in M1 via afferents
from the somatosensory cortex. Consequently, the output from the FCR representation
might diverge onto alpha motor neurons in FCR muscles and Ia inhibitory interneurons in
ECR muscles. Then, PAS influences reciprocal inhibition functions via LTP- and LTD-like
plasticity of the M1 circuit. Furthermore, the retardative and immediate modulatory effects
of PAS on unconditioned MEPs may be a different mechanism of transient homeostatic
plasticity and a continuous reciprocal inhibitory function.

In our study, PAS-10 ms decreased (i.e., disinhibited) the GABAA- and GABAg-
mediated cortical inhibitory function (i.e., LICI) for both the agonist (FCR) and antagonist
(ECR) muscles, whereas PAS-25 ms decreased it less. Several previous studies have investi-
gated the aftereffects of a PAS intervention on both the GABA 4- and GABAg-ergic cortical
circuits [2,13,67]. Their results suggested that PAS may induce the selective reinforcement
of GABAg-ergic cortical circuits. A previous study [14] reported that LICI was reduced by
administering PAS-25 ms and increased by PAS-10 ms. Other study [68] found no signifi-
cant changes in LICI arising from the application of a PAS-10 ms intervention. Additionally,
a previous study [69] reported that experimentally induced LTP at cortical synapses can
be reversed by blocking the GABA receptors. Although LTP occurs at excitatory gluta-
matergic synapses, GABA plays a significant role in modulating LTP [16] in the context of
PAS. One possible explanation for the decrease in SICI and LICI after PAS-10 ms for both
FCR and ECR is that GABA - and GABAg-mediated cortical inhibitory functions for both
agonist and antagonist muscles were less topographically decreased. However, the precise
mechanism underlying the differences in the changes in the GABA 4- and GABAg-ergic
cortical plasticity for agonist and antagonist muscles induced by PAS-25 ms and PAS-10 ms
is still unclear. Therefore, further studies are needed to investigate the precise role of
GABA-and GABAg-ergic M1 plasticity in topographic specificity during PAS-25 ms and
PAS-10 ms.

This study has some limitations that should be acknowledged. First, CA is not the
location inducing the peak MEP amplitude reflecting the most excitable neuron populations
projecting to each FCR or ECR muscle, but rather the equilibrating location where the MEP
amplitude is evenly distributed, reflecting relative excitable neuron populations that are
projecting to each FCR or ECR muscle [17,24,26,44]. Therefore, further research is needed to
investigate the precise location of the agonist and antagonist muscle representations, using
not only TMS but also the neuronavigation system, MRI, and magnetoencephalography [70].
Second, the intensity of electrical stimulation and TMS is set to three times the perceptual
threshold and 130% of the RMT, respectively; the interval between the peripheral nerve
stimulus and the TMS pulse is set to 25 ms for inducing LTP and 10 ms for inducing
LTD, based on previous studies [2,8,16]. However, a previous study found that PAS has
highly individual-dependent effects [7,63]. In our study, although the sample size was
estimated using G*Power 3.0 [38], we did not consider individual factors, such as adequate
stimulus intensities and the interstimulus interval of the electrical stimulation and TMS
in accordance with the differences in age, sex, and height. Thus, future studies need to
include a larger sample size to analyze the effects of PAS while taking individual factors
into account.
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5. Conclusions

In conclusion, despite some potential limitations in our study for the non-homogeneity
between age, sex, and height, due to a small sample size, we found LTP- and LTD-like
M1 plasticity for agonist and antagonist muscles via PAS-25 ms and PAS-10 ms. Our
findings suggest that during PAS-10 ms, cortical excitability for both the agonist and
antagonist muscles was less topographically increased during PAS, implying an immediate
homeostatic effect. However, the unconditioned MEP amplitudes for the agonist FCR and
antagonist ECR muscles were reciprocally more and less increased after PAS-25 ms, whereas
they were reciprocally less and more increased after PAS-10 ms, implying retardative effects
on the reciprocal inhibition. Additionally, after PAS-10 ms, the GABA5- and GABAg-
mediated cortical inhibitory functions for both the agonist and antagonist muscles were
less topographically decreased, implying a retardative disinhibition effect.
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