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Abstract: The Stroop interference task is indispensable to current neuropsychological practice. De-
spite this, it is limited in its potential for repeated administration, its sensitivity and its demands on 
professionals and their clients. We evaluated a digital Stroop deployed using a smart device. Spoken 
responses were timed using automated speech recognition. Participants included adult nonpatients 
(N = 113; k = 5 sessions over 5 days) and patients with psychiatric diagnoses (N = 85; k = 3–4 sessions 
per week over 4 weeks). Traditional interference (difference in response time between color incon-
gruent words vs. color neutral words; M = 0.121 s) and facilitation (neutral vs. color congruent 
words; M = 0.085 s) effects were robust and temporally stable over testing sessions (ICCs 0.50–0.86). 
The performance showed little relation to clinical symptoms for a two-week window for either non-
patients or patients but was related to self-reported concentration at the time of testing for both 
groups. Performance was also related to treatment outcomes in patients. The duration of response 
word utterances was longer in patients than in nonpatients. Measures of intra-individual variability 
showed promise for understanding clinical state and treatment outcome but were less temporally 
stable than measures based solely on average response time latency. This framework of remote as-
sessment using speech processing technology enables the fine-grained longitudinal charting of cog-
nition and verbal behavior. However, at present, there is a problematic lower limit to the absolute 
size of the effects that can be examined when using voice in such a brief ‘out-of-the-laboratory con-
dition’ given the temporal resolution of the speech-to-text detection system (in this case, 10 ms). 
This resolution will limit the parsing of meaningful effect sizes. 
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1. Introduction 
The Stroop color-word interference task [1,2] is commonly regarded as one of the 

“gold standard” cognitive measures of attentional control and its biases [3]. Although dif-
ferent versions exist in the literature, with variations in the number of stimuli, sensory 
domain of stimulus, response format, and summary performance measures, the canonical 
version consists of naming the ink color of a printed word while ignoring the meaning of 
the word itself. If the printed word and its color are incongruent (e.g., the word RED 
printed in blue ink), the over-learned automated process of reading the word interferes 
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and produces a hypothesized conflict cost, resulting in increased errors and in fewer trials 
being completed. Digital versions of the Stroop have been used in research for decades 
and allow for more sensitive evaluation of response time and interference effects in milli-
seconds. By careful adjustment of stimulus material, the approach has also been used for 
mapping attentional biases in, for example, depression, anxiety, post-traumatic stress dis-
order and phobias [4,5] as well as for substance use disorders [6] and schizophrenia [7,8]. 
Recent technical innovations allow for mobile and automated digital Stroop versions. The 
present project establishes proof-of-concept for this approach using automated speech 
recognition for computing response time speed and accuracy. 

The use of a mobile digital Stroop has at least four major advantages over traditional 
versions. First, it offers a more inexpensive administration. Cognitive disorders reflect one 
of the costliest maladies in the developed world, and traditional cognitive assessment is 
time intensive for both patients and expert administrators [9]. Thus, a mobile automated 
version can help reduce expenses and improve cognitive assessment in populations that 
lack resources or are structurally disadvantaged to access traditional cognitive clinics. Sec-
ond, a digital platform for Stroop testing can offer flexibility that allows for a range of 
ways to probe cognitive processes and biases. However, it remains to be established 
whether a mobile and automated assay has the sensitivity to reliably capture the tradi-
tional facilitation and interference effects. Distinguishing between these effects has been 
important in differentiating between generalized slowing and putative deficits in cogni-
tive control. Ultimately, this can create a tool that can probe different aspects of behavioral 
performance to understand mechanistically and functionally distinct disease entities (suf-
ficient resolution, see [10,11]). Third, a digital Stroop facilitates novel metrics beyond 
simply accuracy used in traditional administrations. Being able to measure trial-level in-
terference effects rather than inferring these effects from global performance offers greater 
sensitivity. The use of trial-level timestamping of the start and end of speech responses 
can further facilitate a variety of metrics, among these the duration of the spoken utter-
ance, an established parameter for word stress level [12]. Another metric it enables is Intra-
Individual Variability of responses, a measure with few assumptions about the origin of 
performance effects (e.g., specific word-type effects) but has proven useful for the assess-
ment of overall cognitive function and comes with plausible neurobiological underpin-
nings [13]. Finally, a mobile automated digital Stroop test could facilitate longitudinal and 
remote tracking over time. Tracking changes in cognitive abilities over time can provide 
critical information for evaluating neurodegenerative and psychiatric disorders and for 
evaluating treatment response. For example, measuring over periods of months and years 
could help in the differential diagnosis between neurodegeneration and healthy aging and 
could help optimize pharmacological and rehabilitative treatments designed to mitigate 
cognitive dysfunction. Measuring over days and weeks could help optimize sleep sched-
ule, reduce anxiety, evaluate psychosis, and otherwise optimize cognitive functioning for 
a variety of concerns in neurotypical, psychiatric and neurological populations. 

To date, there have been other successful implementations of the Stroop test using 
mobile devices for data collection [14–16], but these implementations involved respond-
ing by pressing on-screen buttons (e.g., buttons labeled “red”, “blue”, etc.). Using buttons 
complicates the response process by demanding a visual scan of the screen to locate the 
correct place to press, and in addition, there are technical challenges of making response 
time measurements related to different sampling rates of different device screens (usually 
60 Hz, i.e., ± 16.7 ms temporal resolution, may vary between devices). Speech is the origi-
nal medium of this task and arguably provides the most direct assay of trial-level response 
performance and of the underlying cognitive processes. Speech responses have typically 
required manual coding, a potentially laborious effort that now can be done using auto-
mated speech recognition. 

It remains to be established if the timestamping of spoken utterances using auto-
mated speech recognition has sufficient sensitivity to detect the Stroop effect. This sensi-
tivity will depend on temporal accuracy, precision and resolution, where the precision of 
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timestamps will be limited by the resolution for the most fine-grained comparisons of re-
sponse time performance. Automatic speech recognition typically generates outputs with 
a temporal resolution of ±10 ms (e.g., a word starts at 1.35 s after the presentation of a 
stimulus and ends at 1.82 s). This stems from a “moving window” procedure, where a 
window (typically 25 ms long) is examined for the presence of the speech sounds of a 
word, then the window is moved 10 ms along for another check, and thus it continues 
until the recording is over. Can this temporal resolution be sufficient to detect cognitive 
and clinical effects of interest? Ward [17] provides a useful ‘rule of thumb’, namely that 
measurement precision should be at least an order of magnitude the size of the difference 
that is to be detected. The precision, or variable error, of the timestamps of word onsets in 
a Stroop task is unknown and may depend on procedures/algorithms and variable record-
ing conditions. However, as with the previously mentioned issue of the screen refresh 
rate, errors of just a few milliseconds will be hidden in the 10 ms “chunks” of timestamp 
information, so even in a best-case scenario, there will be a 10 ms uncertainty or “quanti-
zation error” of when someone responded. Since the size of the classic Stroop color-word 
interference has been shown to be in the 150 ms range (average 153 ms in three different 
experiments our methods are based on [18–20]), it should therefore be detectable using 
speech recognition tools. Even for other, more clinically relevant effects, this may be suf-
ficient. For example, words such as “spider” and “crawl” demonstrated 190 ms interfer-
ence delays in individuals affected by a phobia [5]. While demonstrating the traditional 
and robust effects can be interesting, the true value of Stroop testing lies in detecting 
pathological changes within and between individuals. Across the three studies mentioned 
earlier [18–20], the average difference in interference between groups (serious mental ill-
ness vs. healthy controls) was a mere 27 ms, and for facilitation, 71 ms. It is, therefore, 
important to establish whether the common 10 ms temporal resolution of speech-to-text 
systems and the corresponding limit to the precision of the timestamping can be sufficient 
for detecting clinically relevant effects. 

The present project evaluated a mobile, digital and fully automated Stroop test in a 
young adult university student sample and in an older sample recruited from an inpatient 
substance use treatment facility. The latter sample offers potential insight into the unfold-
ing of putative attentional processes as a function of symptom amelioration or exacerba-
tion in treatment. This Stroop test is similar in form and structure to the standardly em-
ployed single-trial Stroop with color-congruent, -incongruent and -neutral stimuli (based 
on the methodology in [18–20]), but specifically designed for daily and remote admin-
istration (see Figure 1). Sessions with the mobile device lasted around 15 minutes (1.5 
minutes for the Stroop task) and contained different tasks as part of a larger study on the 
assessment of language, memory and psychomotor skills, as well as self-report on mental 
states (see [21] for an overview of the tasks). We evaluated this mobile test in its ability to 
tap both traditional response time measures, consequent facilitation and interference ef-
fects, as well as novel response utterance duration and intra-individual variability 
measures. We focused on (a) data usability and compliance, (b) test-retest stability over 
daily assessments, (c) convergence with episodic clinical symptoms (covering a 2-week 
epoch), (d) convergence with the mental state (assessed at the time of Stroop testing), and 
(e) convergence with treatment outcome in the patient sample. Given the temporal reso-
lution of 10 ms, it was expected that the traditional Stroop effects should be readily de-
tected, while smaller effects (e.g., in exploratory analyses of differences between groups 
and clinical states) would be harder to parse. 
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Figure 1. Details on how behavioral data on word category effects can be collected using smart 
devices. Panel A: Three different stimulus conditions were presented visually in random order on 
the screen of a smart device, with a total of 32 presentations per testing session. In the example, first 
is presented a trial with the label “congruent”, where the word GREEN is printed in green color. 
The word remained on the screen for 1.5 seconds, followed by 1.5 seconds with a fixation cross, 
before the presentation of an “animal word” trial with the word MONKEY presented in blue color. 
Last is illustrated an “incongruent” trial, where the word PURPLE was presented in red, represent-
ing a conflict between ink color and the meaning of the word. Panel B: Spoken responses to naming 
ink colors were recorded, and automatic speech recognition software detected response latency, 
duration and accuracy. The file with recorded audio was segmented into either “silence” or the 
phonemes of the respective responses, making it possible to ignore phonations of hesitations such 
as “uh”. The timestamp of the signal to flash the stimulus word on the screen was subtracted from 
the word onset timestamp to measure the response time latency (the “When”). Responses were clas-
sified as either “Correct” or “Incorrect” (the “What”), and incorrect responses were not included in 
the response time analysis. The “How” was indexed by the duration of spoken utterance (e.g., 
‘greeeen’ versus ‘green’), a prosodic feature of stress or emphasis. 

2. Materials and Methods 
2.1. Participants 

We examined the performance of 113 university students (19.8% male, mean age = 
20.0, SD = 1.9) as well as the performance of 85 male inpatients (Mean age = 39.1, SD = 11.2) 
undergoing treatment for substance abuse disorders. Patients had a primary diagnosis of 
substance abuse, most prevalently with addiction to alcohol (26%), cocaine (26%), and 
opioids (25%). Additionally, 63% had psychiatric comorbidity, most commonly depres-
sion (39%). In light of the notable differences in health and age between healthy and pa-
tient participants, we assumed that there would be differences in performance between 
groups, and therefore a valid measure of attentional control should reveal such a differ-
ence (i.e., part of the proof of concept). 

The study was approved by the Louisiana State University Institutional Review 
Board (#3618), and all methods were performed in accordance with the relevant regula-
tions and guidelines. To be included, participants had to (a) be able to legally offer in-
formed consent (e.g., not need and thus not have a legal guardian), (b) choose to offer 
written informed consent, (c) watch a 3-minute instructional video highlighting the risks, 
rewards and expectations of study participation, and (d) demonstrate understanding of 
the study verified by passing a quiz with questions about the nature of the study. This 
informed consent was obtained from all participants. Students were rewarded with course 
credits for participation, while patients were given monetary rewards of $5 per completed 
session. 

2.2. Procedure 
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Participants were asked to give verbal and touchscreen responses presented on a 
smart device using an in-house developed mobile application for the iOS operating sys-
tem from Apple Inc. Each session with the smart device contained one sequence of Stroop 
task trials. A visual prompt appeared before the sequence commenced, with the words: 
“SAY TEXT COLOR” and a vocal prompt instructing, “Say the color the word is printed 
in”. The first word presentation was initiated by the press of a touchscreen button from 
the user, then all subsequent presentations for the session appeared consecutively in a 
randomized sequence for 96 seconds. The paradigm was based on a well-established pro-
cedure introduced by Carter, Robertson and Nordahl [18] and used in numerous other 
studies (e.g., [19,20,22]). For the mobile implementation, we made some notable adjust-
ments. First, the number of trials was reduced to strike a balance between what would be 
an acceptable duration for an ambulatory task for chronically ill patients and what could 
produce a sufficiently high number of responses for statistical analysis. The usability as-
pects of the test development were of critical importance to achieving compliance from 
participants, as we received feedback during preceding experiments in the study from 
participants indicating that the duration of testing may have been too long. Second, we 
increased the pace of the task due to feedback preceding the study proper from users that 
the task was “sluggish”. 

Thirty-two words were presented in three stimulus conditions (eight congruent stim-
uli, eight incongruent stimuli and 16 animal-word stimuli). Congruent stimuli consisted 
of color words printed in the same color that they represent, e.g., “RED” printed in the 
red color. Incongruent stimuli consisted of color words printed in one of the remaining 
three colors (e.g., RED printed in green color). For measurement of performance unrelated 
to color-word congruence, animal words of three to six letters (DOG, BEAR, TIGER, 
MONKEY) were presented in all four colors. Words were presented on a white back-
ground in capital letters (Arial bold font, height = 165 pixels) using four different colors: 
RED, BLUE, GREEN and PURPLE. Words remained on the screen for 1500 ms, followed 
by a fixation cross for 1500 ms, resulting in a regular Inter-Stimulus Interval (ISI) of 3000 
ms (Figure 1A). All responses recorded within the ISI were defined as a response to the 
preceding word, and responses after the ISI were thus defined as responses to the next 
trial. 

2.3. Clinical and Functioning Measures 
Patients were diagnosed as part of the regular clinical procedures at the recruitment 

site. Clinical ratings were performed using information obtained from medical records, 
the patients’ treatment teams and self-report and behavioral observations made during 
the research interview. Factor subscale scores reflecting positive depression/anxiety and 
mania/excitement symptoms were computed [23]. Preliminary diagnoses and ratings 
were made by one of four doctoral-level students who were trained to criterion (Intra-
class Correlation Coefficient values N 0.70). Final ratings were determined based on con-
sensus from the group of students and their supervisor. The Brief Psychiatric rating scale 
(BPRS) [24] was used on 49 of the 85 patients to map self-reported psychiatric symptoms 
in the two-week period before testing commenced. Similarly, the Brief Symptom Inven-
tory (BSI) [25] was used to map psychiatric symptoms for the same two-week period in 
nonpatients. Furthermore, the mobile application where the Stroop testing was conducted 
included items where participants self-reported on mental states. This self-report was con-
ducted by moving a sliding marker on the screen between options of agreement or disa-
greement, giving a score between 0 and 100. We modeled the results for two relevant 
questions, namely, “Can you concentrate today? (Cannot concentrate = value 0 vs. Steady 
concentration = value 100), and “Do you feel helpless? (Not helpless = value 0 vs. Very 
helpless = value 100). As a measure of treatment outcome, whether or not patients com-
pleted the treatment program (graduated) or left Against Medical Advice was recorded. 
The time of testing was also recorded as a number relative to the time of discharge in days. 
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2.4. Analysis 
2.4.1. Speech Recognition 

Audio responses were recorded continuously throughout the Stroop task by the mi-
crophone built into the smart device, sampled at 16,000 Hz and saved in a .flac-format for 
further processing (Figure 1B). Voice response onsets were automatically timestamped at 
10 milliseconds (ms) increments by an in-house developed automatic speech recognition 
model using the Kaldi speech recognition toolkit [26]. Stimulus on-screen onset was also 
timestamped, and the response latency was derived by calculating the duration between 
stimulus- and response timestamps. The language model was specifically tuned to recog-
nize the relevant words in the Stroop task (i.e., the color words). This technique allowed 
us to take advantage of knowledge about the context of the spoken utterances, namely 
that words such as “GREEN” and “RED” were more likely to occur than “CAR” or 
“SPOON”, thus increasing the accuracy of the word recognition. Performance was eval-
uated by comparing machine transcripts to 175 manually transcribed recordings, and the 
word error rate for the recognizer was calculated at 6.26%. This was considered highly 
accurate and determined to be acceptable. 

As a consequence of using automatic speech recognition for detecting responses, con-
clusions regarding the presence and accuracy of responses may be confounded by the 
processes of the recognizer. If there was no response detected, this may have been due to 
no utterance being made, but it may also have been that the utterance was indistinguish-
able from background noise (i.e., the utterance was too weak or unclear to be detected as 
a word). Equally, a response detected as “incorrect” by the automated system may, in fact, 
be due to an incorrect word uttered (e.g., “RED” or “TIGER” when correct is “GREEN”), 
but it may also be due to an automatic speech recognition error (e.g., the correct utterance 
“GREEN” is recognized as “BLUE”) due to the way it is pronounced, registering falsely 
as an error. In order to have an accurate response detected, the response must be (i) the 
correct color word and (ii) clearly stated. Accuracy was then defined as (Number of correct 
responses detected)/(Total number of presentations). It is acknowledged that this ap-
proach is extremely conservative such that responses from participants with slurred or 
otherwise impeded speech could be excluded from this particular analysis. Only re-
sponses recognized as “Correct” by the automatic system were included for response time 
(RT) processing. To limit the effect of artifact outliers, responses of less than 200 ms and 
outliers of longer than 3SD (per group; 1.61 s for patients and 1.36 s for nonpatients) were 
removed, as these were considered task-unrelated behavior. 

2.4.2. Performance Analysis 
In order to extract a detailed description of response patterns on the Stroop task, we 

derived general metrics of performance alongside the conflict-related metrics that specif-
ically assay attentional control. General performance metrics were processing speed, as 
measured by RT latencies (in milliseconds after stimulus onset), processing efficiency and 
central nervous system integrity, as measured by intra-individual variability of RTs [13], 
operationalized here as the SD of RT divided by the mean of RT and expressed as a per-
centage, i.e., the coefficient of variation of RTs, and accuracy (as a percentage of correct 
responses). 

The specific goal of using the Stroop paradigm was to assess how conflicts between 
presented colors and word categories (i.e., congruent/animal-words/incongruent) affect 
the latency of responses. In order to deconstruct the different aspects of word processing, 
we calculated word category conflict effects in two related measures: (i) Interference, ex-
pressed as the difference between the mean response time of the incongruent trials and 
the mean response time on purportedly neutral trials, and (ii) Facilitation, expressed as 
the difference between the mean response time of the congruent trials and the mean re-
sponse time of the color-neutral animal-words trials. Negative word category effect scores 
were set to zero to address nonlinearity effects in modeling. 



Brain Sci. 2023, 13, 442 7 of 18 
 

 

Traditionally the focus of Stroop response analysis has been on when responses oc-
curred (i.e., latencies), but digital recordings also allow for analysis of how a spoken re-
sponse is uttered (i.e., acoustic properties). A variety of features are possible to extract 
from recordings, but we demonstrate this concept by measuring response word duration, 
namely the time span between the start of an utterance to the subsequent silence after it 
(Figure 1B). 

2.4.3. Statistical Methods 
The statistical significance between groups and conditions (i.e., present or not) was 

assessed with chi-square, t-tests and analysis of variance, as well as multilevel modeling 
(MLM) performed with the ”lmer” package, all implemented in the R programming lan-
guage. A broad exploration was conducted, and as such, marginally significant differ-
ences should only be considered suggestive. The distribution of the resulting RT data was, 
as expected, non-normal and ex-Gaussian, but we nonetheless considered parametric tests 
appropriate (and analyses of log-transformed, standardized response times were addi-
tionally performed but did not affect conclusions). Test-retest reliability across the five 
sessions was assessed with intraclass correlations (ICC (3, k)) using the R-package “psych” 
[27]. For MLMs, the participant was included as random effects in the model. Model fit 
was evaluated by comparing the full model to that of random intercepts using chi-square 
statistics. Independent variables were grand mean centered or dummy-coded (if binary). 
All data were trimmed such that values exceeding 3.5 SD from the grand mean were re-
placed with values of 3.5 SD from the grand mean. 

3. Results 
3.1. Data Considerations 

Mobile Stroop testing was acceptable to the participants, and on average nonpatient 
and patient groups completed five (range = 1 to 9) and six (range = 1 to 10) testing sessions, 
respectively (see Supplemental materials for frequency histograms). Response accuracy 
was high at 95% ± 8% & 86% ± 17% for the nonpatient and patient groups, respectively, 
numbers that included both true errors from the participants but also errors from the au-
tomatic speech recognition procedure. Generally, the Stroop performance features were 
not significantly associated with age, sex or race for either the nonpatient or patient 
groups. A zero-order correlation matrix of all Stroop features is presented in Supplemen-
tary Figure S2. Response time latency scores for the different stimulus conditions were 
highly correlated with each other but were non-redundant (r values > 0.88), indicating that 
the word categories (color-congruent, color-incongruent or animals) indeed affected per-
formance differently. Response time data are presented in Figure 2 and Table 1. 
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Figure 2. Estimates of average Stroop performance per session (k = 799) for incongruent (red), con-
gruent (blue) and neutral (black) stimulus conditions. Panel A: For nonpatients, response time speed 
was clearly slower for incongruent conditions versus neutral, the effect known as Interference. 
Speed was also faster for congruent conditions versus neutral, the effect known as Facilitation. Panel 
B: The same pattern was found for patients, and patients were slower overall compared to nonpa-
tients. Panel C: Response duration, a parameter of word stress, did not differ between conditions 
for nonpatients. Panel D: Utterances from patients had a longer duration than those from nonpa-
tients but did not differ between conditions. Panel E: Being able to keep consistent response times 
regardless of stimulus condition is a hallmark of good Stroop test performance. Intra-individual 
variability, represented by the coefficient of variation of response times within a session, showed 
decent test-retest reliability but did not differ consistently between conditions. Panel F: Intraindi-
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vidual variability was only marginally larger in patients but showed an interesting pattern of in-
creased coefficients of variation in patients that left treatment Against Medical Advice as they ap-
proached their discharge date (see Figure 3C). 

 
Figure 3. Scatterplots illustrating the exploratory analysis of relationships between Stroop scores 
and the time until discharge from the treatment facility. Most patients finished treatment as planned 
(Graduated; blue), while some left treatment Against Medical Advice (red). The orange line presents 
data from one individual patient to demonstrate how variable measurements can be over time 
within an individual. Panel A: As patients approached their discharge date, interference effects 
tended to be smaller. Panel B: Patients leaving Against Medical Advice showed decreased facilita-
tion effects as they neared their discharge, while those who graduated from treatment did not. Panel 
C: There was an interaction for facilitation response durations such that patients leaving Against 
Medical Advice showed greater facilitation effects as they neared their discharge. Panel D: Response 
time variability on the incongruent trials increased as patients approached their discharge date, 
more so for patients who left Against Medical Advice. This is the most difficult condition containing 
the Stroop color-word conflict, and this finding holds some promise that a simple variability meas-
ure can show value in clinical settings. 

Table 1. Response time latencies, Stroop effect scores, response durations and coefficients of varia-
tions. 

  
Nonpatients (N = 

113) Patients (N = 85) ICC 

   M SD M SD   

Speed (s *)           

   Overall 0.745 0.079 0.766 0.092 0.83 

   Congruent 0.684 0.097 0.697 0.098 0.80 

   Neutral 0.731 0.077 0.762 0.095 0.82 

   Incongruent 0.839 0.112 0.860 0.122 0.85 
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Stroop Effect scores (s *)          

   Interference 0.110 0.078 0.103 0.076 0.66 

   Facilitation 0.058 0.053 0.072 0.066 0.78 

Duration of utterance (s *)           

   Overall 0.495 0.078 0.563 0.100 0.57 

   Congruent 0.496 0.082 0.568 0.106 0.56 

   Neutral 0.495 0.081 0.558 0.099 0.39 

   Incongruent 0.494 0.084 0.555 0.101 0.53 

Coefficient of variation           

   Overall 0.190 0.045 0.198 0.052 0.68 

   Congruent 0.172 0.069 0.171 0.076 0.76 

   Neutral 0.151 0.053 0.169 0.059 0.70 

   Incongruent 0.174 0.062 0.179 0.071 0.43 

* Response timestamps were derived with a 10 ms resolution. Therefore, there were not sufficient 
significant digits to report the customary millisecond values (see Discussion). The sub-resolution 
digit (i.e., third) is presented in a smaller font size to emphasize the problem with interpreting 
millisecond differences. ICC refers to Intra-class Correlation Coefficients. 

3.2. Stroop Interference and Facilitation on Response Time Latency 
The mobile experimental operationalization of the Stroop interference task success-

fully replicated the classic effects, namely that the meaning of a word interfered with the 
naming of the ink color. Response times were significantly slower when the colors and 
meanings of stimuli were Incongruent versus when the stimuli were Neutral animal 
words, both for nonpatient (0.862 ± 0.131 & 0.749 ± 0.092, respectively, t = 25.79, p < 0.001) 
and patient (0.926 ± 0.174 & 0.814 ± 0.142, respectively, t = 22.49, p < 0.001) groups. This 
difference between Incongruent and Neutral response time latencies is what traditionally 
has been called the “Interference effect”. The average absolute size of the Interference ef-
fect across sessions was 0.112 s for both patients and nonpatient groups (see Table 1). Con-
versely, response times were significantly faster for the Congruent conditions versus Neu-
tral conditions for nonpatient (0.702 ± 0.109 & 0.749 ± 0.092, respectively, t = 14.58, p < 
0.001) and patient (0.735 ± 0.121 & 0.814 ± 0.142, respectively, t = 16.73, p < 0.001) groups. 
This difference between Congruent and Neutral response time latencies is what has tra-
ditionally been called the “Facilitation effect”. The average absolute size of the Facilitation 
effect was 47 ms for nonpatients and 79 ms for patients (see Table 1). Finding these effects 
between conditions when data are combined across participants was encouraging but not 
sufficient to know if the resolution of the testing system is good enough to find meaningful 
effects on the level of the individual. Examining participant-level results, approximately 
92% and 88% of individuals from the nonpatient and patient groups showed an Interfer-
ence effect, and approximately 75% and 82% of individuals from the nonpatient and pa-
tient groups showed a facilitation effect. 

As expected, nonpatients versus patients were significantly faster on all stimulus 
conditions (t’s > 2.37, p’s < 0.02; Feature scores averaged across sessions). Note that given 
the many differences in characteristics of participants between the two groups (e.g., age, 
sex, race), such comparisons were not the main purpose of this experiment. Even so, find-
ing such differences holds the promise that the procedure may be able to detect disease-
specific differences in a more matched sample. For nonpatients, men and women were 
comparable in overall response time, but women showed larger interference effects (t = 
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2.38, p = 0.02, d = 0.56). Age was associated with smaller facilitation effects (r = 0.24, p = 
0.03). 

3.3. Temporal Properties 
The Stroop performance measures showed fair to good stability across five and eight 

sessions for the nonpatient and patient groups (Table 1). For Response time scores, Intra-
Class Correlation (ICC) values ranged from 0.83 to 0.95, indicating relatively high, but not 
perfect, temporal stability. The measures of interference and facilitation showed lower 
temporal stability. None of the ICC values appreciably changed when the ICC values were 
recomputed, excluding the first session, suggesting that there were no major practice ef-
fects from the first to second sessions. 

3.4. Convergence with Clinical Symptoms Rating Scales  
For nonpatients, none of the Stroop measures were significantly related to self-re-

ported symptoms, as measured using the Brief Symptom Inventory [25]. These null find-
ings were demonstrated with both correlations, with scores averaged across sessions 
within participants (r’s < 0.16, p’s > 0.10), and with multilevel modeling, with session data 
nested within participants. Null findings were found with patients as well, such that 
Stroop measures were not significantly related to Brief Psychiatric Rating Scale factor 
scores [23]. An exception was that longer response times for the neutral condition were 
observed for patients with higher agitation and positive symptoms (r’s > 0.32, p’s < 0.05). 

3.5. Convergence with Self-Reported Concentration and Helplessness 
For both patients and nonpatients, Stroop performance was significantly related to 

aspects of clinical state at the time of testing using multilevel modeling. For nonpatients, 
increased self-reported concentration (0–100 on a digital slider scale in the mobile appli-
cation) was associated with significantly slower response times for congruent and neutral 
conditions (B (SE) = −0.0044 (0.0016) & −0.0032 (0.0015), respectively, t’s = 2.84 & 2.08, re-
spectively, p’s < 0.05). Coefficients for the incongruent, facilitation and interference scores 
were not significant. For nonpatients, increased self-reported helplessness was not signif-
icantly associated with Stroop performance. 

For patients, increased self-reported concentration was associated with slower re-
sponse times for the congruent condition (B (SE) = −0.0036 (0.0016), t = 2.28, p < 0.05). They 
were also associated with decreased facilitation effects (B (SE) = −0.0027 (0.0012), t = 2.30, 
p < 0.05). Coefficients for the incongruent and for facilitation and interference scores were 
not significant. Increased helplessness was associated with slower response times for the 
congruent condition (B (SE) = −0.0036 (0.0016), t = 2.28, p < 0.05), but not the other condi-
tions. 

3.6. Relation to Treatment Outcome 
Average response times (averaged across sessions) were not statistically different be-

tween patients that graduated from treatment versus those that left Against Medical Ad-
vice (t’s < 1.64, p’s > 0.10). Multilevel modeling revealed that as patients approached their 
discharge date, their response times for the incongruent (B (SD) = −0.16 (0.03), t = 5.21, p < 
0.05) and neutral (B (SD) = −0.07 (0.03), t = 2.29, p < 0.05) conditions got longer. Moreover, 
their interference (B (SD) = −0.15 (0.05), t = 3.25, p < 0.05) effects tended to be smaller (Figure 
3A). A significant interaction was seen for facilitation such that patients leaving Against 
Medical Advice showed decreased facilitation effects as they neared their discharge (B 
(SD) = 0.11 (0.05), t = 2.05, p < 0.05; Figure 3B). 

3.7. Response Duration 
Measures of response word duration were relatively stable over time, with ICC 

scores ranging from 0.76 to 0.87 across both groups (Table 1). Patients versus nonpatients 
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showed longer response word durations for each of the congruent (0.561 s vs. 0.493 s), 
incongruent (0.551 s vs. 0.492 s) and neutral (0.555 s vs. 0.493 s) conditions (63 ms differ-
ence across conditions, t’s > 6.02, p’s <0.001). Facilitation and interference effects were not 
robustly observed in response durations, with differences between average durations for 
conditions being just 5 ms between congruent vs. neutral and 2 ms between neutral vs. 
incongruent. This difference is well below the 10 ms resolution/quantization error of the 
response latency measurements. Even so, given a large number of samples, it was possible 
to find a statistically significant difference where patients showed significantly shorter 
responses in the congruent (0.561 s) versus neutral (0.555 s) conditions (6 ms difference, t 
= 22.49, p < 0.05). Nonpatients showed no differences in response durations between con-
gruent/incongruent and neutral conditions (t’s < 1.08, p’s > 0.30). Facilitation and Interfer-
ence scores, computed as a function of response duration, were not stable over time (Table 
1). 

Response duration scores were not related to clinical symptom rating scales for either 
group and, with several exceptions, were unrelated to self-reported concentration and 
helplessness. Shorter response durations for the congruent condition were related to 
higher concentration for nonpatients (B (SD) = 0.0035 (0.0016), t = 2.16, p < 0.05) and lower 
helplessness for nonpatients (B (SD) = 0.0037 (0.0017), t = 2.13, p < 0.05). For patients, 
greater facilitation effects of response duration were related to decreased concentration (B 
(SD) = −0.0027 (0.0012), t = 2.30, p < 0.05) and increased helplessness (B (SD) = 0.0037 
(0.0014), t = 2.70, p < 0.05). With respect to treatment outcome in patients, a significant 
interaction was seen for facilitation response durations such that patients leaving Against 
Medical Advice showed greater facilitation effects as they neared their discharge (B (SD) 
= −0.13 (0.05), t = 2.66, p < 0.05, Figure 3C). No other significant relationships between re-
sponse duration scores and treatment were observed. 

3.8. Intra-Individual Variability 
Measures of intra-individual variability were only modestly stable over time, with 

ICC scores ranging from 0.39 to 0.80 across both groups (Table 1). Patients versus nonpa-
tients showed greater variability for the incongruent and neutral conditions (t’s > 2.03, p’s 
< 0.02) but not the congruent condition (t = 0.57, p = 0.19). 

Intra-individual variability scores were generally not related to clinical symptoms for 
either group, though for nonpatients, higher scores were related to more severe psychotic, 
somatic and anxiety symptoms for the congruent, incongruent and incongruent condi-
tions, respectively (r’s > 0.18, p’s < 0.05). Variabilities were also generally not related to the 
clinical state of nonpatients. For patients, increased helplessness was associated with 
greater variability for the incongruent condition (B (SD) = 0.0037 (0.0018), t = 4.15, p < 0.05). 
With respect to treatment in patients, those that went Against Medical Advice had signif-
icantly greater intra-individual variability scores from the congruent condition overall 
(0.17 (0.07), t = 2.25, p < 0.05). As patients approached their discharge date, their variability 
in the incongruent (−0.15 (0.05), t = 3.06) and neutral (−0.13 (0.05), t = 2.95, p < 0.05) condi-
tions tended to increase. A significant interaction was seen for the incongruent condition 
such that patients leaving Against Medical Advice showed greater variability on the in-
congruent condition as they neared their discharge (B (SD) = −0.13 (0.05), t = 2.66, p < 0.05, 
Figure 3D). 

4. Discussion 
When administering the classic Stroop interference task as a brief (90 s long) version 

via smart devices, it was possible to use speech recognition software for timestamping 
responses and measuring robust effects of word categories on color naming, with the ex-
pected pattern of delayed responses in the color-conflict condition. Healthy participants 
had faster, less variable, and more accurate responses as compared to patients. There was 
no difference between groups on the traditional Stroop Interference measure, but patients 
did show larger Facilitation effects, a pattern also found in other clinical conditions [18–
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20,22]. Speech processing tools additionally revealed differences in word utterance dura-
tion, where response word utterances were generally longer in patients. An examination 
across multiple days revealed that even though the word category effects were robust—
in the sense that they were not extinguished by practice—the traditional Stroop Interfer-
ence and Facilitation scores showed lower test-retest reliability and were not consistently 
present when looking at individual participants. Excitingly, these sizes of the measured 
effects are similar in magnitude to previous findings of clinical relevance (i.e., 50–400 ms 
interference by words of affective salience [5]), providing a proof-of-concept for future 
mobile remote administration that can leverage voice to assay strong effects on attentional 
control and bias. The well-established Stroop paradigm, therefore, appears to be suited as 
a flexible and scalable platform for future investigations using smart devices and fast in-
ternet-based analysis and feedback. 

4.1. Constraints on the Temporal Resolution of Automated Speech Analysis 
Differences in response times must be of a certain magnitude to be reliably detected 

with automatic speech recognition. Parsing the minuscule differences between stimulus 
conditions and participant groups were challenged by both technical and biological con-
straints. Even though the use of voice recordings allowed bypassing several possible 
sources of measurement error (e.g., 4–30 ms variability in commonly employed USB key-
boards, 60 Hz/16.7 sample rate on touchscreens), there were also limits to the resolution 
with which one could meaningfully timestamp the onset of a vocal response. For example, 
at the time frame of 10 ms (i.e., typically the highest resolution of automatic speech recog-
nition timestamping; see Figure 4), low-pitch speech information with a frequency of 
around 125 Hz (male voice) would only provide 1–2 main fluctuations in air pressure level 
from the corresponding vibrations of the vocal cords. Also, considering the variability in 
the muscular responses in the thorax and larynx needed to produce and release airflow, 
it is evident that when we are examining differential phenomena that are on the order of 
30–40 ms (such as the differences in facilitation effects in the current paradigm), we may 
be close to the limit of what effects can be parsed with verbal behavior. Even so, we argue 
that the current approach of collecting high-quality audio responses with mobile devices 
holds promise. Methods for timestamping responses can be improved, and unlike the spe-
cialized hardware solutions for computerized cognitive experiments in laboratories, it is 
now possible to create experiments where the hardware apparatus can be practically 
equal across millions of participants and in principle can nurture equity in terms of the 
availability of assessment tools. Naturally, there remain several issues to be overcome in 
the long term, like ensuring equal access to devices, but focusing on a subset of highly 
popular device types and optimizing temporal precision for these systems can provide 
unprecedented uniformity of measurement errors across data collection situations. 
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Figure 4. Illustration of the relationship between the temporal resolution of automatic speech recog-
nition, the soundwaves of speech and the sizes of the Stroop effects and group differences. Panel A: 
The audiogram of a trial where a male participant responded with the word “red”. Stimulus onset 
is marked with a red vertical line. Automatically detected response onset and offset marked in blue. 
Panel B: Looking closer at the sound pressure oscillations at the onset of the word in detail, it was 
evident that the automatically detected onset (blue) was about 30 ms earlier than the manually de-
tected onset (cyan). For the whole session (32 trials), the average difference between manual and 
automatic timestamps was 36 ms (SD = 12 ms), indicating a bias towards consistently early auto-
matic timestamping. Such a bias should be formally examined in future studies. In seeking millisec-
ond precision, there is a need for a robust procedure to determine where on the waveform the “on-
set” is to be stamped. Very few peaks of the waveform fall within each frame or “chunk” of the 10 
ms temporal resolution, illustrated by alternating white and gray sections. Panel C: The average 
sizes of the Stroop Interference and Facilitation effects for nonpatients (dark blue) and patients (light 
blue) are illustrated as horizontal bars on the same scale as the temporal resolution illustration in 
panel B. The sizes of these traditional effects are several times larger than the resolution. The differ-
ence in the Interference effect between groups was lower than the resolution of the system, on the 
order of one or only a few vibrations of the vocal cords of this male speaker. Differences in Facilita-
tion were three to four times larger than the resolution; it was also on this feature that it was possible 
to find statistically significant differences between groups. Interference and facilitation effects on 
duration were close to the 10 ms resolution (light purple). The last bar (dark purple) illustrates the 
relative size of the crucial ± 16.7 ms resolution of stimulus presentation, a consequence of the 60 Hz 
refresh rate that is common for screens of mobile devices. Modeling differences in response times at 
the limit of the resolution of the measurement system is challenging. Increasing the number of trials 
will not change this fundamental issue of temporal resolution, but new methods for presenting 
stimuli and timestamping responses might. 

4.2. Future Improvements 
Several issues with the design of the current experiment may be improved in future 

implementations in order to increase the generalization of findings beyond the demon-
stration of the effectiveness of speech processing technologies. First, the resolution of the 
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timestamping of response onsets needs to be increased, and the timing of the on-screen 
presentation of stimuli must be validated. Modern software packages and online solutions 
for psychological and psychophysical experiment generation on desktop/laptop comput-
ers have recently been extensively examined and found to provide decent timing perfor-
mance themselves (precision < 10 ms) when ignoring problems with attached hardware 
like displays and keyboards [28]. Errors in the estimate of response times can partly be 
counteracted by an increased number of trials per participant in an experimental para-
digm such as the Stroop task, where some sources of variability will cancel out when re-
sponse time estimates are subtracted to get difference-scores. However, during the devel-
opment of the assessment tool, it quickly became evident that there was an optimal length 
of a session and individual tasks that ensured people would even use the remote self-
administered system. Put differently, adding more trials would not be feasible from a us-
ability perspective and ultimately would lead to fewer data. For an extended discussion 
of the usability aspects of mobile Stroop testing, see [9]. As such, there are limitations to 
how much resolution can be increased by increasing trials (i.e., reducing the quantization 
error by oversampling and averaging). This being said, the issue of the automatic speech 
recognition temporal resolution may be considered less problematic than the large varia-
bility (up to 11–73 ms [29], 20–40 ms [30]) in response time that can stem from the rather 
common practice of using various off-the-shelf keyboards for recording responses. Sec-
ond, the short time span of testing sessions (i.e., five to eight days) was insufficient to 
provide intra-individual comparison between periods with disordered states (e.g., psy-
chosis, mania) versus stable states. With more time points, the longitudinal nature of our 
data could be more suited for robust examination using latent change scores and latent 
growth curve models [31]. Even so, combining data from a participant over five to eight 
days should be highly suitable to measure differences on a week-to-week basis. For ex-
ample, it would allow for robust measurements of potential differences in performance 
before and after initiating a pharmacological intervention or comparison between clini-
cally stable phases for a patient in an outpatient setting versus when the same patient is 
hospitalized due to relapse. It is unknown whether such within-person effects will be 
large enough to overcome the aforementioned lower bound of effect sizes possible to 
parse using voice responses. Third, the type of stimulus set used, where both attentional 
control and attentional bias due to the salience of words (i.e., animal categories) affect 
performance, presents a complicated situation with many degrees of freedom for inter-
pretation. It does, however, reveal the potential for suitable paradigms to parse both cog-
nitive abilities and personal levels of word salience. On a more technical note, the actual 
colors used might affect timestamping accuracy, where utterances of a color like “purple” 
that starts with a splosive (a much more abrupt onset of the airflow and resulting sound 
compared to the “red” in Figure 4) may be more accurately timed. The design in the cur-
rent proof-of-concept study employed a generic and well-explored set of stimuli, but the 
technology allows for vastly more complex, tailored, and adaptive approaches. Ulti-
mately, the current ‘one-paradigm-fits-all’ approach may not be sufficiently effective, and 
future methods could employ personalized adaptive paradigms able to tailor stimulus 
materials to more effectively gauge individual levels of performance and longitudinal 
change. Finding the right stimulus material can also be critical to reaching effect sizes that 
are detectable with current limitations to response timing resolution. Such adaptive para-
digms may also be configured to be more entertaining to the user, thus allowing more 
trials and more robust metrics. 

The demonstration of differences in word utterance durations holds the promise of a 
multitude of new ways one can extract information from responses in spoken assessment 
tasks. Duration has been found to be an acoustic correlate of word stress, or emphasis, 
across a large number of languages, over and above other traditional acoustic parameters 
such as fundamental frequency, intensity, formants and spectral tilt [12]. Response prop-
erties are not limited anymore to simple accuracy and timestamping measurements, as it 
is now technologically feasible to assay the expression of affective states using prosodic 
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elements of speech such as sound pressure and pitch. Indeed, we had previously found 
that using a machine learning approach on over 6000 acoustic parameters derived from 
this seemingly innocuous Stroop task were remarkably more direct assays of affective 
states as compared to when such measures were derived from story retelling, picture de-
scription and even verbal self-reports on the subjective state (i.e., “How do you feel to-
day?”) [32]. Put differently, affect measures derived from a person’s utterance of a color 
word can provide crucial and clinically relevant signals in an inherently non-threatening 
manner, in that confrontation of potentially arousing or debilitating topics can be avoided. 
Naturally, acoustic metrics of affective states can provide a more complete picture of the 
neurocognitive state of the individual, as emotional valence and levels of arousal can have 
a modulating effect on cognitive performance [33]. Additionally, this can be expanded by 
combining the method with other objective measures, as the Stroop test is ideally suited 
for using pupillometry as a biomarker for arousal [34] and task demands or mental effort 
[35]. By mapping the individual distribution of performance and relevant biomarkers over 
time, these technologies can enable us to assess the dynamic effects of emotional states on 
cognitive functions. 

5. Conclusions 
Mobile technology and new automated analysis methods offer plenty of opportuni-

ties but warrant a careful examination of what they can deliver. In the case of the Stroop 
task, it is possible to sample repeatedly and remotely, but there is a limit to how many 
trials participants are willing to do in a session before boredom sets in and lowers usabil-
ity. This limit has effects on the resolution of the measurement system. When simply in-
creasing trials is not an option, it will be crucial for the field to carefully investigate how 
the precision and resolution of time can be increased for conducting research like this on 
the devices that are de-facto available, namely common smartphones. Timing properties 
have been examined extensively for desktop computers and web-based solutions [28,36], 
and such efforts, including the use of oscilloscopes with light and sound sensors, should 
be extended to mobile solutions. As for the voiced-based Stroop task, there are even bio-
logical limitations. The brain activity that we are ultimately interested in studying needs 
to affect complex motor output to set vocal cords vibrating. These vibrations will give 
limits to the resolution with which we are able to describe our signal, the air-pressure 
waves of human speech. 

In conclusion, we have shown that an adaptation of a brief spoken Stroop paradigm 
implemented on a smart device can provide an experimental framework to enable the 
identification of specific attentional biases and assessment of the ability to control behav-
ior. These functions are at the core of most cognitive processes critical for our everyday 
life. The methodology utilized in this study, both in terms of stimulus presentation and 
vocal response processing, opens up new venues for longitudinal behavioral assessments 
in humans, as long as the meaningful clinical effects are large enough. Indeed, technology 
is changing the nature of behavioral assessment and research [37], and the resulting mod-
els of brain function and dysfunction bring the promise of personalized medicine closer 
to realization. 
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