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Abstract: Depression is a complex clinical disorder associated with poor outcomes. Electroacupunc-
ture (EA) has been demonstrated to have an important role in both clinical and pre-clinical depression
investigations. Evidence has suggested that the P2X7 receptor (P2X7R), NLRP3, and IL-1β play an
important role in depressive disorder. Our study is aimed at exploring the role of EA in alleviating
depression-like behaviors in rats. We therefore investigated the effects of EA on the prefrontal cortex
and liver of rats subjected to chronic unpredictable mild stress (CUMS) through behavior tests,
transmission electron microscopy, Nissl staining, HE staining, immunohistochemistry and Western
blotting. Five weeks after exposure to CUMS, Sprague-Dawley (SD) rats showed depression-like
behavior. Three weeks after treatment with brilliant blue G (BBG) or EA, depressive symptoms
were significantly improved. Liver cells and microglia showed regular morphology and orderly
arrangement in the BBG and EA groups compared with the CUMS group. Here we show that EA
downregulated P2X7R/NLRP3/IL-1β expression and relieved depression-like behavior. In summary,
our findings demonstrated the efficacy of EA in alleviating depression-like behaviors induced by
CUMS in rats. This suggests that EA may serve as an adjunctive therapy in clinical practice, and
that P2X7R may be a promising target for EA intervention on the liver–brain axis in treatment
of depression.

Keywords: depression; electroacupuncture; P2X7R/NLRP3/IL-1β; liver-brain axis; chronic
unpredictable mild stress (CUMS); behavior; rat; Baihui (GV20); Yintang (GV29); Ganshu (BL18)

1. Introduction

Depressive disorder is a crippling condition that substantially affects psychosocial
functioning and reduces life quality [1]. It involves both emotional and physiological
components and can cause significant distress and impact daily functioning. Diagnosis
requires the presence of symptoms such as persistent low mood or anhedonia. Emotion
dysregulation is considered a crucial aspect of depression, as emotions have the ability to
influence behavior [2]. Thus, it is essential to comprehend the neural mechanisms behind
the impaired inhibitory control, which is prevalent in several psychopathologies and mood
disorders, including depression, anxiety, and fear conditioning [3,4]. Emotion regulation
has been identified as a central process in both the research and treatment of depression [5].

The intricate interplay between emotions and the brain is facilitated by a number of
neural systems spanning from the brainstem to the prefrontal cortex (PFC). The PFC, as
a significant nerve center of thinking and behavior regulation in the brain, involves the
regulation of emotions, and mediation of cognitive processes, such as the formation of
intentions, goal-directed behavior, and attentional control [6], and has emerged as one
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of regions most consistently impaired in major depressive disorder [7]. The impairment
manifests as over or hypo-activation in affective and cognitive tasks requiring emotional or
stress regulation, or cognitive control [8]. Recent studies have provided evidence support-
ing a strong association between mitochondria and the metabolism of kynurenine (KYN).
Additionally, it has been observed that malfunction of mitochondria, as well as activation of
the tryptophan (Trp)-KYN system, are contributing factors in the development of neuropsy-
chiatric conditions such as depression [9]. Despite extensive research into the neural circuits
underlying depression, both in animal models and in human patients, the exact mechanism
remains a topic of debate due to the highly heterogeneous nature of depression in terms
of its phenomenology, etiology, and pathophysiology [10]. Advances in neuroimaging
technology have nonetheless provided valuable insights into the neuroanatomical brain
circuits associated with mood disorders [11]. Common themes have emerged, including
alterations in volume [12], gray matter density [13] and activity levels across a network of
regions including PFC, hippocampus, and amygdala. PFC plays a crucial role in acquisition
of fear learning through interactions with the amygdala, hippocampus, and other key
neural structures, collectively forming the neural network of fear conditioning [7,14–17].
Additionally, the relationship between depression and neuroinflammation has been widely
recognized [18], as increased microglia activation has been observed in depression-related
brain regions, including the PFC [19].

The connection between chronic liver disease and depression has been well established
for a long time [20]. As a metabolic disorder, nonalcoholic fatty liver disease and depression
share several risk factors, especially chronic systemic inflammation [21,22]. The incidence
of depression is three to four times more common in patients with chronic hepatitis than in
the general population [23]. Extrahepatic clinical manifestations of chronic hepatitis are
commonly associated with the onset of depression—for example, amplified somatic symp-
toms, exacerbation of functional impairment, and even reductions in treatment adherence
and health-related quality of life [24]. Systemic inflammation is pivotal in liver disease, and
it is also well documented in patients with depression. Depressive symptoms, behavior,
and inflammation are changed by peripheral cytokine signals such as IL-1β via peripheral
immune cell-to-brain signaling, notably the activation of macrophages and microglia [25].

In recent years, the activation of microglia and macrophages is mediated by purinergic
signaling, which is via the membrane-bound adenosine triphosphate (ATP) receptor, such
as the P2X7R [26–28]. P2X7R [29] is most commonly associated with activating inflam-
matory mechanisms in several inflammatory diseases such as liver injury and depression.
Furthermore, P2X7R is a critical player in activating the NLRP3 inflammasome, which in
turn acts as a signal for the release of IL-1β [30,31]. Interestingly, NLRP3 inflammasome is
the pathogenesis of both chronic liver disease and depression [22,32,33]. Based on previ-
ous observations [34,35], BBG is a selective and non-competitive P2X7R antagonist with
high blood–brain barrier permeability. BBG, meanwhile, is a derivative of a widely used
food additive, more than 1 million pounds of which are consumed yearly in the United
States [36].

Few researchers have addressed the problem of pathological changes in the liver in
patients with depression. The current research focus is not only on the role of EA in the PFC
of depressive-like rats but also on pathological changes in the liver. Furthermore, EA may
be engaged in the liver–brain axis via P2X7R affecting rats with depressive-like behavior.

In 1996, the World Health Organization added depression to acupuncture indication.
Electroacupuncture (EA) combines traditional acupuncture with modern scientific tech-
niques to generate a stable output pattern that overcomes individual differences between
therapists. Several existing meta-analyses support EA’s safety and significant clinical ef-
ficacy in alleviating depressive symptoms. In addition, patients with depression prefer
complementary therapy to drugs when a previous drug treatment has been invalid. Con-
sidering the above, our hypotheses are as follows: 1. the physiological function of the liver
also alters with depressive-like behavior exposed by CUMS; 2. this alteration is related to
the simultaneous activation of P2X7R/NLRP3/IL-1β expression in the prefrontal cortex
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and the liver; 3. EA alleviates depressive-like behavior and physiological changes in the
liver and prefrontal cortex by inhibiting P2X7R/NLRP3/IL-1β expression.

2. Material and Methods
2.1. Animals and Group Allocation

Rat husbandry and animal strategies were carried out in accordance with the recom-
mendations and protocols authorized by the Institutional Animal Care and Use Committee
of Chongqing Medical University. Male SD rats weighing 150–180 g (purchased from the
Experimental Animal Center of Chongqing Medical University, Chongqing, China) were
used in all experiments. These rats were housed in a temperature-controlled (22 ± 2 ◦C)
and light-controlled (12:12-h light:dark cycle) room and provided with free admission
to food and water except on the experimental days. Before the experiment started, the
rats were habituated to the experimental conditions for one week. There were control,
CUMS, BBG, and EA groups. We used the CUMS [37–39] method to establish depressive
model rats. First, the rats were randomly separated into two groups: the control group
(n = 10) and the model group (n = 80). The two groups of rats were not housed in the
same room. During the modeling period, all except the control group were subjected to
CUMS for 5 weeks. Because not all rats developed MDD after CUMS, we allocated more
rats to the model group. Moreover, the MDD model rats were randomly divided into the
CUMS group (n = 10), BBG group (n = 10), and EA group (n = 10). The rats received saline
(vehicle for BBG, 0.01% in saline; Sigma) except for the BBG group to which was applied
intraperitoneal injections of BBG ((Sigma Aldrich, St. Louis, MO, USA) 50 mg/kg/d) at
9:30 a.m. on 6 consecutive days per week for 3 weeks [40,41] (Figure 1A).
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2.3. EA Group 
The rats were lightly restrained by hand to minimize stress during EA treatment. 

Acupuncture needles were inserted bilaterally at the Baihui (GV20), Yintang (GV29), 
and Ganshu (BL18) acupoints [43,44] to a depth of 5 mm. EA treatment caused slightly 
visible muscle twitching around the area of insertion. Electrical stimuli were delivered 
for 20 min at 2 Hz using an Hwato SDZ-Ⅲ electronic acupuncture treatment instru-
ment. EA treatments were performed from 9:00 AM–11:30 AM on 6 consecutive days per 
week for 3 weeks. 

Figure 1. CUMS procedure and effect of EA on body weight gain reduction and depressive, anxiety-
like behavior in CUMS rats: (A) experimental design, (B) sucrose preference test (SPT), (C) body
weight, (D,E) forced swimming test (FST), (F–H) open field test (OFT). * p < 0.05, ** p < 0.01.
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2.2. CUMS Procedure

Eighty SD rats in the model group were housed in 80 cages. They were exposed to one
of 7 mild stressors daily in a random sequence for 5 weeks [42]. The following stressors
were used in the experiment (Table 1).

Table 1. Daily schedule of the CUMS paradigm.

Content Day

cold swimming D1, D4, D10, D19, D25, D34
water deprivation D2, D15, D24, D28, D32
food deprivation D9, D11, D21, D29

continuous illumination D3, D13, D17, D20, D27, D35
tail clamping D5, D8, D14, D22, D33

tail suspension D7, D16, D21, D26, D30
wet bedding D6, D12, D18, D23, D31

2.3. EA Group

The rats were lightly restrained by hand to minimize stress during EA treatment.
Acupuncture needles were inserted bilaterally at the Baihui (GV20), Yintang (GV29), and
Ganshu (BL18) acupoints [43,44] to a depth of 5 mm. EA treatment caused slightly visible
muscle twitching around the area of insertion. Electrical stimuli were delivered for 20 min at
2 Hz using an Hwato SDZ-III electronic acupuncture treatment instrument. EA treatments
were performed from 9:00 a.m.–11:30 a.m. on 6 consecutive days per week for 3 weeks.

2.4. Behavioral Tests

The body weight [45] and sucrose preference were tested 9 times from 0th to 8th week;
open field test and forced swimming test were carried out only once at the end of the
8th week.

2.4.1. Sucrose Preference Test

Sucrose preference test (SPT) [46] was performed on 4 consecutive days, and included
a two-day sugar water adaptation phase, a one-day water deprivation phase, and a one-day
test phase. On the first two days (at 8 a.m.), every rat was once simultaneously introduced
to two bottles containing 100 mL of either 1% sucrose solution or tap water. The test phase
was separated into two parts. At 8 a.m., two bottles were given to each rat, and then after
12 h, the location of the bottles was changed. The rats had free access to food during the
test. The test was repeated 8 times with training in between.

2.4.2. Open Field Test

The open field test (OFT) was performed in a 100 cm × 100 cm × 40 cm black plexiglass
box with a black floor as previously described [47]. At the beginning of the test, the rats
were individually placed in the same location in the corner of the testing box facing the
wall. The amount of time they spent in the center zone, the percent of time spent resting,
and their average speed of movement in the box were recorded for 5 min, with the data
analyzed by means of the SMART video tracking system. After every animal was tested,
the equipment used was cleaned with 75% alcohol to eliminate olfactory cues.

2.4.3. Forced Swimming Test

In the forced swimming test (FST) [48,49], the rats were gently placed individually in
a 20 cm diameter glass cylinder filled with 23 ± 1 ◦C water to a depth of 40 cm for 6 min.
Data were recorded from the third minute to the end of the trial. Immobility and struggling
behavior during the 4 min swimming session were recorded and subsequently analyzed
using the SMART video tracking system. Struggling was described as multiple actions of
the rat’s forepaws that broke the water, and immobility was used to describe a rat who
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floated without struggling, solely making those movements essential to preserving the
head above the water.

2.5. Sample Collection

After the end of the behavior tests, rats from each group were fasted for 24 h. After
isoflurane inhalation anesthesia, rats were fixed on the operating table, the chest was
opened to expose the heart. A perfusion needle was obliquely inserted into the aorta
along the apex of the heart, and the right atrial appendage was open and perfused with
0.09 mol/L PBS solution. When the liquid being pumped from the right atrial appendage
became clear, the brain was removed on ice, and the prefrontal cortex and right lobe of the
liver were separated. The right brain tissue and right liver lobe of 3 rats from each group
were fixed with 4% paraformaldehyde. The remaining prefrontal cortex and liver tissues
were quickly placed in a liquid nitrogen tank and then stored in a −80 ◦C freezer. Three rats
from each group were randomly selected, and perfusion with 1% glutaraldehyde solution
was performed until the limbs and tail of the rats were stiff. After decapitation, the brains
were removed, and the right prefrontal cortex was trimmed to obtain an approximately
1 × 1 × 1 mm sample, and fixed in 2.5% glutaraldehyde at 4 ◦C.

2.6. Transmission Electron Microscopy

The prefrontal cortices were rinsed with 0.1 mol/L phosphoric acid solution 3 times
and fixed with 1% osmic acid solution 3 times, then dehydrated in graded alcohol and
acetone solutions at 4 ◦C, and again with 100% acetone at room temperature. After em-
bedding, the tissues were cured in the oven. The tissues were sectioned with an ultrathin
slicer at 70 nm thickness and stained with 3% uranium acetate and lead citrate to observe
microglia in the prefrontal cortex.

2.7. HE Staining

The right lobe of the liver was fixed with 4% paraformaldehyde for 24–48 h, and
was then dehydrated in gradient ethanol solutions, embedded in wax, sliced into paraffin
sections with a thickness of 5 µm, dewaxed in water, stained with hematoxylin and eosin
successively, and sealed. Ten fields were randomly selected from each section, and the liver
morphology was observed under a light microscope.

2.8. Nissl Staining

Paraffin-embedded tissues were cut at a thickness of approximately 5 µm. After
drying, the slides were dewaxed with xylene, dehydrated in gradient ethanol solutions,
stained in toluidine blue solution at 56 ◦C for 20 min, rinsed with distilled water for 5 min,
bathed in xylene until transparent for 10 min, sealed with neutral gum, and dried in a
ventilated place. Ten fields were observed from each group under an optical microscope,
and the results were analyzed by a researcher who did not know the grouping information.

2.9. Immunohistochemistry

Paraffin-embedded tissues were cut at a thickness of approximately 4 µm. The sections
were dried, dewaxed with xylene, dehydrated in gradient ethanol solutions, and washed
with distilled water. Next, the sections were cooled, washed with PBS, incubated with
3% hydrogen peroxide solution for 25 min, washed with PBS, and blocked with 3% BSA
at room temperature for 30 min. Paraffin sections of the prefrontal cortex were incubated
with an Iba1 (1:1000) primary antibody, and paraffin sections of the liver were incubated
with a CD68 (1:500) primary antibody, overnight at 4 ◦C. The sections were incubated
with secondary antibody at room temperature for 50 min after washing with PBS. DAB
color development was performed under a microscope after washing in PBS. When the
staining was obvious, the sections were washed with tap water, and color development
was terminated. After dehydration with anhydrous ethanol and clearing with xylene, the
sections were sealed with neutral gum. At least 10 visual fields were randomly observed
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under a microscope with a 10× lens, and brown CD68- or Iba1-positive cells were observed
in the cytoplasm. The optical density of the staining was analyzed with Image Plus software.

2.10. Western Blotting

Western blotting was used to measure the expression of P2X7, NLRP3, pro-caspase-1,
cleaved-caspase-1, pro-IL-1β, cleaved-IL-1β, and ASC in the prefrontal cortex and liver.
Twenty-four hours after the end of the behavioral experiment, the rats were anaesthetized
by intraperitoneal injection of pentobarbital sodium., and PBS was perfused through the
apex of the heart. The bilateral prefrontal cortex, hippocampus and right lobe of the liver
were completely removed. Total protein was extracted from the prefrontal cortex and liver
with a tissue protein extraction kit (lysate:phenylmethylsulfonylfluoride = 99:1). The protein
concentration was determined by the BCA method, the concentration of each sample was
adjusted, and the samples were denatured for 10 min. A total of 25 µg of each protein
sample was separated by 12% polyacrylamide gel electrophoresis, and then transferred
onto a 0.45 µm or 0.2 µm nitrocellulose membrane. The membrane was incubated with a
rabbit anti-NLRP3 monoclonal antibody (3:1000), rabbit anti-P2X7 monoclonal antibody
(1:1000), rabbit anti Caspase-1 monoclonal antibody (1:500), rabbit anti-ASC monoclonal
antibody (1:1000), or rabbit anti-IL-1β monoclonal antibody (1:1000) overnight at 4 ◦C,
3 times in TBST for 10 min each the next day, incubated with secondary antibody (goat
anti-rabbit antibody, 1:10,000), for 1 h at room temperature, rinsed 3 times with TBST
for 10 min each, then developed with chemiluminescence reagent and imaged using an
imaging system. Software was used for absorbance analysis.

3. Statistical Analyses

All experiments were conducted in a randomized manner. The data sets were analyzed
for normality and homogeneity of variance, and parametric post hoc statistical analysis was
performed to confirm a priori power calculations. GraphPad Prism 8.0 software (GraphPad,
Inc., La Jolla, CA, USA) and SPSS 25.0 (IBM, Armonk, NY, USA) were used for analysis,
and p < 0.05 was considered significant. The data are reported as the mean ± SD. The data
of body weight and SPT data were tested by repeated-measures two-way ANOVA, and the
OFT, SPT, immunohistochemistry, and Western blotting data were analyzed by one-way
ANOVA. Tukey’s post-hoc test was used to compare the different groups.

4. Results
4.1. Behavior

The depressive and anxiety-like behaviors—including those in the SPT, FST, and
OFT—and body weight of the different groups were examined, to explore the effects of EA
on the CUMS rat model. The SPT and body weight measurements were performed nine
times, and the FST and OFT were performed only once before execution.

4.1.1. Sucrose Preference and Body Weight

As shown in Figure 1B and Table 2, SPT was not different at baseline. Significant
differences in the changes of SPT were found among groups from the 1st week to the
8th week. The repeated-measures analysis of variance showed a statistically significant
effect of group (F = 5538.038, p < 0.01, η2 = 0.998), a statistically significant effect of time
points (F = 1970.66, p < 0.01, η2 = 0.982), and a statistically significant interaction between
time points and group (F = 309.616, p < 0.01, η2 = 0.963).

At the end of the 3rd week of CUMS exposure, the SPT of the CUMS group, BBG
group and EA group was decreased by approximately 30%. At the 4th and 5th weeks,
the SPT of the CUMS group, BBG group and EA group did not decrease further. At the
6th week, i.e., the week after BBG or EA treatment for 1 week, the SPT of the BBG group
was significantly higher than that of the EA group (p < 0.05), but there was no difference
in SPT between the EA group and the CUMS group (p > 0.05). At the 8th week, the SPT
of the two groups was markedly higher than that of the CUMS group (p < 0.01), and the
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SPT of the BBG group was clearly greater than that of the EA group (p < 0.01). Rats in
the CUMS group, BBG group, and EA group displayed decreased sensitivity to reward
stimulation and pleasure when they were exposed to CUMS. However, both the BBG and
EA exhibited a significant reversal of the decreased sucrose consumption compared to
the CUMS group at the 7th week and 8th week of the experiment, as demonstrated by
statistically significant results.

Table 2. Effects of EA on the SPT (n = 10; x ± s; %).

Groups 0 Week 1 Week 2 Weeks 3 Weeks 4 Weeks 5 Weeks 6 Weeks 7 Weeks 8 Weeks

CON 90.93 ±
1.12

90.13 ±
1.16

90.48 ±
0.96

90.66 ±
0.69

90.29 ±
1.26

90.68 ±
0.80

90.41 ±
1.03

90.24 ±
0.90

90.08 ±
0.87

CUMS 90.56 ±
1.14

85.93 ±
0.66 **

70.52 ±
2.26

58.48 ±
1.53

56.22 ±
1.18

56.30 ±
1.19 **

55.91 ±
0.88 **

55.94 ±
0.80 **

56.17 ±
0.89 **

BBG 90.60 ±
1.27

85.16 ±
0.93 **

69.10 ±
2.16

59.38 ±
2.52

56.69 ±
1.60

55.89 ±
1.17 **

62.42 ±
1.27 ♦♦

72.00 ±
1.32 ♦♦

83.49 ±
0.93 ♦♦

EA 90.55 ±
1.15

85.11 ±
0.81 **

69.92 ±
1.91

59.14 ±
1.48

56.85 ±
1.60

55.63 ±
1.01 **

58.22 ±
2.33

62.80 ±
1.65 ♦♦��

72.80 ±
1.63 ♦♦��

Data were expressed as mean ± SD. ** p < 0.01, compared with the CON group; ♦♦ p < 0.01, compared with the
CUMS group; �� p < 0.01, compared with the BBG group.

The body weight of rats in each group increased, but the body weight gain of the
control group was significantly faster than that of the other three groups. Rats exposed to
CUMS were observed to have decreased food intake, and showed signs of reduced activity,
fur shedding, and reduced luster.

The results of repeated-measures analysis of variance showed a statistically significant
effect of group (F = 79.915, p < 0.01, η2 = 0.869), a statistically significant effect of time points
(F = 2750.444, p < 0.01, η2 = 0.987), and a statistically significant interaction between time
points and group (F = 14.080, p < 0.01, η2 = 0.540). After 5 weeks of CUMS exposure, the
weight gain of the rats in the CUMS group, BBG group and EA group was slow, but there
was no difference among the groups (p > 0.05). After BBG or EA treatment for 1 week, there
was no difference in body weight between the rats in the CUMS group, BBG group and EA
group, this being significantly lower than the control group (p < 0.01). After BBG and EA
treatment for 3 weeks, the body weight of the BBG group and EA group was significantly
higher than that of the CUMS group (p < 0.01), but still significantly lower than that of
the control group (p < 0.01), and there was no difference in body weight between the two
groups (p > 0.05), as shown in Figure 1C and Table 3.

Table 3. Effects of EA on the body weight (n = 10; x ± s; g).

Groups 0 Week 1 Week 2 Weeks 3 Weeks 4 Weeks 5 Weeks 6 Weeks 7 Weeks 8 Weeks

CON 194.21 ±
14.20

214.02 ±
15.63

263.72 ±
14.22

306.32 ±
6.98

323.77 ±
5.51

340.52 ±
7.85

368.68 ±
14.73

391.24 ±
14.58

418.02 ±
10.78

CUMS 195.68 ±
12.85

198.6 ±
8.31

234.44 ±
5.27

256.03 ±
9.28

287.72 ±
9.30

305.55 ±
15.46 **

324.46 ±
13.70

341.28 ±
10.76

351.44 ±
8.89

BBG 197.13 ±
4.76

195.18 ±
4.80

238.90 ±
4.25

255.44 ±
4.22

280.82 ±
7.43

303.52 ±
7.03 **

334.86 ±
11.98

355.22 ±
11.76 ♦

380.27 ±
13.64 ♦♦

EA 192.94 ±
8.47

196,88 ±
5.90

234.20 ±
2.60

258.20 ±
4.18

281.41 ±
19.08

307.69 ±
5.57 **

330.50 ±
5.18

352.08 ±
5.79

370.44 ±
8.47 ♦♦

Data were expressed as mean ± SD. ** p < 0.01, compared with the CON group; ♦ p < 0.05, ♦♦ p < 0.01, compared
with the CUMS group.

4.1.2. OFT and FST

One-way ANOVA showed a significant effect of CUMS on the performance in the FST
and OFT (Figure 1, Table 4).
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Rats among different groups exhibited significant differences in FST which tests for
behavioral despair, including immobility time and total distance. The immobility time
and total distance of the CUMS group was significantly greater compared with that of
the control group (p < 0.01). Compared with the CUMS group, the immobility time and
total distance travelled of the BBG group and EA group were significantly lower (p < 0.01,
p < 0.01). Of note, there was no significant difference between the BBG group and EA group
(p > 0.05), as shown in Figure 1D,E and Table 4.

Results of the OFT showed that compared with the CON group, rats in the CUMS
group exhibited significant differences in locomotor activity (percent of time resting, percent
of time in center zone, and average speed) (p < 0.01). Compared with the CUMS group, the
activity ability of the rats in the BBG group and EA group to adapt to a new environment
was significantly increased (p < 0.01, p < 0.01, p < 0.01, p < 0.01, p < 0.01, p < 0.01). There was
no difference between BBG and EA treatment in the percentage of resting time (p > 0.05);
however, percent of time spent in the center zone and average speed of the rats in the two
groups were notably elevated following the BBG and EA treatment (p < 0.05, p < 0.01), as
shown in Figure 1F–H and Table 4.

Table 4. Effects of EA on OFT and FST (n = 10; x ± s; cm, s, %, cm/s).

Groups Total
Distance (cm)

Immobility
Time (s)

Resting Time
Percent (%)

Time in Centre
Zone (%)

Average
Speed (cm/s)

CON 5072.25 ± 527.29 6.80 ± 1.36 9.33 ± 2.30 29.56 ± 9.10 13.92 ± 0.77
CUMS 2849.84 ± 193.97 ** 42.33 ± 5.08 ** 41.35 ± 7.26 ** 2.26 ± 1.93 ** 6.45 ± 1.31 **
BBG 3967.77 ± 379.50 **♦♦ 18.78 ± 5.89 **♦♦ 20.63 ± 4.26 **♦♦ 17.77 ± 2.06 **♦♦ 11.87 ± 1.22 **♦♦

EA 35342.04 ± 477.89 **♦♦ 23.89 ± 5.51 **♦♦ 21.73 ± 2.84 **♦♦ 13.84 ± 3.74 **♦♦� 9.63 ± 0.61 **♦♦��

Data were expressed as mean ± SD. ** p < 0.01, compared with the CON group; ♦♦ p < 0.01, compared with the
CUMS group; � p < 0.05, �� p < 0.01, compared with the BBG group.

4.2. Effects of EA on the PFC
4.2.1. Microglial Morphology of PFC

The ultrastructure of the blood–brain barrier and microglial morphology were ob-
served by transmission electron microscopy. In the control group, the blood–brain barrier
was intact, microglia were non-oval-shaped, and there was no edema around the cells
and blood vessels. In the model group, the blood–brain barrier was loosely arranged, the
microglia were oval-shaped, and edema could be seen around the cells and blood vessels.
Cell and vascular edema were slightly alleviated in the BBG group and EA group compared
with the CUMS group, and microglia were oval shaped in the BBG group and EA group
(Figure 2A).

4.2.2. Nissl Staining of PFC

Nissl staining showed that in the control group, neurons exhibited a normal morphol-
ogy, there were a large number of Nissl bodies, and neurons showed a uniform distribution
and dark blue staining. In the CUMS group, the shape of neuronal cells was irregular, the
number of Nissl bodies was decreased, neurons were lightly stained, and some Nissl bodies
were unevenly distributed. The morphology of neurons in the BBG group and EA group
was irregular. Image collection and Nissl body counting were performed by investigators
blinded to the group information. The number of Nissl bodies in the CUMS group was sig-
nificantly lower than that in the control group (p < 0.01), and the number of Nissl bodies in
the BBG and EA groups was higher than in the control group (p < 0.01, p < 0.05). However,
there was no significant difference in the number of Nissl bodies between the BBG group
and EA group (p > 0.05). These results are shown in Figure 2B,D and Table 5.
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Figure 2. Effects of EA on the PFC: (A) microglial morphology, (B) Nissl bodies, and (C) comparison
of Iba1 expression in PFC. Nissl body count of PFC of rats in each group (D), comparison of Iba1
expression in PFC in each group (E). * p < 0.05, ** p < 0.01. The scale bars in A = 2 µm, the scale bar in
B = 50 µm, the scale bar in C = 100 µm.

Table 5. Effect of EA on the Nissl body count and expression of Iba1 in PFC and CD68 in right liver
lobe of CUMS rats.

Groups Nissl Body Counts Iba1 Relative Intensity CD68 Relative Intensity

CON 15.33 ± 1.36 0.41 ± 0.03 0.31 ± 0.02
CUMS 5.00 ± 0.89 ** 0.55 ± 0.04 * 0.43 ± 0.01 **
BBG 11.33 ± 1.03 ♦♦ 0.46 ± 0.02 ♦ 0.34 ± 0.03 ♦

EA 8.5 ± 0.54 ♦ 0.46 ± 0.02 ♦ 0.38 ± 0.02 ♦

(n = 10; x ± S.E.). Data were expressed as mean ± SEM. * p < 0.05, ** p < 0.01, compared with the CON group;
♦ p < 0.05, ♦♦ p < 0.01, compared with the CUMS group.

4.2.3. Iba1 Expression in PFC

The results showed that, compared with that in the control group, the expression of
Iba1-positive cells in the prefrontal cortex of the CUMS group was increased (p < 0.05).
Compared with that in the CUMS group, the expression of Iba1-positive cells in the BBG
group and the EA group was decreased (p < 0.05). These results are shown in Figure 2C,E
and Table 5.

4.2.4. Effects of EA on the Expression of P2X7R, NLRP3, and IL-1β Related Protein in PFC

In the prefrontal cortex, the protein expression of P2X7R, pro-caspase-1, cleaved-
caspase-1, and ASC were significantly increased in the CUMS group compared with those
in the control group (p < 0.01), and the protein expression of NLRP3, pro-IL-1β, and cleaved-
IL-1β was increased in the CUMS group (p < 0.05). Compared with that in the CUMS
group, the protein expression of P2X7R in the BBG group was significantly decreased
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(p < 0.01), and the protein expression of NLRP3, pro-caspase-1, cleaved-caspase-1, pro-IL-
1β, and cleaved-IL-1β in the BBG group was decreased (p < 0.05). The protein expression
of NLRP3, P2X7R, pro-caspase-1, pro-IL-1β, and cleaved-IL-1β were decreased in the EA
group (p < 0.05), but the protein expression of cleaved-caspase-1 and ASC did not change
significantly (p > 0.05). These results can be seen in Figure 3A–H and Table 6.

Table 6. Effects of EA on the expression of P2X7R, NLRP3, and IL-1β related protein in the PFC of
CUMS rats.

Groups NLRP3/
β-Actin

P2X7R/
β-Actin

Pro-Caspase-1/
β-Actin

Cleaved-
Caspase-1/
β-Actin

Pro-IL-1β/
β-Actin

Cleaved-IL-1β/
β-Actin

ASC/
β-Actin

CON 0.31 ± 0.18 0.34 ± 0.11 0.28 ± 0.05 0.47 ± 0.06 0.21 ± 0.02 0.29 ± 0.16 0.39 ± 0.04
CUMS 0.81 ± 0.25 * 0.68 ± 0.04 ** 0.54 ± 0.04 ** 0.74 ± 0.06 ** 0.52 ± 0.05 * 0.89 ± 0.06 ** 0.80 ± 0.15 **
BBG 0.53 ± 0.18 ♦ 0.40 ± 0.10 ♦♦ 0.40 ± 0.12 ♦ 0.59 ± 0.05 ♦ 0.26 ± 0.04 ♦ 0.41 ± 0.10 ♦ 0.69 ± 0.11
EA 0.58 ± 0.16 ♦ 0.45 ± 0.07 ♦ 0.45 ± 0.04 ♦ 0.60 ± 0.06 0.28 ± 0.01 ♦ 0.47 ± 0.05 ♦ 0.76 ± 0.15

(n = 6; x ± s.) Data were expressed as mean ± SD. * p < 0.05, ** p < 0.01, compared with the CON group; ♦ p < 0.05,
♦♦ p < 0.01, compared with the CUMS group.
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4.3. Effects of EA on the Liver
4.3.1. HE Staining of Liver

In the control group, liver structure was normal, hepatic lobules were intact, and
hepatocytes were of the same size and arranged neatly. There were obvious pathological
changes in liver structure in rats in the CUMS group, as hepatocytes were hypertrophic,
their arrangement was disorderly, and inflammatory cell infiltration was observed. Liver
structure in the BBG group and EA group was basically normal, although there was
inflammatory cell infiltration (Figure 4A).
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4.3.2. CD68 Expression in Right Liver Lobe

Immunohistochemistry showed that, compared with that in the control group, the
expression level of CD68 in the liver tissue of the CUMS group was significantly increased
(p < 0.01), suggesting that macrophage infiltration was increased. Compared with that
in the CUMS group, the expression level of CD68 in liver tissue of the EA group and the
BBG group was significantly lower, suggesting that macrophage infiltration was decreased
(p < 0.05) as shown in Figure 4B,C and Table 5.

4.3.3. Effects of EA on the Expression of P2X7R, NLRP3, and IL-1β Related Protein in Liver

In the liver, the protein expression of NLRP3, P2X7, pro-caspase-1, and ASC were
significantly increased in the CUMS group (p < 0.01), and the protein expression of cleaved-
caspase-1, pro-IL-1β, and cleaved-IL-1β were increased in the CUMS group compared with
the control group (p < 0.05). Compared with that in the CUMS group, the protein expression
of NLRP3, P2X7, pro-caspase-1, leaved-caspase-1, pro-IL-1β, cleaved-IL-1β, and ASC in the
BBG group was decreased (p < 0.05). The protein expression of NLRP3, P2X7, pro-caspase-1,
and cleaved-IL-1β were decreased in the EA group (p < 0.05), but there was no difference
in the protein expression of cleaved-caspase-1, or ASC (p > 0.05). There was no significant
difference in NLRP3, P2X7, pro-caspase-1, cleaved-caspase-1, pro-IL-1β, cleaved-IL-1β or
ASC protein expression between the BBG group and the EA group (p > 0.05) as shown in
Figure 3I–P and Table 7.

There was no significant difference in NLRP3, P2X7, pro-caspase-1, cleaved-caspase-1,
pro-IL-1β, cleaved-IL-1β or ASC protein expression between the BBG group and the EA
group in PFC and liver (p > 0.05). The results showed that EA inhibited the expression of
inflammatory factors in the prefrontal cortex and liver of rats exposed to CUMS.
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Table 7. Effects of EA on the expression of P2X7R, NLRP3, and IL-1β related protein in the liver of
CUMS rats.

Groups NLRP3/
β-Actin

P2X7R/
β-Actin

Pro-Caspase-
1/β-Actin

Cleaved-
Caspase-1/
β-Actin

Pro-IL-1β/
β-Actin

Cleaved-IL-
1β/B-Actin

ASC/
β-Actin

CON 0.31 ± 0.05 0.30 ± 0.07 0.28 ± 0.02 0.23 ± 0.08 0.54 ± 0.09 0.38 ± 0.05 0.30 ± 0.14
CUMS 0.64 ± 0.07 ** 0.72 ± 0.12 ** 0.63 ± 0.07 ** 0.79 ± 0.16 * 0.75 ± 0.09 * 0.73 ± 0.14 * 0.72 ± 0.14 **
BBG 0.44 ± 0.06 ♦ 0.55 ± 0.10 ♦ 0.43 ± 0.10 ♦ 0.51 ± 0.28 ♦ 0.64 ± 0.02 ♦ 0.58 ± 0.10 ♦ 0.55 ± 0.13 ♦

EA 0.47 ± 0.04 ♦ 0.55 ± 0.04 ♦ 0.48 ± 0.05 ♦ 0.61 ± 0.13 0.70 ± 0.10 0.57 ± 0.07 ♦ 0.66 ± 0.16

(n = 6; x ± s.) Data were expressed as mean ± SD. * p < 0.05, ** p < 0.01, compared with the CON group; ♦ p < 0.05.

5. Discussion

Previous research has verified that the procedures used to induce CUMS in rats not
only lead to depression-like emotions and behaviors but also accurately simulate the
pathological process of depression in a rat model [42,50]. In our study, we aimed to validate
this CUMS model and further investigate the potential mechanisms of the antidepressant
effect of EA in the PFC and liver. Our findings revealed that CUMS induced depression-
and anxiety-like behaviors and caused central and peripheral inflammation. Moreover, our
results indicated that EA effectively alleviated these depression- and anxiety-like behaviors,
suppressed the expression of P2X7R/NLRP3/IL-1β, reduced the excessive activation of
microglia in the PFC and macrophages in the liver, decreased the release of IL-1β, and
regulated central and peripheral inflammation. Although few studies have explored
the effects of depressive-like models on rat liver cell morphology, our study provides
new evidence for the antidepressant effect of EA and offers potential avenues for further
exploration in the treatment of depression.

In this study, changes in behavioral assessment at different time points were observed
to evaluate the states of nutrition and anhedonia [51,52]. At the start of the study, the four
groups at week 0 before intervention showed consistent baseline values. After exposure to
CUMS, a significant difference in behavior was observed compared to the control group.
The body weight of the CUMS, BBG, and EA groups increased slowly over time, with a
significant difference from the CON group by the 8th week. Although a previous study [53]
has shown that obesogenic diets can cause depression- and anxiety-like behaviors in ro-
dents, little research has explored the relationship between depression, anxiety and weight
loss. Our study indicates that EA effectively regulated the weight loss of CUMS rats and
had a positive therapeutic effect. Therefore, we will focus on further indicators to under-
stand the specific mechanisms of the changes in the body weight in future experiments.
In previous studies, the SPT was used to evaluate the depression-like behavior in rats
through anhedonia, while the FST evaluated the depression-like behavior in rats through
despair. Our data showed that exposure to CUMS induced depression-like behavior in the
SPT and FST, indicated by decreased sucrose preference and increased immobility time,
which was reversed by EA and BBG at the 8th week, suggesting that EA alleviated the
CUMS-induced depression-like behavior. Anxiety is a common symptom associated with
depression [54]. The OFT is widely used to measure anxiety behavior. Our results indicated
that EA alleviated anxiety behavior, such as central zone exploratory behavior.

Previous studies have primarily centered on the role of hippocampal neurons in the
development of depression-like behavior in rats and patients with depression [55,56]. The
PFC is known to play a critical role in regulating and modifying emotion [57]. Our study
and other previous studies have demonstrated that CUMS exposure induces inflamma-
tory injury in the prefrontal cortex [50,58]. The effect of acupuncture to improve PFC
function in conditions such as Parkinson’s disease, pain and depression has been well doc-
umented [59,60]. Our results are consistent with previous findings [61,62] that indicate EA
can effectively inhibit the overactivation of microglia, downregulate P2X7R/NLRP3/IL-1β
expression, and reduce IL-1β release in the PFC. Similarly, administration of BBG intraperi-
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toneally produced similar results. This provides basic experimental evidence for exploring
the impact of EA on emotion-related neural circuitry.

Chronic liver disease and depression appear to share common risk factors and signal-
ing pathways [63]. Depression is considered a metabolic disease related to liver function,
and it has been shown that apolipoprotein B, very-low-density lipoprotein cholesterol,
triglycerides, unsaturated fatty acids, tyrosine and abnormal metabolism are related to
depression [64,65]. It is often accompanied by liver disease, and can further affect liver
function, and even aggravate liver disease [66]. It is widely acknowledged that liver steato-
sis, characterized by the accumulation of fat in liver cells, often leads to a proinflammatory
environment and activates microglial cells [67]. Moreover, it has been suggested that liver
steatosis can also trigger a systemic hyperinflammatory state, which can result in damage
to the PFC—a phenomenon frequently observed in depression [68]. Our results showed
that the morphology of liver cells was significantly altered in CUMS-induced depression in
rats and that the increase in the expression of CD68, upregulation of P2X7R/NLRP3/IL-
1β expression, and increase in the release of proinflammatory cytokine IL-1β were all
improved by EA as well as the intraperitoneal injection of BBG. At present, there are no
clinically available drugs that target liver macrophages; thus, these data provide a new
idea and strategy for the treatment of depression and liver diseases through targeting
liver macrophages. Considering the relationship between liver and PFC function and the
occurrence and development of depression, the liver–brain inflammation axis may become
a new target for diagnosing and treating depression.

There is growing evidence that stress, both psychological and physical, can activate
immune and inflammation processes, which can contribute to the development of depres-
sive symptoms. It is well-established that stress activates microglia, which is a hallmark of
neuroinflammation in the central nervous system [27,69]. P2X7R is mainly expressed in
microglia [62,70]. P2X7R is the primary driver of inflammation, and the secretion of several
proinflammatory cytokines and chemokines depends on the activation of P2X7R by large
amounts of ATP released from damaged CNS cells [71]. In particular, P2X7-induced NLRP3
activation has been widely studied in innate myeloid cells (monocytes, macrophages and
dendritic cells). Several signaling pathways downstream of P2X7 receptor activation are
associated with the induction of NLRP3 inflammasomes [72]. NLRP3 inflammasomes are
considered important mediators of depression [73]. NLRP3 inflammasome activation is the
pathogenesis of both chronic liver disease and depression. As previously noted, our study
and other previous studies have shown that CUMS exposure induces inflammatory injury
in both prefrontal cortices [8,50]. In various CUMS-induced models, electroacupuncture
has shown a good anti-inflammatory effect [74,75]. Therefore, P2X7R may be a potential
target for EA in treating depression.

EA, an integration of traditional Chinese medicine and electronic therapy, has demon-
strated efficacy in the treatment of depression and amelioration of depressive symptoms.
Based on Chinese medicine theory, “liver controlling dispersion”, EA at Baihui (GV20),
Yintang (GV29), and Ganshu (BL18) have positive effects on behavior, the prefrontal cortex,
and liver cell function in CUMS-induced depression-like behavior in rats. Baihui (GV20)
and Yintang (GV29) are the core acupoints according to the latest research, which is based
on data mining technology, on the acupoint characteristics in the treatment of depression
by modern acupuncture [76,77]. However, single acupuncture at either GV20 or GV29
fails to alleviate the state of depression [78]. The brain (referred to in traditional Chinese
medicine theory as “the spirit’s house”) has the function of regulating memory, feelings,
and emotions which is consistent with the theoretical understanding of the role of the
cerebral cortex in regulating the human spirit and thinking in modern medicine. The Shu
acu points, which are located on the back, are the regions where the qi of the viscera is
infused and are chiefly used to treat disorders of related viscera. Liver dysfunction is the
main reason for depression according to TCM. According to clinical evidence [79], we
selected the Ganshu (BL18) acupoint. The results of the present study have identified that
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CUMS-induced depression-like behaviors and that EA at GV20, GV29, and BL18 exhibited
antidepressant- and antianxiety-like effects.

Our experiment confirmed our hypothesis, but there are some limitations. The amyg-
dala, hippocampus, thalamus and prefrontal cortex play a synergistic role in cognitive
function, learning, memory, emotion, and other functions. However, we did not study
in detail the relationship between the hippocampus and prefrontal cortex in depression.
As technology continues to advance, the use of brain imaging techniques and real-time
brain function recording has become increasingly prevalent in assessing the effects of
different therapies on brain function in individuals with depression. This objective evi-
dence provides greater validation for the effectiveness of electroacupuncture (EA) in the
treatment of depression. Further investigation is required to determine the extent to which
EA can improve depression-related neural circuits through the application of advanced
neuroimaging methods, and to evaluate whether EA can enhance liver metabolism and
mitigate metabolic changes in CUMS-induced depression-like behavior in rats. While the
current findings are derived in a laboratory setting, additional randomized controlled trials
will be necessary to establish clinical efficacy.

6. Conclusions

In conclusion, the results of the study provide evidence to support the hypothesis
that rats displaying CUMS-induced depression-like behavior exhibit damage to the pre-
frontal cortex and liver, characterized by an inflammatory state triggered by microglia
and macrophages. The antidepressant effect of EA may be achieved through its ability to
modulate inflammation by downregulating the expression of P2X7R/NLRP3/IL-1β and
reducing the release of IL-1β. This study highlights the potential role of EA in alleviating
depression symptoms associated with CUMS and provides new experimental evidence for
the use of EA as an add-on therapy in the treatment of depression and the co-occurrence of
chronic liver disease and depression.
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