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Abstract: Based on functional magnetic resonance imaging and multilayer dynamic network model, 

the brain network’s quantified temporal stability has shown potential in predicting altered brain 

functions. This manuscript aims to summarize current knowledge, clinical research progress, and 

future perspectives on brain network’s temporal stability. There are a variety of widely used 

measures of temporal stability such as the variance/standard deviation of dynamic functional con-

nectivity strengths, the temporal variability, the flexibility (switching rate), and the temporal clus-

tering coefficient, while there is no consensus to date which measure is the best. The temporal sta-

bility of brain networks may be associated with several factors such as sex, age, cognitive functions, 

head motion, circadian rhythm, and data preprocessing/analyzing strategies, which should be con-

sidered in clinical studies. Multiple common psychiatric disorders such as schizophrenia, major de-

pressive disorder, and bipolar disorder have been found to be related to altered temporal stability, 

especially during the resting state; generally, both excessively decreased and increased temporal 

stabilities were thought to reflect disorder-related brain dysfunctions. However, the measures of 

temporal stability are still far from applications in clinical diagnoses for neuropsychiatric disorders 

partly because of the divergent results. Further studies with larger samples and in transdiagnostic 

(including schizoaffective disorder) subjects are warranted. 

Keywords: connectome; dynamic functional connectivity; dynamic brain network; schizophrenia; 

major depressive disorder; bipolar disorder 

 

1. Introduction 

Functional magnetic resonance imaging (fMRI) is currently one of the best methods 

to study the functional activity of the human brain under non-invasive conditions [1,2]. 

Using fMRI technology, many common psychiatric disorders such as schizophrenia [2,3], 

bipolar disorder [4,5] and major depressive disorder [6,7] have been found to be accom-

panied by abnormal functional connectivity (FC) between brain areas and changes in 

brain network topological properties on large scales, which provide potential markers for 

the auxiliary diagnosis of these disorders. 

In traditional fMRI research, computational analyses are generally based on the as-

sumption that functional connections between different areas of the brain remain constant 

during the whole fMRI scan. However, it has been suggested that the patterns of brain FC 

actually fluctuate dynamically over time even at the resting state, which are ignored by 

traditional fMRI data analysis methods [8,9]. Therefore, research on the dynamic fluctua-

tions of the FC patterns of the brain during fMRI scan so-called dynamic FC (dFC) has 

emerged in recent years [10–12]. Several studies have shown that after excluding disturb-

ing factors such as head movement, dFC can still accurately reflect the inherent individual 
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differences between subjects [13,14]. Based on multiple repeated fMRI scans on the same 

subjects, it was also shown that multiple dFC measures have acceptable test–retest relia-

bility [14,15], which demonstrates the feasibility and reliability of dFC measures. 

In dFC studies, a commonly used approach is to model the human brain network as 

a multilayer “dynamic network” and then evaluate the temporal stability/variability of 

such dynamic networks in a graph theory-based framework. Such an approach has shown 

potential for predicting alterations in brain functions in both normal [14,16] and patholog-

ical [17,18] conditions in clinical studies. However, compared with traditional static brain 

network measures, the dynamic brain network model remains a relatively new area and 

its clinical applications are still in the exploration phase. This manuscript briefly intro-

duces the basic concepts, commonly used measures, and possible influencing factors of 

the temporal stability of brain networks, and narratively summarizes its clinical research 

progresses in common psychiatric disorders such as schizophrenia, bipolar disorder, and 

depression, in order to provide new highlights for understanding the relationship be-

tween common psychiatric disorders and brain functional stability based on the dynamic 

brain network model. 

2. The Basic Concepts and Commonly Used Measures of the Temporal Stability of a 

Brain Network 

In a framework of graph theory, the functional brain network can be modeled as a 

complex network, which abstracts the brain into a series of “nodes” and “edges” connect-

ing those “nodes” [19]. Each of these “nodes” typically represents a brain region defined 

based on an anatomical or functional brain map, while the “edge” between each of the 

two “nodes” represents the strength of the functional connection between them [19,20]. In 

traditional static brain network models, the strengths of these “edges” are constant; in 

contrast, in dynamic network models, the strengths of each “edge” change dynamically 

over time [21]. Such changes are typically estimated by dividing the fMRI signal of the 

entire scan into several time periods, and then calculating the connection strengths of each 

“edge” in the brain network in different time periods. To achieve this, the often-used 

method is dividing the entire fMRI signal into several non-overlapped or partially over-

lapped “time windows” by the “sliding-window” approach [17,22–24], while there are 

also other methods [25]. As a result, a dynamic brain network can be constructed as G = 

(Gt)t = 1, 2, 3…, where Gt is the layer representing brain dFC within the tth time period (the tth 

time window) (Figure 1). Compared with the static brain network model, the dynamic 

brain network model thus incorporates an additional time dimension to track the dynamic 

changes in the brain network. 
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Figure 1. A summary of the steps for constructing dynamic networks and estimating the temporal 

stability of brain networks, and the relationships between temporal stability and other brain net-

work measures. Note that lines with different colors represent time series of different brain nodes 

(different brain regions). 

After constructing a dynamic brain network, the temporal stability of the brain net-

work can be then estimated from both global (at the whole-brain level) and regional levels. 

The higher temporal stability indicates that a brain network is more stable (fluctuates less) 

over time. It is noteworthy that there are various measures of temporal stability proposed 

by different researchers, which is introduced later. Moreover, there are measures to quan-

titatively analyze the other characteristics of a dynamic brain network beyond simply es-

timating its temporal stability (Figure 1). For instance, another dynamic brain network-

based analysis technique is to use clustering, where the layers (time windows) in a dy-

namic brain network are portioned into a set of clusters or “states” using the K-means 

clustering [26] or principal components analysis (PCA) [27]; this family of technique sum-

marizes the dFC patterns into a number of “states” and may provide a more comprehen-

sive overview of dynamic changes in the brain network [12]. Nevertheless, there is no 

consensus to date concerning which measure is the best to characterize the temporal fluc-

tuations in dFC patterns. We introduce below several of the most commonly used 

measures of temporal stability for a dynamic brain network: 

(1) Variance and the standard deviation [16,23,28–30]: Possibly the most straightfor-

ward and simple method to estimate the temporal stability of “edges” in a dynamic brain 

network is to calculate the variance or the standard deviation of dFC strengths of each 

edge across different layers (time windows). Intuitively, a higher variance or a higher 

standard deviation suggests lower temporal stability of dFC between brain nodes. The 

advantages of this measure include the simple analyzing steps and short calculating time. 

However, there are studies reporting that such measures may be less reliable when com-

pared to other measures [28,31]. 

(2) Temporal variability [17,18,32–34]: The “temporal variability” of a dynamic brain 

network is estimated by averaging the dissimilarity of its network structures between dif-

ferent layers (time windows). The exact formula for such calculations can be found in the 

previous related publications [17,18,32–34]. This measure can be computed at both the 

global (temporal variability) and regional (nodal temporal variability) levels. Additionally, 

it can be also computed at the subnetwork level (within-subnetwork and between-subnet-

work temporal variability) to reflect the temporal stability of dFC patterns within/between 
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particular large-scale brain subsystems. A higher value of temporal variability indicates 

lower temporal stability of a dynamic brain network (more variable over time). 

(3) Flexibility [22,35–38]: This measure is also called “switching rate”; it estimates the 

temporal stability of a dynamic brain network according to its modularity structures. The 

flexibility or “switching rate” of a given brain node quantifies the rate at which it transits 

between different functional modules. Higher flexibility or “switching rate” suggests that 

the brain network transit between different configurations at a higher rate, and thus with 

lower temporal stability. The flexibility can be also computed at the global and subnet-

work levels, by averaging all nodes within the whole brain network or those nodes be-

longing to a particular subnetwork. 

(4) Temporal clustering coefficient [14,17,21,39,40]: This measure is also called “the 

temporal correlation coefficient”; it is derived from the definition of analogous metric 

(clustering coefficient) for conventional static networks. The temporal clustering coeffi-

cient estimates the tendency of a dynamic brain network to keep stable over time (its “tem-

poral clustering”) by quantifying the average topological overlap of the network connec-

tions between any two consecutive layers (i.e., neighboring time windows). A higher tem-

poral clustering coefficient suggests that the brain network is more likely to keep stable 

over time (showing higher temporal stability). Similar to the brain network flexibility, the 

temporal clustering coefficient can be computed at all the nodal, subnetwork, and global 

levels. 

In addition to these four measures, there are also other methods to measure the tem-

poral stability of dynamic brain networks. One example is independently calculating the 

traditional “static” topological properties of the brain network within each layer (time 

window) and then estimating their changing ranges by the area under the curve (AUC) 

[41] or the temporal deviation of each network property (“temporal grading index”) [42]. 

Based on the earlier-mentioned state-clustering algorithm, the stability of dynamic brain 

networks can be also measured by switching frequencies between different “states” [43]. 

Nevertheless, in this current manuscript, we focus on the abovementioned four kinds of 

measures that have been commonly used in published neuroimaging studies. 

3. Possible Influencing Factors When Analyzing the Temporal Stability of a Brain 

Network 

Prior studies of dynamic human brain networks have shown that the temporal sta-

bility of brain networks may be associated with factors such as sex, age, and cognitive 

functions. Furthermore, it was suggested that the results of dFC studies might be influ-

enced by some factors such as the participants’ head motion during the fMRI scanning, as 

well as several data preprocessing and analyzing strategies. These reports suggest that 

attention should be given to controlling the potential influences of these factors in the 

clinical applications of dynamic brain network models. 

(1) Sex: In studies using traditional static brain network models, sex and age were 

typically controlled as covariates since they are thought to have significant influences on 

many important brain network properties [44,45]. For dFC studies, there have been also 

several studies to investigate the possible sex effects on the temporal stability of brain 

networks. Interestingly, although conflicting results exist [46], we notice many of these 

studies found that the females’ brain networks seem to be more stable over time compared 

to the males’ brain networks [14,43,47]. For instance, one study using a state-clustering 

algorithm suggested that the females’ brain networks switch connectivity states less fre-

quently than the males’ and can thus be considered more stable over time [43]; in another 

study using the temporal clustering coefficient, it was found that the females’ brain net-

works are more stable than the males’ and such differences are significant at both the 

global and regional (particularly within the default-mode and subcortical regions) levels 

[14]. These findings may not only highlight the necessity to control for sex effects in dFC 

studies, but also provide valuable insight into the sex differences in clinical characteristics 
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of many mental problems and disorders (e.g., females are more likely to be affected by 

depression) [48–50]. 

(2) Age: There have been a number of studies investigating the possible age-related 

effects in the temporal stability of dynamic brain networks at the resting state [16,51–53], 

many of which used relatively large samples. For instance, using data from 902 healthy 

controls, Tang et al. [54] found a significant aging-related increase in temporal variability 

of dFC within the default-mode network. Similarly, Qin et al. [53] examined age-related 

differences in dFC patterns with data from 183 subjects aged 7–30, and found that higher 

age is associated with higher temporal variability of the connections among the visual 

network, default mode network, and cerebellum. In addition, Marusak et al. [52] analyzed 

the dynamic brain network characteristics of 146 children and adolescents aged 7 to 16 

years old, and found that the temporal variabilities of dFC among multiple neurocogni-

tive networks are positively associated with age. Overall, these results suggest the process 

of maturation/aging of the brain may be accompanied by increased temporal variability 

(decreased temporal stability) of the brain network. However, there were also opposite 

findings: e.g., Xia et al. [51] reported that age is negatively associated with the variability 

of dynamic functional networks by analyzing the resting scan data of a total of 434 sub-

jects. Nevertheless, the changes in temporal stability-based dFC measures may be an im-

portant characteristic of the maturation/aging process but further investigations are still 

needed to provide a deep understanding of such relationships. 

(3) Cognitive functions: Several studies have shown that the temporal stability of dy-

namic brain networks may be associated with multiple dimensions of cognitive function. 

For instance, Hilger et al. [55] found that higher intelligence is associated with higher tem-

poral stability (lower temporal variability) of brain network modularity. The other cogni-

tive factors which may be associated with the temporal stability of brain networks include 

executive function [56], learning ability [35], working memory [36], cognitive flexibility 

[57], verbal creativity [33], and the need for cognition [58]. Therefore, it might be better to 

consider the possible influences of different levels of cognition in clinical studies on dFC, 

especially when performing direct comparisons between the groups of healthy controls 

and psychiatric populations. An alternative way to achieve this could be to include edu-

cation level as a covariate in the analyses, as performed by many researchers [14,17,59,60]. 

(4) Head motion: There have been multiple studies pointing out that the subjects’ 

head motion would considerably affect the obtained dFC patterns [61,62]. Therefore, to 

minimize the possible influences of head motion, it is necessary to perform motion artifact 

removal steps during the data preprocessing stage [61]. Moreover, we propose that in 

clinical studies, it would be better to match the levels of head motion between different 

groups; it would also be better to include the head motion parameters (e.g., mean frame-

wise-displacement) as an additional covariate in the analyses, as performed by many re-

searchers [14,17,59,60]. 

(5) Circadian rhythm: It has been raised by many researchers that the fluctuations in 

fMRI signals can be critically affected by circadian rhythm; for example, it was reported 

that healthy participants’ brain FC can be significantly affected by the time of the day, 

which was hypothesized to be related to effects of different cortisol levels at different time 

points [63,64]. Therefore, although there is currently only limited knowledge about the 

direct influences of circadian rhythm on the measures of brain network’s temporal stabil-

ity, it would be better to control for possible influences of circadian rhythm in clinical 

studies. One of the beneficial solutions, for example, is acquiring all the fMRI data approx-

imately at the same time of the day [63]. 

(6) Data preprocessing and analyzing strategies: In dFC studies, it is possible that the 

values of dynamic brain network measures (including temporal stability) could be af-

fected by different choices in some data preprocessing and analyzing strategies. For ex-

ample, the dynamic brain network measures may be different when performing and not 

performing the global signal regression (GSR) during data preprocessing; the dynamic 

brain network measures also could be different when choosing different window lengths 
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and step lengths, two key parameters of the sliding-window approach [61]. Actually, there 

are still debates about the necessity of GSR [65] and about the optimal window 

lengths/step lengths in the sliding-window approach [31,66]. Nevertheless, in a number 

of studies on the temporal stability of brain networks, the analyzes were repeated with 

different strategies and it was found that consistent results can be obtained when per-

forming/not performing GSR, and when using a set of different window lengths/step 

lengths in the sliding-window step [14,17,24]; therefore, the main conclusions in these 

studies are unlikely to be largely driven by the choices in data preprocessing and analyz-

ing strategies. 

4. Research Progress on Possible Relationships between the Temporal Stability of 

Resting-State Brain Networks and Common Psychiatric Disorders 

In recent years, researchers have explored abnormal changes in the temporal stability 

of brain networks in patients with multiple psychiatric disorders, especially at the resting 

state and in three of the most common psychiatric disorders worldwide: schizophrenia, 

major depressive disorder, and bipolar disorder. Here, we briefly summarize the relevant 

research progress in the following paragraphs based on search results from PubMed 

(www.ncbi.nlm.nih.gov/pubmed/, accessed on 30 January 2023). Note that since there are 

a variety of different measures for the temporal stability of brain networks, we used dif-

ferent searching keywords for different measures separately. For example, the searching 

strategies for finding studies on schizophrenia using the measure of temporal variability 

are: “(schizophrenia) AND (‘dynamic functional connectivity’ OR ‘dynamic brain net-

work’) AND (‘temporal variability’)”, and all of the reviewed articles are published before 

30 January 2023. 

An overview of the sample sizes, measures used for temporal stability, and main 

findings of all mentioned studies can be found in Tables 1–3; moreover, some additional 

information such as the diagnostic criteria for psychiatric disorders in each research report 

are listed in Tables A1–A3. The patients with psychiatric disorders were diagnosed by the 

Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV) criteria in almost all 

the referred studies (except one study using the DSM-V criteria). The participants with 

drug abuse history and other severe psychiatric or somatic disorders have been excluded 

in almost all the referred studies (except one study where this issue was not mentioned). 

(1) Schizophrenia: Schizophrenia is perhaps one of the most thoroughly studied psy-

chiatric disorders as for its relationship with the brain’s temporal stability based on the 

dynamic brain network model. For instance, in 2016, Zhang et al. [18] studied two separate 

samples of 69 schizophrenic patients/62 healthy controls and 53 schizophrenic patients/67 

healthy controls, respectively. They found that the patients with schizophrenia showed 

significantly increased temporal variability (decreased temporal stability) of dFCs in the 

subcortical regions such as the thalamus, pallidum, and putamen, and in the visual cortex 

at the resting state; additionally, the schizophrenia patients showed significantly de-

creased temporal variability (increased temporal stability) in the relevant regions of the 

default-mode network. Afterward, Dong et al. [34] and Long et al. [32] also investigated 

the changes in temporal variability of brain dFC patterns in schizophrenia patients and 

they found similar results: both of them observed that the schizophrenia patients showed 

significantly increased temporal variability (decreased temporal stability) in sensory and 

perceptual systems (including the visual, sensorimotor, and attention networks, along 

with thalamus) but decreased temporal variability (increased temporal stability) in 

higher-order networks (e.g., the default-mode and frontal–parietal networks). Using the 

measure of flexibility, Gifford et al. [67] also found that the temporal stabilities of dFC in 

multiple brain regions including the thalamus are significantly decreased in schizophre-

nia patients.  

Overall, all these findings point to a significant widespread decrease in temporal sta-

bility of dFC in most of the brain systems, especially the sensory and perceptual systems 

(e.g., visual cortex, sensorimotor cortex, and thalamus), and an increase in certain higher 
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systems (e.g., frontal–parietal and default-mode networks) in schizophrenia patients. Ac-

tually, there are several other studies (beyond those above) that reported similar conclu-

sions [68,69], although inconsistent reports also exist [70]. These findings may support the 

opinion that such widespread aberrant dynamic brain network reconfigurations may be 

a potential biomarker for schizophrenia, suggestive of impaired abilities in effectively fil-

ter inputs in sensory/perceptual systems and integrating information in high-order net-

works, which may underlie the perceptual and cognitive deficits in schizophrenia [32,34]. 

Table 1. Summary of main findings of changes in the temporal stability of brain network in patients 

with schizophrenia (SZ) as mentioned in this manuscript. dFC, dynamic functional connectivity; 

HCs, healthy controls. 

Reference Sample 

Measure of 

Temporal Sta-

bility  

Main Findings on the Temporal 

Stability in SZ Patients 

Zhang et al. 

[18] 

Two datasets: 69 SZ 

patients/62 HCs and 

53 SZ patients/67 

HCs 

Temporal varia-

bility 

Decreased stability in subcortical 

and visual regions; increased stabil-

ity in default-mode regions 

Dong et al. 

[34] 

102 SZ patients/124 

HCs 

Temporal varia-

bility 

Decreased stability in visual, sen-

sorimotor, and attention networks, 

as well as thalamus; increased sta-

bility in default-mode and frontal–

parietal networks 

Long et al. 

[32] 

66 SZ patients/66 

HCs 

Temporal varia-

bility 

Decreased temporal stability in sen-

sorimotor, visual, attention, limbic, 

and subcortical areas; increased sta-

bility in default-mode areas 

Gifford et al. 

[67] 

55 SZ patients/72 

HCs 
Flexibility 

Decreased stability in cerebellar, 

subcortical, and fronto-parietal task 

control networks 

Guo et al. [70] 
22 SZ patients/60 

HCs 

Temporal varia-

bility 

Decreased stability in dFC anchored 

on the precuneus 

Wang et al. 

[68] 

42 SZ patients/35 

HCs 

Standard devia-

tion 

Decreased stability in dFCs among 

multiple networks 

Sheng et al. 

[69] 

Two datasets: 51 SZ 

patients/63 HCs and 

36 SZ patients/60 

HCs 

Temporal varia-

bility 

Decreased stability in prefrontal 

cortex, anterior cingulate cortex, 

temporal cortex, visual cortex, and 

hippocampus 

(2) Major depressive disorder: Major depressive disorder is also one of the most fo-

cused disorders in clinical studies on the temporal stability of human brain networks. 

Among these studies, Long et al. [17] reported that the level of temporal variabilities of 

dFCs are significantly increased (indicating decreased temporal stability) in patients with 

major depressive disorder at both the whole-brain level and subnetwork level within the 

default-mode, sensorimotor, and subcortical networks. Using the measure of temporal 

clustering coefficient, Zhao et al. [39] found that patients with major depressive disorder 

showed decreased temporal stability at the global level and in regions of sensory percep-

tion systems. Hou et al. [71] and Ouyang et al. [40] found that patients with major depres-

sive disorder showed decreased temporal stability within the striatum and default-mode 

regions, respectively. Overall, these findings suggest that major depressive disorder may 

be associated with excessive fluctuation (decreased temporal stability) of functional brain 

network organizations, and the default-mode areas are most prominently involved. The 

default-mode network is thought to be primarily involved in processing one’s self-refer-

ential and internally directed information [72]. Therefore, the instability of the default-

mode network dFCs was hypothesized to be related to uncontrollable, too-frequent 
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thinking activities about negative emotions and event, known as “rumination” in patients 

with depression [17]. Actually, another study by Wise et al. [73] has also strongly sup-

ported such an opinion: they proved that temporal stabilities of dFCs within several key 

default-mode regions are significantly decreased in major depressive disorder, which was 

replicated in two independent samples.  

However, we notice that the findings in a number of other published studies are not 

consistent with the above reports. For example, Demirtaş et al. [74] compared the temporal 

variability of dFCs quantified as the index of dispersion (variance/mean) between patients 

with major depressive disorder and healthy controls; and they found that the patients 

showed significantly decreased variability (increased temporal stability) of dFCs between 

the default-mode and fronto-parietal networks. In another study using the measure of 

brain network flexibility, Tian et al. [75] found that the patients with major depressive 

disorder showed increased temporal stability within the default-mode and cognitive con-

trol networks. Han et al. [76] also reported decreased switching rates (increased temporal 

stability) within several default-mode regions such as the precuneus and dorsal medial 

prefrontal cortex in patients with major depressive disorder. Furthermore, Zhou et al. [30] 

also reported that major depressive disorder is characterized by excessive stable (in-

creased temporal stability) dFCs within default-mode areas such as the precuneus. These 

results are not consistent and even conflict with those studies mentioned in the last para-

graph. 

Here, we propose that the inconsistencies in previous studies on major depressive 

disorder may be partly due to several reasons. First, we notice that the sample sizes in 

some studies are relatively small (Table 2), which may lead to less reliable results [77]. 

Second, it is possible that major depressive disorder is a disorder with significant clinical 

and biological heterogeneity; for example, it has been suggested that major depressive 

disorder-related brain dysfunctions may differ in different age groups (e.g., early adult-

hood vs. late-life) of patients [78]. Therefore, subtypes with distinct dFC profiles (e.g., hy-

per- and hypo-stability) may exist in major depressive disorder, which can be investigated 

in future studies. 

Table 2. Summary of main findings of changes in the temporal stability of brain network in patients 

with major depressive disorder (MDD) as mentioned in this manuscript. HCs, healthy controls. 

Reference Sample 
Measure of Tem-

poral Stability 

Main Findings on the Temporal Sta-

bility in MDD Patients 

Demirtaş et al. 

[74] 

27 MDD patients/ 

27 HCs 
Variance/mean 

Increased stability in dFCs between 

default-mode and fronto-parietal net-

works 

Long et al. [17] 
460 MDD patients/ 

473 HCs 

Temporal variabil-

ity and temporal 

clustering coeffi-

cient 

Decreased stability mainly in default-

mode, sensorimotor, and subcortical 

areas 

Wise et al. [73] 

Two datasets: 20 MDD 

patients/19 HCs and 

19 MDD patients/19 

HCs 

The standard devi-

ation 

Decreased stability within several key 

default-mode regions 

Zhao et al. [39] 
55 MDD patients/ 

62 HCs 

Temporal cluster-

ing coefficient 

Decreased stability at global level and 

in sensory perception regions  

Hou et al. [71] 
77 MDD patients/ 

40 HCs 

Temporal variabil-

ity 

Decreased stability in inferior occipital 

gyrus and pallidum 

Ouyang et al. 

[40] 

55 MDD patients/ 

21 HCs 

Temporal cluster-

ing coefficient 

Decreased stability at global level, and 

within default-mode and subcortical 

networks 
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Zhou et al. [30] 
19 MDD patients/ 

22 HCs 
The variance 

Increased stability in dorsolateral pre-

frontal cortex and precuneus connec-

tivity 

Tian et al. [75] 
35 MDD patients/ 

35 HCs 
Flexibility 

Increased stability within default-

mode and cognitive control networks 

Han et al. [76] 
61 MDD patients/61 

HCs 

Flexibility (switch-

ing rate) 

Increased stability in precuneus, para-

hippocampal gyrus, dorsal medial pre-

frontal cortex, anterior insula, amyg-

dala, and striatum 

(3) Bipolar disorder: Similar to schizophrenia and major depressive disorder, many 

researchers have explored possible changes in the temporal stability of brain networks in 

patients with bipolar disorder. For example, Nguyen et al. [79] found that compared with 

healthy controls, patients with euthymic bipolar disorder showed significantly reduced 

dFC variability (increased temporal stability) between the medial prefrontal lobe and the 

posterior cingulate gyrus in the resting-state. Han et al. [76] found that patients with bi-

polar disorder showed decreased network switching rates (increased temporal stability) 

of regions including the left precuneus, bilateral dorsal medial prefrontal cortex, and bi-

lateral parahippocampal gyrus. Liang et al. [80] found that compared to healthy partici-

pants, patients with bipolar disorder showed decreased variance (increased temporal sta-

bility) of dFC between the posterior cingulate cortex and medial prefrontal cortex. Using 

the measure of temporal variability, Long et al. [32] found increased temporal variability 

(decreased temporal stability) of dFCs profiles within subcortical areas, and between the 

thalamus and sensorimotor areas. Wang et al. [81] reported that depressed bipolar disor-

der patients showed increased temporal stability of dFC between the default-mode net-

work and central executive network when compared to healthy controls. Furthermore, 

Luo et al. [82] reported the group of depressed bipolar disorder patients had reduced dFC 

variance (increased temporal stability) between the bilateral posterior cingulate cor-

tex/precuneus and the left inferior parietal lobule than the healthy group. 

In summary, most of the published studies mentioned above suggest that bipolar 

disorder is associated with an excessively increased temporal stability of the brain net-

work. Moreover, at the local level, certain brain areas have been repeatedly reported to be 

involved in two or more studies (e.g., the posterior cingulate gyrus) (Table 3). However, 

generally, there is no significant convergence of the regional dFC abnormalities in bipolar 

disorder across these published studies. Such inconsistencies in previous studies may be 

firstly due to their relatively small sample sizes (Table 3), which may lead to relatively 

low statistical power and relatively low reliability [77]. Beyond that, it is possible that bi-

polar disorder-related brain dysfunctions may be characterized by different changes in 

different clinical states (e.g., in depression, mania, and euthymic states [83]. However, the 

direct comparisons on brain network stability between different clinical states of bipolar 

disorder are still relatively limited to our knowledge, which merits further investigations 

in the future. 

Table 3. Summary of main findings of changes in the temporal stability of brain network in patients 

with bipolar disorder (BD) as mentioned in this manuscript. dFC, dynamic functional connectivity; 

HCs, healthy controls. 

Reference Sample 
Measure of Tem-

poral Stability  

Main Findings on the Temporal Sta-

bility in BD Patients 

Nguyen et al. 

[79] 

15 euthymic BD pa-

tients/19 HCs 
Standard deviation 

Increased stability between medial 

prefrontal lobe and posterior cingulate 

gyrus 

Han et al. [76] 40 BD patients/61 HCs 
Flexibility (switch-

ing rate) 

Increased stability in precuneus, para-

hippocampal gyrus, and dorsal medial 

prefrontal cortex 
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Wang et al. [81] 
51 depressed BD pa-

tients/52 HCs 
Standard deviation 

Increased stability between default-

mode and central executive networks 

Long et al. [32] 53 BD patients/66 HCs 
Temporal variabil-

ity 

Decreased stability in dFCs within 

subcortical areas and between thala-

mus and sensorimotor areas 

Liang et al. [80] 18 BD patients/19 HC Standard deviation 

Increased stability in dFC between 

posterior cingulate cortex and medial 

prefrontal cortex 

Luo et al. [82] 
106 depressed BD pa-

tients/130 HCs 
Standard deviation 

Decreased stability between posterior 

cingulate cortex/precuneus and infe-

rior parietal lobule 

(4) Other psychiatric disorders: Although we focus on schizophrenia, major depres-

sive disorder, and bipolar disorder in this manuscript, alterations in temporal stabilities 

of dynamic brain networks have been also reported in multiple other neuropsychiatric 

disorders. For example, Harlalka et al. [84] found that patients with autism spectrum dis-

order showed a significant increase in dynamic variability (decreased temporal stability) 

in a wide range of brain network connections. Additionally, significantly decreased tem-

poral stabilities of brain networks have been associated with both substance [85] and non-

substance [59] addictions, suggesting that brain network instability may play an im-

portant role in the onset of these disorders.  

5. Discussion: Summary and Future Perspectives 

In summary, based on the fMRI technical and the dynamic brain network model, 

researchers have proposed a number of measures to quantify the temporal stability of the 

human brain network, and their associations with multiple common psychiatric disorders 

(especially in patients with schizophrenia, major depressive disorder, and bipolar disor-

der) have been explored. Generally, both excessively decreased and increased temporal 

stabilities have been reported in psychiatric populations, and both of them were thought 

to be reflective of disorder-related brain dysfunctions. For example, in most of the pub-

lished relevant studies, schizophrenia was often associated with decreased temporal sta-

bility (Table 1), while bipolar disorder was often associated with increased temporal sta-

bility of brain networks (Table 3). These findings might provide a unique perspective for 

deepening our understanding of these disorders. 

However, the measures of temporal stability are still far from applications in clinical 

diagnoses for neuropsychiatric disorders, partly because of the divergent and even con-

flicting results on its associations with common psychiatric disorders (Tables 1–3). As dis-

cussed earlier, the inconsistent results in previous studies may be due to the relatively 

small sample sizes in many of them, and the possibility that there is biological heteroge-

neity in these disorders (e.g., major depressive disorder-related brain dysfunctions may 

differ in different age groups of patients). Therefore, future studies with larger samples 

may be warranted to further investigate the relationships between brain network’s tem-

poral stability and common psychiatric disorders, along with the potential biological het-

erogeneity in these disorders as reflected by temporal stability. 

It is also noteworthy that while most current clinical studies on the temporal stability 

of brain networks were performed during a resting state, it has been suggested that altered 

temporal stability during a certain task (e.g., working memory task [86]) can be reflective 

of brain dysfunctions, too. Nevertheless, the number of task-based studies on temporal 

stability is much more limited than that of resting-state ones; for such a reason, we chose 

to focus on the temporal stability of brain networks during rest in this manuscript. More 

future studies may be needed to investigate the possible associations between common 

psychiatric disorders and the temporal stability of brain networks under certain cogni-

tive/emotional tasks. 
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Another potentially valuable direction in future studies is to investigate the possible 

transdiagnostic alterations in the temporal stability of brain networks (those alterations 

shared by different disorders). It is well known that many psychiatric disorders have some 

overlapping clinical features (e.g., psychotic symptoms can happen in both schizophrenia 

and bipolar disorder), and it is thus hypothesized that there may be some common path-

ogenesis between them [32]. Therefore, investigating the common and different features 

of the brain network’s temporal stability across different psychiatric disorders may help 

to strengthen our understanding of their shared and distinct pathogenesis. Actually, sev-

eral studies have evaluated the differences in temporal stability of brain networks be-

tween schizophrenia and bipolar disorder [32], and between major depressive disorder 

and bipolar disorder [76]. Nevertheless, the number of studies simultaneously including 

multiple disorders is still limited to our knowledge, and more studies are needed in the 

future. 

Furthermore, besides the common psychiatric disorders such as schizophrenia, bipo-

lar disorder and major depressive disorder, the current knowledge is much limited on 

possible relationships between the brain network’s temporal stability and several rela-

tively rarer but important disorders. For example, schizoaffective disorder is a separate 

disorder between schizophrenia and bipolar spectra [87,88]. To our knowledge, however, 

there are only a limited number of dFC studies on schizoaffective disorder, most of which 

used the state-clustering algorithm [89,90], and no published study has investigated pos-

sible associations between schizoaffective disorder and the brain network’s temporal sta-

bility using the measures we focused on in the current manuscript. Therefore, further 

studies on other disorders such as schizoaffective disorder are warranted. 

Future studies can also benefit from longitudinal follow-ups, while most of the cur-

rent studies mentioned were cross-sectional designs. This is partly because some patients 

may be misdiagnosed at base-line and obtaining a correct diagnosis requires time. For 

example, it has been reported that a considerable proportion of schizophrenia patients 

may receive a new diagnosis (e.g., secondary schizophrenia) during the follow-up [91].  

Finally, many psychiatric disorders (e.g., schizophrenia) have been proved to be ac-

companied by structural changes in the brain, such as a significant decline in the white 

matter integrity [92]. Moreover, some of these disorders (e.g., schizophrenia) have been 

associated with a changed stability of the rhythm from a chronobiological point of view, 

which can be measured by other biological measures such as temperature, pulse, and 

blood pressure [93,94]. However, to the best of our knowledge, it is still poorly known 

whether there are links between these changes and altered temporal stability of the brain 

network in patients with psychiatric disorders. These questions above may deserve fur-

ther exploration in future studies. 

This manuscript has several limitations. Firstly, as mentioned earlier, some of the ex-

isting measures of brain network temporal stability can be referred to differently by vari-

ous researchers; e.g., the “flexibility” is also called “switching rates” by some researchers. 

Thus, because of this reason, some published studies might have been missed during the 

literature search. Secondly, while the current manuscript provides only a narrative review 

on current studies on temporal stability, conducting a well-designed systematic review or 

a meta-analysis may further improve our understanding of the relationships between 

common psychiatric disorders and the temporal stability of brain networks. 
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Appendix A 

Table A1. Additional information about the studies on schizophrenia (SZ) as mentioned in this 

manuscript. DSM, Diagnostic and Statistical Manual of Mental Disorders. 

Reference 
Diagnostic Crite-

ria for SZ 

Was Drug Abuse History 

Excluded? 

Were Other Severe Psychiatric 

or Somatic Disorders Ex-

cluded? 

Zhang et al. [18] DSM-IV Yes Yes 

Dong et al. [34] DSM-IV Yes Yes 

Long et al. [32] DSM-IV Yes Yes 

Gifford et al. [67] DSM-IV Yes Yes 

Guo et al. [70] DSM-IV Yes Yes 

Wang et al. [68] DSM-IV Yes Yes 

Sheng et al. [69] DSM-IV Yes Yes 

Table A2. Additional information about the studies on major depressive disorder (MDD) as men-

tioned in this manuscript. DSM, Diagnostic and Statistical Manual of Mental Disorders. 

Reference 
Diagnostic Crite-

ria for MDD 

Was Drug Abuse History 

Excluded? 

Were Other Severe Psychiatric 

or Somatic Disorders Ex-

cluded? 

Demirtaş et al. [74] DSM-IV Yes Yes 

Long et al. [17] DSM-IV Not mentioned Not mentioned 

Wise et al. [73] DSM-IV Yes Yes 

Zhao et al. [39] DSM-IV Yes Yes 

Hou et al. [71] DSM-IV Yes Yes 

Ouyang et al. [40] DSM-IV Yes Yes 

Zhou et al. [30] DSM-IV Yes Yes 

Tian et al. [75] DSM-IV Yes Yes 

Han et al. [76] DSM-IV Yes Yes 

Table A3. Additional information about the studies on bipolar disorder (BD) as mentioned in this 

manuscript. DSM, Diagnostic and Statistical Manual of Mental Disorders. 

Reference 
Diagnostic Crite-

ria for BD 

Was Drug Abuse History 

Excluded? 

Were Other Severe Psychiat-

ric or Somatic Disorders Ex-

cluded? 

Nguyen et al. [79] DSM-IV Yes Yes 

Han et al. [76] DSM-IV Yes Yes 

Wang et al. [81] DSM-IV Yes Yes 

Long et al. [32] DSM-IV Yes Yes 

Liang et al. [80] DSM-IV Yes Yes 

Luo et al. [82] DSM-V Yes Yes 
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