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Abstract: Aflatoxin B1 (AFB1) is the most common toxic mycotoxin that contaminates food. The
treatment of its intoxication and the management of contaminations are a constant subject of health
agendas worldwide. However, such efforts are not always enough to avoid population intoxication.
Our objective was to investigate whether intermittent exposure to AFB1 would cause any impairment
in biochemical and behavioral parameters, intending to simulate an irregular consumption. Male
Wistar rats received four AFB1 administrations (250 µg/kg) by intragastric route separated by a
96-h interval. Toxicity was evaluated using behavioral tests (open field, object recognition, nest
construction, marble burying, and splash test), biochemical markers of oxidative stress (cerebral
cortex, hippocampus, liver, and kidneys), and plasma parameters of hepatic and renal functions. The
intermittent exposure caused no modification in body weight gain as well as in organ weight. Both
control and AFB1 groups presented similar profiles of behavior to all tests performed. Furthermore,
AFB1 administrations alter neither antioxidant defenses nor markers of oxidation in all assayed
tissues and in the plasma markers of hepatic and renal functions. Therefore, AFB1 intermittent
administration did not cause its common damage from exposure to this toxicant, which must be
avoided, and additional studies are required.

Keywords: aflatoxin B1; intermittent exposure; oxidative stress; behavior; irregular consumption

1. Introduction

Mycotoxins are fungi secondary metabolites and one of the main food safety problems,
due to their effects on human and animal health [1]. AFB1 is the most common toxic
mycotoxin known, found mainly in oilseeds, namely soybean, sunflower, almond, chestnut,
peanut, as well as in spices, dried fruits, and beans [2]. In addition, all products derived
from these raw materials are subject to perpetuating contamination, since AFB1 is very
stable and resistant, difficult to eliminate, and toxic even at low concentrations [3,4].

AFB1 is absorbed in the gastrointestinal tract and metabolized in the liver by cy-
tochrome P450 enzymes in a toxic metabolite (AFB1-8,9-epoxide). Additionally, AFB1 is
classified as a human carcinogen I (International Agency for Research on Cancer) [5] and is
known to induce a variety of biological acute toxicity, teratogenicity, mutagenicity, impaired
growth, immunosuppression, genotoxicity, increased lipid peroxidation, and free radical
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generation, as well as changes in the central nervous system [6], posing a threat to public
health, especially in developing countries [7].

The consumption of food commonly contaminated by AFB1 is increasing mainly
considering the so-called “healthy” trend—transition from stage 4 to stage 5 of food
evolution—that stimulates the consumption of whole grains, where this mycotoxin is
frequently found [8]. This change in feeding behavior directly influences exposure to AFB1,
especially since the maximum threshold allowed by developing country legislation is up
to seven times that of developed countries, and one-quarter of the cereals produced are
contaminated with mycotoxins [9].

To date, the main ways of controlling AFB1 intoxication are prevention before consump-
tion and detoxification after consumption [1]. Methods of detection and biodegradation
are known and developed; however, they involve an expensive technology, hindering the
access and their application [10–12].

Literature shows exposure protocols for elucidation, reversion, or protection from
AFB1-induced damages [13–16]. Nevertheless, studies investigating exposure strategies
that avoid or decrease the damages identified in the population are scarce. Most of the
protocols tested repeated exposure [13,17,18]. Nonetheless, if it was already demonstrated
that single, acute, sub-chronic, and chronic exposure leads to aggravations and do not
have the option of stopping the consumption of contaminated foods, alternatives should
be sought.

Based on previous experiments performed by our research group and others [14,15,18,19],
instead of a single or repeated exposure, our proposal was to perform different times
of exposures, separated by a 96-h non-tested interval. The approach aims to investigate
whether intermittent exposure over a period would be sufficient to guarantee the home-
ostasis of the organism. Thus, we sought to evaluate whether AFB1 toxicity in rats would
be mitigated using a protocol of intermittent exposure. For this aim, general toxicity signals
were determined by behavioral, biochemical, and molecular approaches.

2. Materials and Methods
2.1. Chemicals and Animals

AFB1 (Cas No. 1162-65-8, ≥95% purity, Cayman Chemical, Ann Arbor, MI, USA) was
dissolved in 2% DMSO at a final concentration of 250 µg/mL. All other chemicals used
were of pure analytical grade and were from standard commercial suppliers.

This study was conducted using sixteen young male Wistar rats (53.31 ± 3.281 g). The
animals were maintained in cages of polypropylene (41 cm × 34 cm × 16 cm
L ×W × H, 1394 cm2) under a 12:12 h light-dark cycle, with lights turned on at 07:00 a.m.;
environmental controlled temperature (24 ± 1 ◦C) and relative humidity (45–65%); and
had free access to water and food. At the end of the protocol, prior to tissue collection,
the animals were euthanized by decapitation in a hand-operated guillotine, which was
performed by an expert researcher. The experimental protocol was approved by the Ethics
Committee for Animal Research of the Federal University of Santa Maria, Brazil (Approval
number 5166290316/2016) and carried out in strict accordance with the recommendations
in the national and international legislation (Brazilian Council of Animal Experimentation
guidelines—CONCEA—and of U.S. Public Health Service’s Policy on Humane Care and
Use of Laboratory Animals—PHS Policy).

2.2. Experimental Design

The experimental design is illustrated in Figure 1. The animals were randomly divided
into two groups. The control group received four doses of 2% DMSO (10 mL/kg, b.w.),
while the AFB1 group received four administrations of AFB1 (250 µg/kg, b.w.). The doses
were administered by the intragastric route and separated by an interval of 96 h among the
treatments. It was based on previous studies that showed AFB1 intoxication signals after
smaller intervals of exposure [14,15,18,19]. Animals’ body weight was monitored over the
experimental period. The behavioral tests were conducted after the last dose and the next
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day was followed by euthanasia for tissue collection. The blood samples were obtained
after decapitating the animals, by collecting the tissue from the body trunk in heparinized
vials for analysis. The samples were centrifugated for yielding plasma fraction, which was
used for biochemical assays. The brain, heart, kidneys, liver, lungs, spleen, and testicles
were weighed using an analytical scale to evaluate weight toxicity parameters. As concerns
sample storage, brain samples (which were dissected for collecting the cerebral cortex and
hippocampus) and kidney and liver samples were stored (−80 ◦C) for ex vivo evaluations.
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Figure 1. Schematic representation of the experimental design. Animals were divided into two groups
(AFB1 and DMSO) and treated with four doses separated by an interval of 96 h between each dose.

2.3. Behavioral Analysis

On the 13th day, animals performed object recognition, open-field test, marble burying,
and nest construction tests. On the 14th day, nest construction was evaluated, and object
recognition was performed (long-term memory—24 h after training section), followed
by the splash test (Figure 1). Behavioral analyses were conducted during the light cycle,
between 9 a.m. and 3 p.m., except during the nest construction test that was carried out
over the dark cycle (7 p.m. to 7 a.m.).

2.3.1. Object Recognition Test

The object recognition test (ORT) was performed by submitting the animals to three
experimental sessions, respectively, training #1 (first session—two equal objects [A1 and
A2]), short-term memory assessment #2 (second session, 4 h after training #1—two distinct
objects [A1 and B]), and long-term memory evaluation (third session, 24 h after training
#1—two distinct objects [A1 and C]) in the same apparatus used to perform the open field
test (Section 2.3.2). The animals were individually submitted to three sessions and for
10 min the time spent exploring each object was recorded. The results were expressed as a
recognition index, which was calculated as previously described [20].

2.3.2. Open Field Test

Animals were tested for 10 min in a round open field, where the floor was divided
into ten equal parts. Five parts, which were near the walls, were considered the peripheral
area and the rest was considered the central area. Immobility, crossings, rearing, and time
spent in the central area were recorded and analyzed to evaluate the locomotor activity and
anxiety-like behavior [20]. The results were expressed as the total number of crossings and
rearing. The time spent in central areas was reported in seconds.
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2.3.3. Marble Burying Test

The marble burying test was conducted in individual cages filled with 5 cm of wood
chip bedding and twelve marbles equidistant in a 2× 6 arrangement. Then, after 30 min, the
number of buried marbles (>50% marble covered by bedding material) was recorded [21].

2.3.4. Nest Construction Test

Rats were allocated in individual cages covered with normal bedding and with a
pressed cotton square (±3 g). Twelve hours later (dark cycle), the nest construction was
evaluated and a score was attributed, as previously reported by Deacon and collabora-
tors [22].

2.3.5. Splash Test

Animals were individually observed over 10 min after a squirting of a 10% sucrose
solution on the dorsal coat. The time to start the grooming behavior and the time of
grooming were evaluated as an index of self-care and motivational behavior [23]. The
results were expressed in seconds.

2.4. Ex Vivo Analysis

The blood collected was centrifuged at room temperature for 10 min to obtain the
plasma fraction, which was used for assessing aspartate and alanine aminotransferase
activity, creatinine, and albumin content, thiobarbituric acid reactive substances (TBARS)
levels, and ferric reducing antioxidant power (FRAP).

Liver, kidney, cerebral cortex, and hippocampus samples were homogenized (1:10,
w/v; 30 mM Tris-HCl pH 7.4) and centrifuged at 2400× g for 15 min at 4 ◦C to yield the
supernatant fraction (S1), which was used for the biochemical analysis immediately after
euthanization—protein, non-protein thiols (NPSH), ascorbic acid (AA), TBARS, and FRAP
determination and Na+, K+-ATPase, catalase (CAT) and glutathione S-transferase (GST)
activity. The other hemisphere of the cerebral cortex and hippocampus were stored at
−80 ◦C for a Western blot analysis—protein kinase C (PKC) immunoreactivity.

2.4.1. Plasma Biochemical Analysis

Plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST),
creatinine (CREA), and albumin (ALB) were evaluated in BS 380 Mindray Chemistry
Analyzer (Shenzhen, China) using commercial kits (Bioclin, Brazil).

2.4.2. Protein Determination

Protein content was determined by the Bradford method [24], using bovine serum
albumin (1 mg/mL) as the analytical standard.

2.4.3. NPSH Levels

The NPSH levels were determined according to the method proposed by Ellman [25].
Samples of S1 were precipitated using 10% trichloroacetic acid (TCA) and subsequently
centrifuged at 10,000 rpm for 10 min to yield the supernatant fraction (S2). An aliquot of
S2 (100 µL) was mixed with potassium phosphate buffer (1 M, pH 7.4) and 5,5′-dithio-bis-
(2-nitrobenzoic acid (DTNB) (10 mM). The NPSH levels were measured at 412 nm using a
spectrophotometer, and the results were expressed as nmol NPSH/mg of protein.

2.4.4. Ascorbic Acid (AA) Levels

Samples were precipitated with 5% TCA and centrifuged at 3000 rpm for 10 min
for ascorbic acid determination. Then, 100 µL of the supernatant was incubated with
13.3% TCA and a color reagent containing dinitrophenyl hydrazine, thiourea, and CuSO4,
at 37 ◦C for 3 h. The reaction was stopped with 65% H2SO4 (v/v) and the system was
measured at 520 nm in a spectrophotometer. The results were expressed as nmol ascorbic
acid/mg of protein [26].
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2.4.5. TBARS Levels

During the lipid peroxidation process, one of the products formed is the malondi-
aldehyde (MDA). This product reacts with thiobarbituric acid to form a colored complex,
which is quantified by its absorbance. The color formed was measured at 532 nm using a
spectrophotometer and the results were expressed as nmol MDA/mg of protein [27].

2.4.6. FRAP Potential

This test is based on the reduction of the ferric 2,4,6-tripyridyl-s-triazine complex ([Fe
(III)—(TPTZ)2]3+ in the intense blue iron complex [Fe (II)—(TPTZ)2]2+ by the action of
antioxidant compounds present in the sample, including mainly uric acid, and vitamins C
and E. The color formed is measured spectrophotometrically at 593 nm and the results are
expressed as nmol Fe2+/mg of protein [28].

2.4.7. Na+, K+-ATPase Activity

In this protocol, we evaluated in the cerebral cortex whether AFB1 caused changes
in individual Na+, K+-ATPase α isoforms. For this, we used a classical pharmacological
approach based on the isoform-specific sensitivity to ouabain. With a concentration of
12 µM ouabain, the isoform α1 is inhibited and then we discovered the activity of α2/α3
isoforms. Whereas, with a concentration of 8 mM ouabain, we inhibited the activity of
α2/α3 isoforms and only α1 activity was observed. Total Na+, K+-ATPase activity was
obtained by adding α1 and α2/α3 isoforms activity [29].

2.4.8. CAT Activity

CAT activity was determined in the liver and the kidneys based on the decomposition
of hydrogen peroxide by the catalase present in the sample. This reaction was measured at
240 nm for 120 s in a spectrophotometer and the results were expressed as first-order rate
constant k/mg of protein [30].

2.4.9. GST Activity

GST activity was assayed in liver and kidney samples at 340 nm [31]. The reaction oc-
curred when an aliquot of S1 was mixed with buffer, GSH, and 1-chloro-2,4-dinitrobenzene
(CDNB), which was used as substrate. The activity was spectrophotometrically measured.
The results were expressed as nmol CDNB/mg of protein/min.

2.4.10. Western Blot

Western blot analysis was performed according to a previous study by our research
group [15]. Primary antibodies were from Santa Cruz Biotechnology (Dallas, TX, USA)
anti-phospho-PKCα (1:5000, SC-12356) and anti-total PKCα (1:5000, SC-208). Following
overnight incubation, membranes were incubated with the secondary antibodies from
Sigma Aldrich (San Luis, MO, USA) (1:10,000, Sigma-A0545). The immunoreactivity was
detected with ECL (Thermo Scientific, Waltham, MA, USA) and quantified using the
ImageJ software. The phosphorylation ratio was calculated as the relative amount of
phosphorylated and non-phosphorylated forms of PKC and normalized by Ponceau.

2.5. Statistical Analysis

All data were reported as mean ± S.E.M and normality was assessed using the
D’Agostino and Pearson omnibus test. Results were analyzed using GraphPad Prism
version 8.0 software and the statistical analysis was carried out by the unpaired Student’s
t test. A probability of p < 0.05 was considered significant. The same software was used for
plotting graphs.
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3. Results and Discussion

The AFB1, during its hepatic metabolism, increases the production of reactive species,
causing damage to the cell membrane (lipid and protein oxidation) and DNA, altering
mitochondrial homeostasis, generating inflammatory responses, and, as consequence, may
trigger cell death [32]. Several studies have already demonstrated the damages caused by
AFB1 exposure, focusing on comprehending the mechanisms underlying its toxic effects [33].
Importantly, no study assessed a less harmful condition for exposure to this toxicant, which
is a suitable approach considering the limitations regarding AFB1 decontamination [34]. In
this context, it is important to highlight that among the various research goals in the field of
mycotoxins proposed by the American Phytopathological Society, the one that guides this
study is the development of new interventions and prevention strategies against adverse
health effects caused by mycotoxins. Thus, we sought to investigate whether the rats
submitted to a protocol of intermittent exposure to AFB1 would present general toxicity
signals, which were assessed by behavioral, biochemical, and molecular approaches.

The toxicokinetic profile of AFB1 estimates a plasma half-life of 36.5 min, renal clear-
ance of 1.25 L/kg/h with approximately 80% of the administered dose excreted within
one week [35]. Then, for proper data interpretation, it is important to mention that the
selected dose of AFB1 used in the animals (250 µg/kg) represents an estimated human
dose of 40 µg/kg, which was estimated based on the formula proposed by Reagan-Shaw
and collaborators [36]. Disregarding other factors, such as species sensitivity and phar-
macokinetics, which could considerably reduce the toxic threshold for humans, the dose
of 40 µg/kg means 3.15 mg of AFB1 to a human with an average body weight of 70 kg.
In this context, the acceptable daily intake of total aflatoxins recommended by the World
Health Organization is 20 µg/kg [37]. In this way, such a dose would represent occasional
intoxication by high amounts of aflatoxins, since higher doses of AFB1 were found in food
products (122.35 µg/kg and 2.79 µg/kg in peanuts and cashew nuts, 6.7 mg/kg in peanut
products to 36.9 mg/kg in Brazil nuts) [7,38]. Herein, we demonstrated that a protocol of
intermittent exposure to AFB1 caused no changes in body weight gain (Figure S1), organs
weight and relative organ weight compared to the brain weight (Tables S1 and S2), as
well as any alteration in the tissue biochemical markers of oxidative stress (cerebral cortex,
hippocampus, liver, and kidneys) (Figure 2 and Table 1). The levels of TBARS, NPSH,
andAA, FRAP determination, as well as CAT and GST activity did not present statistically
significant differences between the control and AFB1 groups (p > 0.05). Importantly, other
studies showed differences in body weight gain 72 h after a single exposition to AFB1
(1000 µg/kg, i.g.) [14]. The same AFB1 dosage was tested in a repeated administration
schedule (seven or fourteen days) to rats in our previous studies and critical hazardous
effects to the central nervous system, and hepatic and renal tissues were observed concern-
ing behavioral profile and oxidative tonus [15,18,20,39]. Moreover, changes in oxidative
stress were described in several studies that applied higher or lower doses in comparison
to the current study [40–42]. Thus, our data showed that the schedule of intermittent
administration may be an alternative for providing an adequate period for homeostasis
reestablishment.

Table 1. Effect of intermittent administration of AFB1 (250 µg/kg b.w., i.g.) or 2% DMSO (10 mL/kg
b.w., i.g.) on GST and CAT activity in liver and kidneys.

DMSO AFB1 p Value

GST (nmol CDNB/mg protein/min)
Liver 61.13 ± 9.43 50.10 ± 8.30 0.39

Kidneys 15.07 ± 2.17 10.13 ± 1.37 0.07
CAT (K/mg protein)

Liver 1.47 ± 0.15 1.95 ± 0.24 0.12
Kidneys 0.71 ± 0.08 0.59 ± 0.08 0.34

Data are expressed as mean ± S.E.M. for n = eight animals in each group. Statistical evaluation was performed by
unpaired Student’s t test (p > 0.05).
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b.w., i.g.) on TBARS levels (A), NPSH levels (B), ascorbic acid levels (C), and FRAP determination
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AFB1 is known to affect the liver function, causing hepatotoxicity that can progress to
liver cancer. As its toxic metabolite is excreted primarily through the urine, changes in renal
function are also observed [43]. In this sense, some biochemical parameters were assessed in
plasma samples, such as ALT and AST activity, and creatine and albumin content. Moreover,
the oxidative status of plasma was investigated as well (FRAP assay and TBARS levels). The
results demonstrated that the intermittent exposure to AFB1 did not cause any modification
in those parameters in comparison to the control group (p > 0.05; Table 2). Importantly,
these data agree with the other results concerning hepatic and renal tissue, which showed
no modification of oxidative tonus. In this context, the repeated administration of AFB1
(250 µg/kg/once a day/14 days) increased the hepatic activity of alkaline phosphatase
and gamma-glutamyl transferase, while reducing nonenzymatic antioxidant defenses [18],
suggesting that the treatment schedule may present low acute toxicity.
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Table 2. Effect of intermittent administration of AFB1 (250 µg/kg b.w., i.g.) or 2% DMSO (10 mL/kg
b.w., i.g.) in plasma biochemical parameters.

DMSO AFB1 p Value

ALT (U/L) 48.88 ± 3.44 56.25 ± 4.92 0.23
AST (U/L) 249.30 ± 14.69 284.80 ± 18.78 0.15

CREA (mg/dL) 0.52 ± 0.01 0.52 ± 0.02 0.80
ALB (g/L) 2.95 ± 0.11 2.98 ± 0.04 0.76

TBARS (nmol MDA/mg protein) 3.91 ± 0.21 4.06 ± 0.70 0.83
FRAP (nmol Fe2+/mg protein) 11.95 ± 0.36 14.77 ± 1.61 0.11

Data are expressed as mean ± S.E.M. for n = eight animals in each group. Statistical evaluation was performed by
unpaired Student’s t test (p > 0.05).

Behavioral and biochemical changes in the central nervous system are investigated
in models of AFB1 exposure given its lipophilic character and its toxic metabolite, which
easily cross the blood–brain barrier and are neurotoxic [44–46]. The effects of AFB1 on the
central nervous system are not fully understood, however, it is known that it alters the
number and distribution of astrocytes and neurons [47], changes the expression of toll-like
receptors, triggering inflammatory responses [48–50]. In addition, AFB1 exposure decreases
brain serotonin, norepinephrine, and dopamine concentration [51], suggesting that this
toxicant could impair cerebral functions, such as normal and abnormal behavior, affective
disorders, sleep regulation, and cognition, such as learning and memory [33]. Following
the intermittent exposure protocol, the animals performed a batch of behavioral tasks to
assess anxiety, depressive-like behavior, and memory skills. The results revealed that both
experimental groups presented similar behavioral patterns (p > 0.05; Table 3), which are
reinforced by the cerebral oxidative markers data. As shown in more detail in Table 3, at
the end of the protocol chosen, the animals did not present locomotor and exploratory
impairment (open field test), short- and long-term memory injury (object recognition test),
and induction of anxiety-like behavior (nest construction, marble burying, and splash
test). Indeed, while a single AFB1 administration (250 µg/kg, i.g.) caused no behavioral
changes in rats [18], a repeated treatment schedule (250 µg/kg/once day/7 days) induced
locomotor and exploratory impairments and anxiety-like behavior [19]. Overall, our current
findings indicate that the interval between AFB1 administrations may play a critical role to
reestablish organism homeostasis.

Table 3. Effect of intermittent administration of AFB1 (250 µg/kg b.w., i.g.) or 2% DMSO (10 mL/kg
b.w., i.g.) on the behavioral tests.

DMSO AFB1 p Value

Marble Burying
Buried marbles (number) 3.75 ± 0.70 4.00 ± 0.82 0.82

Nest Test
Nest score 4.25 ± 0.36 3.25 ± 0.45 0.10
Splash Test

Latency to grooming (s) 53.38 ± 6.56 53.00 ± 9.30 0.97
Grooming (s) 115.10 ± 24.11 137.90 ± 18.87 0.46

Object Recognition
Short-term memory 0.56 ± 0.08 0.59 ± 0.06 0.80
Long-term memory 0.53 ± 0.04 0.48 ± 0.05 0.48

Open Field



Brain Sci. 2023, 13, 386 9 of 13

Table 3. Cont.

DMSO AFB1 p Value

Latency to explore (s) 2.50 ± 0.56 2.25 ± 0.59 0.76
Time spent in center (%) 1.84 ± 0.49 3.03 ± 0.96 0.28

Time spent in periphery (%) 98.16 ± 0.49 96.97 ± 0.96 0.28
Crossings (number) 51.50 ± 4.96 64.50 ± 8.03 0.19
Rearings (number) 24.38 ± 2.79 29.00 ± 5.47 0.46

Data are expressed as mean ± S.E.M. for n = eight animals in each group. Statistical evaluation was performed by
unpaired Student’s t test (p > 0.05).

The Na+, K+-ATPase is a neuronal membrane enzyme that controls the electrochemical
gradient, modulates action potential, and the release of neurotransmitters, and is partic-
ularly sensitive to oxidative stress [52]. The activity of this enzyme in the cortex was
evaluated and no significant differences were observed between treatments (Table S3). Fur-
thermore, it is known that AFB1 increases the activation of PKC [18], which is responsible
for the processes of cell multiplication and differentiation, morphogenesis, and apopto-
sis [53]. To investigate the effects of intermittent AFB1 on this protein, the immunoreactivity
of PKC was estimated by the ratio between the phosphorylated fraction and the total
fraction by Western blot. There were no significant differences between the treated and
control groups in the cerebral cortex and hippocampus (Figure 3), evidencing that the
protocol interval of 96 h is less harmful, with the AFB1 chosen dose on the CNS.
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Figure 3. Effect of intermittent administration of AFB1 (250 µg/kg b.w., i.g.) or 2% DMSO
(10 mL/kg b.w., i.g.) on the phosphorylation ratio of PKC in the cortex and hippocampus. Data are
mean ± S.E.M. for n = four animals in each group. Statistical evaluation was performed by unpaired
Student’s t test (p > 0.05).

Lastly, we must recognize some limitations of this study for proper data comprehen-
sion, which are the following: (a) It was applied for investigation of an accessible AFB1 dose
administrated by intragastric route. Such a route may influence the extent of absorption and
metabolism and cause a reduction in the AFB1 and its metabolite concentration in tissues.
Consequently, it is possible to suggest that the degree and rate of exposure, as well as tissue
damage may be also modified; (b) The toxicity of aflatoxins varies according to animal
species, age, and sex [54]. Apart from their toxicity to humans, there are species more
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susceptible to the mycotoxin actions, such as the avian ones [55]. Then, some differences
regarding experimental results could be attributed to such parameters; and (c), the absence
of a dose-response curve and longer schedule of treatments could limit the mechanistic
conclusions regarding the toxic effects of AFB1.

4. Conclusions

Following an intermittent exposure protocol to AFB1, no damage or alteration was
observed in the behavior and biochemical markers investigated in rats. These data sug-
gested that in this protocol of exposition to AFB1, it is possible that the animals were able to
neutralize the potentially toxic effects resulting from the mycotoxin. Still, regardless of that,
AFB1 is a highly toxic compound and exposure should be avoided. However, additional
studies are required to reinforce our findings and better comprehend the possible outcomes
of intermittent exposure to AFB1.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/brainsci13030386/s1, Figure S1: Effect of intermittent administration
of AFB1 (250 µg/kg b.w., i.g.) or DMSO 2% (10 mL/kg b.w., i.g.) on body weight gain. Data are
reported mean ± S.E.M. for n = 8 animals in each group. Statistical evaluation was performed by
unpaired Student’s t test (p > 0.05); Table S1: Effect of intermittent administration of AFB1 (250 µg/kg
b.w., i.g.) or DMSO 2% (10 mL/kg b.w., i.g.) on the organ weight of animals; Table S2: Effect of
intermittent administration of AFB1 (250 µg/kg b.w., i.g.) or DMSO 2% (10 mL/kg b.w., i.g.) on
relative organ weight compared to the brain weight; Table S3: Effect of intermittent administration
of AFB1 (250 µg/kg b.w., i.g.) or DMSO 2% (10 mL/kg b.w., i.g.) on Na+, K+-ATPase activity in
cerebral cortex.
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