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Abstract: Depression has become one of the most common mental illnesses, causing serious physical 

and mental harm. However, there remain unclear and uniform physiological indicators to support 

the diagnosis of clinical depression. This study aimed to use machine learning techniques to inves-

tigate the abnormal multidimensional EEG features in patients with depression. Resting-state EEG 

signals were recorded from 41 patients with depression and 34 healthy controls. Multiple dimen-

sional characteristics were extracted, including power spectral density (PSD), fuzzy entropy (FE), 

and phase lag index (PLI). These three different dimensional characteristics with statistical differ-

ences between two groups were ranked by three machine learning algorithms. Then, the ranked 

characteristics were placed into the classifiers according to the importance of features to obtain the 

optimal feature subset with the highest classification accuracy. The results showed that the optimal 

feature subset contained 86 features with the highest classification accuracy of 98.54% ± 0.21%. Ac-

cording to the statistics of the optimal feature subset, PLI had the largest number of features among 

the three categories, and the number of beta features was bigger than other rhythms. Moreover, 

compared to the healthy controls, the PLI values in the depression group increased in theta and beta 

rhythms, but decreased in alpha1 and alpha2 rhythms. The PSD of theta and beta rhythms were 

significantly greater in depression group than that in healthy controls, and the FE of beta rhythm 

showed the same trend. These findings indicate that the distribution of abnormal multidimensional 

features is potentially useful for the diagnosis of depression and understanding of neural mecha-

nisms. 

Keywords: depression; electroencephalogram (EEG); machine learning; feature selection;  

functional connectivity; power spectral density; fuzzy entropy 

 

1. Introduction 

Depression is a neurological syndrome with three main symptoms, which refer to 

slow thinking, low mood, and cognitive impairment [1–3]. So far, depression has been 

one of the most common mental illnesses and has evolved into a global problem [4]. Most 

humans can be victims of depression, ranging from children to the elderly [5]. According 
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to the statistics from the World Health Organization, there have been more than 350 mil-

lion cases of depression in the world [6]. Moreover, approximately 54% of people who 

commit suicide each year were suffering from depression [7]. The detrimental effects of 

depression on families and society are enormous. However, due to the lack of uniform 

and accurate neural markers, it is difficult to objectively diagnose depression. Therefore, 

an accurate understanding of the neural mechanisms of depression is crucial and signifi-

cant for the diagnosis of depression. 

With the development of noninvasive neuroimaging techniques, electroencephalo-

gram (EEG), functional magnetic resonance imaging (fMRI), and magnetoencephalog-

raphy (MEG) have been used to capture information about brain activity [8–10]. Cur-

rently, these brain imaging techniques have been used to assist the diagnosis of various 

brain mental disorders [11–13]. Among them, EEG is widely applied to assess the abnor-

mal brain wave changes caused by depression with surprising success due to its simplic-

ity, affordability, and high temporal resolution [14,15]. A previous study pointed out that 

EEG is a nonlinear and non-smooth signal generated by complex brain systems and has 

multidimensional physiological information [16]. The traditional research method of EEG 

focused on analysis of linear features such as time–frequency domain [17]. The linear fea-

tures of the temporal and frequency distributions can explicitly characterize the periodic 

activity of the brain [18,19]. Grin-Yatsenko et al. found that alpha and beta rhythms were 

significantly increased in patients with depression during the closed and open-eye rest 

states, indicating the reduced activation of the cerebral cortex in patients with depression 

[20]. Considering the properties of EEG signals, nonlinear features were also used in the 

study of EEG by virtue of their conformity to the qualities of EEG signals in patients with 

depression [21,22]. Chen et al. reported that the nonlinear features were more significantly 

different between the depression and control groups as well as sensitive to the analysis of 

frontal EEG signal complexity in depression [23]. Furthermore, many of the symptoms 

and deficits of depression are thought to be caused by dysfunction of brain networks con-

necting the limbic system and cortical areas [24,25]. Characteristics of functional connec-

tivity that characterize the transfer of information between different brain regions are 

widely applied [26–28]. As an example, Park et al. showed that information transfer be-

tween different areas of the brain was severely disrupted in patients with depression us-

ing the synchronization likelihood measures [29]. With diverse characteristics that have 

been used to decode EEG signals, this has promoted a better understanding of abnormal 

neurological changes in patients with depression. 

In recent decade, combined with machine learning algorithms, many EEG character-

istics have performed an important position in the auxiliary diagnosis of depression [10]. 

Li et al. used an ensemble learning to process the linear feature power spectral density, 

generated new features, and obtained satisfactory accuracy for classification using sup-

port vector machine (SVM) [30]. In addition, previous EEG studies have shown that the 

pathogenesis of depression is related to abnormal functional connectivity between differ-

ent regions of the brain [15,24]. In a recent study, Mumtaz et al. performed classification 

of depressed and healthy individuals, and found that the accuracy was as high as 98% 

when using SVM to classify functional connectivity features [31]. In addition, previous 

studies have used feature selection algorithms to remove redundant features to improve 

the recognition accuracy and reduce model complexity [32,33]. Linear and nonlinear fea-

tures of the three channels (Fp1, Fp2, and Fz) were extracted, and the minimum redun-

dancy maximum correlation feature selection method was used to identify depression 

with an accuracy of 79.19% [34]. Ghiasi et al. extracted the spectral and functional connec-

tivity features of patients with depression and healthy controls and fed them into an SVM 

classifier embedded in the recursive feature elimination (RFE) algorithm, obtaining 

83.91% classification accuracy [35]. Up to now, many studies have been presented using 

machine learning and EEG characteristics to identify depression. 

In this study, we constructed a framework based on machine learning to analyze 

multidimensional EEG features to gain insight into the abnormal neural mechanisms 
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prominent in patients with depression. Machine learning algorithms were used to pick 

out the multidimensional characteristics that were important for classification of depres-

sion. We recorded the EEG signals from the depression group and healthy controls with 

eyes closed in the resting state. Then, three different categories of characteristics (PSD, FE, 

and PLI) were used to extract EEG characteristics. PSD presents the power distribution 

per frequency and can reveal the variation pattern of complex hidden periodic signals in 

the frequency domain [36]. FE has a strong application to short-time sequences contami-

nated by noise, which is based on fuzzy theory to assess the complexity of the system [37]. 

PLI is used to estimate the asymmetry of the phase difference distribution of any two 

channel EEG signals [38]. These three methods decoded the information in EEG signals in 

three different dimensions (linear feature, nonlinear features, and functional connectivity 

feature), and they described the neurophysiological significance of EEG signals from three 

different perspectives. Then, the features with statistical differences between the patients 

with depression and healthy controls were picked out and then sequenced. According to 

the sorting order, the statistically different features were put into the machine learning 

classifiers to obtain the optimal subset of features with the highest classification accuracy. 

This study aims to reveal important neurobiological features of depression through the 

proposed analytical framework and achieve better classification performance for the di-

agnosis of depression. 

2. Materials and Methods 

2.1. Participants 

Forty-one patients (10 males and 31 females) with depression were recruited by the 

local hospital to engage in this study. All of them were evaluated by professional psychi-

atrist interviews. The age of the patients with depression ranged from 19 to 61 years, and 

the mean age was 45.22 ± 11.80. All subjects complained of illness for more than 1 month. 

Thirty-four healthy controls (11 males and 23 females) were recruited from the local com-

munity. The age range of the healthy controls was between 21 and 57 years, and the mean 

age was 40.18 ± 11.67. There was no statistical difference in age between the depression 

group and the healthy controls. 

All participants filled out a questionnaire of the Hamilton Depression Inventory 17-

item scale (HAMD-17). The following requirements were met: HAMD-17 ≥17 for depres-

sion; HAMD-17 ≤7 for healthy controls [39]. The clinical characteristics of the patients with 

depression and healthy controls are given in Table 1. In addition, participants were right-

handed and had normal or corrected-to-normal vision. Each participant was prohibited 

from drinking alcohol and taking psychotropic drugs for 8 h before EEG recording. The 

whole EEG acquisition process was in a quiet environment without any other electromag-

netic interference. The experiment was permitted by the Ethics Committee of Huzhou 

Third Municipal Hospital. Written informed consent was obtained from all participants 

before the test. 

Table 1. Clinical characteristics of the patients with depression and healthy controls. 

Characteristics Depression Healthy Control p-Value 

Number 41 34 - 

Gender: male/female 10/31 11/23 - 

Age (years) 45.22 ± 11.80 40.18 ± 11.67 0.07 

HAMD-17 24.39 ± 7.01 3.85 ± 1.35 3.86 × 10−28 
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2.2. EEG Data Acquisition and Preprocessing 

A 16-channel EEG acquisition device (Nicolet EEG TS215605) was used to record EEG 

signals according to international standard 10–20 system. The channels were Fp1, Fp2, F7, 

F3, F4, F8, T7, C3, C4, T8, P7, P3, P4, P8, O1, and O2. Prior to the start of the experiment, 

the participants closed their eyes for 5 min to reduce other biological artefacts. The elec-

trode cap was fixed on the head, and the electrodes were fixed with conductive paste. 

Once the EEG signals turned smooth, the recording started and lasted for 10 min. The 

sampling rate was 250 Hz, and all electrode impedances were controlled below 5 kΩ. 

A set of widely recognized preprocessing procedures was used to perform the nec-

essary preprocessing of the raw EEG signals. The raw EEG signals were downsampled to 

125 Hz and filtered between 4 Hz and 30 Hz using a digital pass filter of fourth-order 

Butterworth band. Visual screening and DC correction (embedding in EEGLab 10.2.5.8b) 

were used to exclude blinks and other kind of artefacts. Physiological artefacts were the 

most serious noise in EEG; in order to obtain more pure and effective EEG data, the widely 

used artefact elimination tool, independent component analysis (ICA), was used to re-

move artefacts such as eye movements [40]. All components of ICAs were inspected vis-

ually and manually selected for rejection according to the ADJUST plugin in EEGLab. 

Next, 4 s of continuous EEG data with 50% overlap were singled out as an EEG sample, 

resulting in 8731 samples for the depression group and 6924 samples for the healthy con-

trol group. Subsequently, the EEG data involved in task conversion were decomposed 

into four standard bands by a digital pass filter of fourth-order Butterworth band: theta 

(4–8 Hz), alpha1 (8–10 Hz), alpha2 (10–13 Hz), and beta (13–30 Hz). The delta rhythm (0.5–

4 Hz), which is mainly related to sleep [41,42], was filtered during preprocessing, because 

the artefacts in the raw EEG data were superimposed with delta rhythm, and the prepro-

cessing process would have lost some information about delta rhythm. 

2.3. Multidimensional EEG Characteristic Extraction 

When recording the EEG signals of patients with depression in the hospital, we found 

that physicians directly observe whether the amplitude of the EEG signals was abnormal 

to aid in the diagnosis of depression. It was considered that the diagnostic process de-

pended on the subjective judgment of the physician, and that there was a high possibility 

of misdiagnosis. Studies have proven the feasibility of using EEG characteristics to diag-

nose depression with promising results [30,31]. The more frequently used EEG character-

istics can be divided into three categories (linear features, nonlinear features, and func-

tional connectivity). In this study, we extracted three representative characteristics (PSD, 

FE, and PLI) of them and they were calculated separately for each sample. 

2.3.1. PSD Extraction 

PSD is a measure of the mean square value of a random variable, which is the average 

power scale per unit frequency. Its advantage is the transformation of EEG waves with 

amplitude varying with time into a spectrum of EEG power varying with frequency, thus 

allowing visualization of the distribution and transformation of EEG rhythms [36,43]. 

In this study, 16 EEG channels × 4 rhythms of PSD features were calculated for each 

sample using the periodogram method. The pwelch function of MATLAB was used for the 

power spectrum estimation of the periodogram method, which is a modified method for 

estimating the PSD of the periodogram. It segments the signal by adding windows to find 

its PSD, and then implements the averaging. Specifically, for the given EEG signal �(�), 

its frequency spectrum ��(�)  can be estimated by fast Fourier transform. Then, the 

power spectrum ��(�) is obtained from the modulo square of the spectrum, as in Equa-

tion (1). The EEG power of each rhythm can be derived from Equation (2). �(ℎ) is the 

power value of the ℎ rhythm, and �� and �� are the upper and lower frequency limits 

of the ℎ rhythm, respectively. 
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2.3.2. FE Extraction 

Entropy is an important numerical characteristic of fuzzy variables, which is used to 

measure the uncertainty of fuzzy variables. Fuzzy variables are variables that take values 

in uncertain fuzzy sets, and fuzzy entropy describes the degree of fuzziness of a fuzzy set. 

Fuzzy entropy uses a fuzzy function to reflect the similarity of samples and works well 

for signals other than nonlinear stationary [44,45]. 

For the given EEG signal of length �, �(1), �(2), …, �(�), the m-dimensional vec-

tor is defined as in Equation (3). �(�) is shown in Equation (4). The distance between two 

m-dimensional vectors ��(�) and ��(�) is defined by Equation (5). The similarity be-

tween vectors ��(�) and ��(�) is ���
�, which is calculated using Equation (6). Defining 

the function as in Equation (7), we can obtain Equation (8). The fuzzy entropy of the EEG 

signal is calculated using Equation (9), where � is the embedding dimension and � is 

the tolerance parameter. 

��(�) =  {�(�), �(� + 1), ⋯ �(� + � − 1)} − �(�) (� = 1, ⋯ , � − � + 1). (3) 
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�������(�, �, �) = ��∅�(�) − ��∅���(�). (9) 

In the present study, a typical value for the embedding dimension � was set as 2, 

and the value � was determined by � ×  �; � is the length of the EEG signal under ob-

servation (N = 4 s × 125 Hz = 500). The value of � was set to 0.2, which usually takes a 

range of 0.10 and 0.25 [46,47]; � is the standard deviation of the EEG signal. 

2.3.3. PLI Extraction 

PLI is an indicator to measure the degree of phase synchronization between two os-

cillating signals [38]. It can be estimated using Equation (10). � is the timepoint. ���� is 

a symbolic function whose output is 1 when the independent variable is positive, −1 when 

the independent variable is negative, and 0 for 0. ����  denotes the phase difference be-

tween the two channel signals at time ��. The value of PLI ranges from 0 to 1, and a higher 

value indicates a stronger degree of phase synchronization. PLI is widely used in EEG 

studies by virtue of its low sensitivity to volume conduction [48,49]. In this study, PLI was 
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used to calculate the phase synchronization index between any two electrodes, which re-

sulted in 120 connectivity values (16 × (16 − 1)/2 functional connections × 4 rhythms) in 

each sample. 

��� = �������∆����(�)��� = �
1

�
� �����∆����(��)�

�

���

�. (10) 

2.4. Features Ranking and Selection 

Considering the relatively large number of features (i.e., PSD, 16 EEG channels × 4 

rhythms; FE, 16 EEG channels × 4 rhythms; PLI, 16 × (16 − 1)/2 functional connections × 4 

rhythms; 608 features in total) that may contain irrelevant and redundant features, a fea-

ture selection method was needed. In this study, one-way analysis of variance (ANOVA) 

was carried out to determine statistically significant differences in FE, PSD, and PLI char-

acteristics between the depression group and healthy controls (p < 0.05). To remove fea-

tures that may be considered redundant and minimize classification bias due to overfit-

ting, the feature selection algorithms random forest (RF), mutual information (MI), and 

support vector machine recursive feature elimination (SVM-RFE) were used to isolate 

workload-related features and integrate them into a subset of optimal features, respec-

tively. RF is a machine learning ensemble algorithm, which uses random resampling tech-

nology and random node splitting technology to construct multiple decision trees and 

obtains the final classification result through voting. Specifically, the RF algorithm deter-

mined the importance of each feature by calculating the amount of contribution of that 

feature in each decision tree. The contribution was calculated by resolving the Gini index 

before and after branching for the feature on a node. Then, the same process was used to 

obtain the contribution of other features. Finally, the average value of the change in the 

Gini index for one feature of all decision trees was calculated, and the importance of the 

features was ranked according to the magnitude of the value [50]. In this study, 500 deci-

sion trees were used in the RF algorithm. SVM-RFE is a sequential backward selection 

algorithm based on the maximum interval principle of SVM [51]. All features should be 

put into the SVM-RFE model for training to obtain weights, and the feature with the low-

est weights is removed. Then, the model is trained again using the remaining features, 

and this step is iterated until there are no features. The kernel function used in SVM was 

the radial basis function (RBF) kernel. Mutual information (MI) is a measure of statistical 

independence that has two properties [52]. Firstly, it can measure any kind of relationship 

between random variables, including nonlinear relationships. Secondly, MI is invariant 

under the transformations of the feature space, such as translation, rotation, and any trans-

formation that preserves the order of the original elements of the feature vector. 

The result of each feature ranking was independent, and the position of the ranking 

determined its importance. In order to get stable and reliable ranking result, 100 iterations 

of the RF feature ranking process were performed. The result was a matrix of 100 × n 

feature ranking sets (n denotes the statistically significant features in each rhythm). The 

most common feature in the first column from 100 × n was selected as the first feature, the 

two most common features in the first and second columns were selected as the first and 

second features, etc., following this rule to generate the final feature ranking result. 

Upon completion of the above work, the optimal subset of features to distinguish 

patients with depression from healthy individuals was investigated by performing the 

classification task with a single feature as the additional amount at each time according to 

the position of the feature ranking. This step was repeated until all features were added 

to the classifiers. SVM and RF were used to distinguish depression group and healthy 

control group; the SVM used a radial basis function (RBF) kernel function, and the RF 

used 500 decision trees. The holdout method was used to divide the dataset applied in the 

classification, with 80% of the samples from each of the depression and healthy controls 

selected as the training set and the remainder as the test set. A schematic flowchart of the 
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data analysis method of this study is shown in Figure 1. All analyses, including EEG pre-

processing, feature calculations, statistics, and classifications, were implemented using 

MATLAB 2019b (Mathworks Inc., Natick, MA, USA). 

 

Figure 1. Schematic flowchart of data analysis. 

3. Results 

The different feature selection models with highest accuracy are shown in Table 2. It 

was found that, when using SVM as the classifier and RF as the feature selection model, 

the highest accuracy of the optimal feature subset was up to 98.54% ± 0.21%, which is 

higher than the 95.52% when using RF as the classifier. The optimal subset of features 

selected from the 134 statistically features contained 86 features. Table 3 demonstrates the 

distribution of the features contained in the optimal feature subset. It can be seen that 

there were 59 PLI features (8/59 for theta, 14/59 for alpha1, 9/59 for alpha2, and 28/59 for 

beta). The overall number of features of the PSD was 15 (1/15 for theta and 14/15 for beta). 

The number of FE features presented in the optimal feature subset was 12, all of which 

were concentrated in the beta rhythm. 

Table 2. Classification accuracy under different feature selection models. 

Feature Selection Models Classification Models Accuracy 

MI 
SVM 98.36% ± 0.24% 

RF 95.40% ± 0.44% 

RF 
SVM 98.54% ± 0.21% 

RF 95.52% ± 0.56% 

SVM-RFE 
SVM 98.29% ± 0.34% 

RF 95.32% ± 0.30% 
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Table 3. Number of features for each rhythm in the multidimensional features within the optimal 

feature subset 

Rhythms PLI PSD FE 

Theta 8 1 0 

Alpha1 14 0 0 

Alpha2 9 0 0 

Beta 28 14 12 

Figure 2 shows the topography of the brain network and the distribution of brain 

regions of PLI in the optimal feature subset. To compare the connected values between 

the depression group and the healthy controls, we averaged the PLI matrices for all sam-

ples of the two groups of participants separately. Figure 2A shows the results of the to-

pography functional connectivity analysis. Specifically, 88% of functional connections in 

the theta rhythm were greater in the depression group than in the healthy controls. Addi-

tionally, 64% of functional connections in the beta rhythm were greater in the depression 

group. Moreover, 79% of functional connections in the alpha1 rhythm and 78% of func-

tional connections in the alpha2 rhythm had lower values in the depression group than in 

the healthy controls. Figure 2B shows the topological distribution of PLI functional con-

nections in each brain region. The functional connections of theta, alpha1, alpha2, and beta 

rhythms were mainly distributed within the frontal region (Fp1, Fp2, F3, F4, F7, and F8) 

and other brain regions. Overall, the proportion of functional connectivity associated with 

frontal regions was 76% (7/8 for theta, 10/14 for alpha1, 6/9 for alpha2, and 22/28 for beta). 

 

Figure 2. (A) Brain network topology of PLI functional connections of theta, alpha1, alpha2, and 

beta rhythms in optimal feature subset. The blue edges represent that the PLI values of the depres-

sion group are smaller than that of the control group, while the red edges represent that the depres-

sion group is greater than the control group. (B) Values after normalization of the number of func-

tional connections in different brain regions for each rhythm. 

Figure 3A,B demonstrate the results of beta rhythm in PSD and FE characteristics 

within the optimal feature subset between the depression group and healthy controls. 

Compared to the healthy controls, FE and PSD had higher values in the depression group. 

Moreover, the PSD characteristics of beta rhythm in the depression group had signifi-
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cantly greater values in the central, parietal, and occipital regions than in other brain re-

gions. The FE characteristics of the beta rhythm in the depression group showed much 

larger values in the frontal, central, and parietal regions. 

 

Figure 3. Results of PSD and FE features in beta rhythm between depression group and healthy 

controls. (A) PSD results. (B) FE results. The results are given as the mean + standard deviation; * p 

< 0.05, ** p < 0.01. 
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4. Discussion 

In this study, an analytical framework based on machine learning and multidimen-

sional EEG features was used to highlight abnormal brain activity in patients with depres-

sion. The significant findings are as follows: firstly, the optimal feature subset contained 

86 features selected from 134 statistically significant features, with the highest classifica-

tion accuracy of 98.54% ± 0.21% between the depression group and healthy controls. Sec-

ondly, the number of PLI features in the optimal feature subset was significantly larger 

than that of PSD and FE. Moreover, compared with other rhythms, the characteristics of 

the beta rhythm had the highest proportion. Thirdly, compared to the healthy group, the 

PLI values of the theta and beta rhythms in the optimal feature subset were increased, 

while those of the alpha1 and alpha2 rhythms were decreased in the depression group. 

The PSD results of the theta and beta rhythms were significantly greater in depression 

group than in the healthy controls, and the FE of the beta rhythm showed the same trend. 

4.1. Machine Learning Effectively Extracted EEG Features 

Until now, several studies have shown that EEG characteristics are widely used to 

diagnose depression [53,54]. Different kinds of features can decode EEG signals from var-

ious perspectives, but not all features are correlated with the diagnosis. In this study, ma-

chine learning methods were used to extract effective features and remove redundant fea-

tures, resulting in an optimal feature subset that contained 86 features and obtained the 

highest classification accuracy of 98.54% ± 0.21%. In a previous study, Li et al. used the 

integration model and obtained 89.02% accuracy in a study of depression recognition, and 

they found significant differences between depressed and normal individuals in the tem-

poral lobe [30]. Hosseinifard et al. obtained 90% accuracy of depressed and normal indi-

viduals by using four nonlinear features and a logistic regression classifier in their study 

of classification [54]. In addition, Zhang et al. used network features such as shortest path 

length and clustering coefficient to recognize depression with an accuracy of 93.3%. They 

noted that patients with depression showed a stochastic trend in the functional brain net-

work and a weakening of small-world characteristics [55]. All of these aforementioned 

studies demonstrated that machine learning methods can effectively recognize depression 

with EEG data. The high recognition accuracy obtained in this study demonstrated that 

multidimensional EEG characteristics and machine learning methods of feature selection 

algorithms improved the recognition rate of depression, thereby providing new insight 

into the abnormal brain neurological conditions of patients with depression. The highest 

proportion of PLI in the optimal feature subset indicated that functional connectivity 

could successfully characterize abnormal brain activity in patients with depression. Pre-

vious research has shown that patients with depression suffer from a weakened regional 

function and abnormal communication in different brain regions [56,57]. In addition, the 

present study corroborated the importance of PLI in identifying depression compared to 

PSD and FE. Similarly, Sun et al. found that PLI features were superior to linear features 

and nonlinear features when using different types of features to identify depression [49]. 

Leuchter et al. demonstrated significant differences in functional brain connectivity pat-

terns between subjects suffering from depression and healthy controls [58]. Varone et al. 

found that functional connectivity analysis may be more effective than PSD in identifying 

psychogenic nonepileptic seizures within scalp EEG time series in the PNES study [59]. In 

summary, our work further supports the importance of functional connectivity in the 

parsing of EEG in depression from the perspective of multidimensional features. 

In the present study, it was found that the FE and PSD features of the beta rhythm 

had the highest proportion in the subset of optimal features. Compared to other rhythms, 

the abnormal performance of the beta rhythm reflects the participant’s inattention and 

emotional abnormalities [60,61]. Previous studies also reported significant differences in 

FE and PSD of beta rhythm between the depression and control groups, which are con-

sistent with our findings [53,62]. In this study, the machine learning methods effectively 
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extracted EEG features and demonstrated which types of features played a more im-

portant role in the division of depression and healthy controls. 

4.2. Alterations Occurring in Frontal Functional Connections 

The PLI feature used in this study is a quantity for assessing the degree of phase 

synchronization between any two EEG channels [38,48]. In this study, the theta, alpha1, 

alpha2, and beta rhythms showed similar performance in that the PLI connections in the 

optimal feature subset were mainly distributed within frontal regions and other brain re-

gions. The PLI values of the theta and beta rhythms increased in the depression group, 

while those of the alpha1 and alpha2 rhythms decreased. We can conclude that functional 

connectivity was disturbed in patients with depression. 

The significantly altered functional brain connectivity in patients with depression is 

mainly associated with frontal areas. It is well known that the frontal lobe is mainly related 

to motor function, cognitive function, and mental activity [63–65]. A previous study found 

that frontal lobe dysfunction is a core symptom of depression [66]. Moreover, structural 

imaging studies demonstrated that patients with depression have a reduced volume of 

the prefrontal cortex, which demonstrates that depression causes substantial changes in 

the brain [67]. Olbrich et al. also showed that patients with depression are characterized 

by altered functional brain connectivity in frontal regions [57]. These studies could justify 

the findings of this research. In addition, some studies suggested that frontal asymmetry 

may be a neural marker of depression risk [63,64,68]. In this study, PLI functional connec-

tivity features undergo multiple rounds of screening by machine learning algorithms, and 

the reduction in the number of PLI prompted a nonsignificant functional connectivity 

asymmetry in the prefrontal region. The findings indicated that significantly dysregulated 

functional connections in patients with depression are mainly distributed between the 

frontal area and other brain areas. 

Compared to healthy controls, the phase synchronization of EEG signals is signifi-

cantly altered in patients with depression, with the depression group showing increased 

PLI values for theta and beta rhythms and decreased values for alpha1 and alpha2. In a 

study of depression with different severities, Mohammadi et al. indicated that PLI values 

of the alpha rhythm in the depression group were significantly smaller than in the control 

group, which is consistent with our findings [69]. Kalev et al. found that the PLI of the 

beta rhythm was significantly higher in the depression group [70], which provides sup-

port for our findings to some extent. Liu et al. recorded the EEG signals during music 

perception in patients with depression and controls and indicated that patients with de-

pression showed higher connectivity in the PLI of the beta rhythm [48]. These studies 

mentioned above could demonstrate the advantage of the beta rhythm in identifying de-

pression. In addition, Zhang et al. found significantly higher synchronization of the theta 

rhythm in the frontal, central, and left temporal lobes in depression [55]. However, com-

pared to the increase of PLI in beta and theta rhythms, few studies noted the decrease in 

PLI values in alpha rhythms among patients with depression, which could be a new find-

ing. With the in-depth study of brain functional connectivity in depression, increasing 

evidence demonstrates that functional connectivity in the frontal lobes is significantly al-

tered in patients with depression. 

4.3. Significantly Altered Beta Rhythm 

This study showed that the beta rhythm features of PLI, FE, and PSD had the highest 

number in the optimal feature subset (47% for PLI, 93% for PSD, and 100% for FE). The 

beta rhythm is generally associated with the alertness and arousal states of the brain, as 

recognized by many researchers [60,71]. To date, studies have shown that the functional 

connectivity of the beta rhythm in patients with depression is significantly different from 

that in healthy people [53,58]. Furthermore, abnormal manifestations of the beta rhythm 

have also attracted attention in other studies of psychiatric disorders based on EEG 
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[72,73]. The high proportion of beta rhythms in multidimensional features provides fun-

damental theoretical support for the selection of neural markers for the future diagnosis 

of depression. 

Compared to healthy controls, patients with depression showed a significant in-

crease in the PSD and FE characteristics of the beta rhythm. Some studies have demon-

strated that patients with depression exhibit a significant increase in beta rhythm spec-

trum power [20,53]. Moreover, Yang et al. found that the sample entropy of patients with 

depression was greater than that of healthy controls [74]. In the present study, we found 

that the characteristics of beta rhythm play a vital part in identifying depression. The in-

crease in PSD and FE of the beta rhythm indicates that the brain activity of depressed 

patients is in a state of tension and neurological disorder. As an explanation for the ap-

pearance of abnormal brain activity in patients with depression, a study suggested the 

phenomenon of an increase in negative brain activity in specific EEG rhythms [75]. An-

other study indicated that it is an overreaction of the brain in maintaining a homeostatic 

state [76]. In addition, Grin-Yatsenko et al. reported a significant increase in the spectral 

power of the beta rhythm in patients with depression, which could potentially be associ-

ated with anxiety, and anxiety symptoms are likely to play an important role in the devel-

opment of depression [20]. In conclusion, the significant changes in the beta rhythm of FE, 

PSD, and PLI features reveal the neural mechanisms of depression. This may be used as a 

neural marker in the future diagnosis of depression. 

4.4. Limitations 

Some limitations should be considered when interpreting the results of this study. 

Firstly, the sample size and the EEG channel number were relatively small, and a larger 

sample size and high-density EEG data are needed to draw definitive conclusions. Sec-

ondly, there were gender and age imbalances in the subjects due to the failure to recruit 

enough subjects. Thirdly, the female menstrual cycle was not considered as an influencing 

factor when collecting the subjects. Lastly, we used the fixed EEG bands, as each particular 

individual has their own frequency band definition. We will explore the impacts of using 

individualized EEG bands on machine learning. In future studies, we will improve data 

collection conditions and concentrate more on controlling the influencing factors such as 

the age, gender, and menstrual cycle of the subjects. 

5. Conclusions 

In the present study, we constructed a multidimensional feature extraction and se-

lection framework to investigate significant neural mechanisms in patients with depres-

sion. Machine learning methods were used to identify significantly important multidi-

mensional EEG features in depression and controls. The results showed that the optimal 

feature subset contained 86 statistically different features with a classification accuracy of 

98.54% ± 0.21%. In the optimal feature subset, the PSD values of the theta and beta rhythms 

were significantly larger in patients with depression, and the FE of the beta rhythm 

showed the same trend. Moreover, functional connections were mainly distributed within 

the frontal lobe and other brain regions. The depression group had increased PLI values 

for theta and beta rhythms and decreased values for alpha1 and alpha2. This study re-

vealed the neural mechanisms of depression from the perspective of multidimensional 

features using machine learning and provided a possible beta rhythm biomarker for the 

diagnostic study of depression. 
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