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Abstract: Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in
adults. Despite multimodal therapy, median survival is poor at 12–15 months. At the molecular
level, radio-/chemoresistance and resulting tumor progression are attributed to a small fraction of
tumor cells, termed glioblastoma stem-like cells (GSCs). These CD133-expressing, self-renewing cells
display the properties of multi-lineage differentiation, resulting in the heterogenous composition of
GBM. MicroRNAs (miRNAs) as regulators of gene expression at the post-transcriptional level can
alter many pathways pivotal to cancer stem cell fate. This study explored changes in the miRNA
expression profiles in patient-derived GSCs altered on differentiation into glial fiber acid protein
(GFAP)-expressing, astrocytic tumor cells using a polymerase chain reaction (PCR) array. Initially,
22 miRNAs showed higher expression in GSCs and 9 miRNAs in differentiated cells. The two
most downregulated miRNAs in differentiated GSCs were miR-17-5p and miR-425-5p, whilst the
most upregulated miRNAs were miR-223-3p and let-7-5p. Among those, miR-425-5p showed the
highest consistency in an upregulation in all three GSCs. By transfection of a 425-5p miRNA mimic,
we demonstrated downregulation of the GFAP protein in differentiated patient-derived GBM cells,
providing potential evidence for direct regulation of miRNAs in the GSC/GBM cell transition.

Keywords: glioblastoma multiforme; glioblastoma stem-like cells; differentiation; microRNA; GFAP;
miR-425-5p; miR-223-3p; let-7; miR-17-5p

1. Introduction

Glioblastoma multiforme, the most common malignant primary brain tumor in adults,
is characterized by an aggressive and invasive growth pattern, rapid development of
radio-/chemoresistance, and genetic heterogeneity [1]. The current therapeutic standard
of care consists of maximum safe surgical resection, radiation, and temozolomide (TMZ)
chemotherapy [2]. However, the median survival remains low at 12–15 months as tumor
recurrence occurs rapidly [3].

Glioblastoma stem-like cells (GSCs) are currently viewed as modulators of the tumor
microenvironment as well as the origin of radio-/chemoresistance thereby resulting in
tumor progression [4]. Due to this small, but pluripotent self-renewing subpopulation
of GBM tumor cells that typically reside in perivascular niches apart from the bulk tu-
mor mass, GSCs cannot be sufficiently targeted by surgical resection [5]. As a result of
GBM heterogeneity due to different GBM phenotypes, such as the classical, proneural,
and mesenchymal types, patient-derived cell-cultured GSC lines might display diverging
characteristics [6]. At the molecular level, GSCs express a unique pattern of stemness
markers such as the transmembrane glycoproteins CD44 and CD133 or the transcription
factor Sex-determining region Y-box2 (SOX2) [4,7]. In particular, CD133, an established
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marker for neural progenitor cells and cancer stem-like cells, organizes the cell membrane
topology [8]. Contrary to the bulk mass of astrocyte tumor cells, GSCs barely express
the intermediate filament GFAP [9]. Therefore, GFAP is utilized as a marker for primary
differentiated, astrocytic tumor cells in GBM [10].

Not only does the expression pattern of proteins change on GSC differentiation but
recent studies also suggest that GSCs display a unique miRNA expression pattern [11].
MicroRNAs (miRNAs) as small noncoding RNA molecules regulate gene expression at
the posttranscriptional level by binding to and thereby targeting their corresponding
mRNAs [12]. As miRNAs can mediate many critical pathways to cancer progression
such as proliferation, apoptosis, and angiogenesis, they can act as both tumor-suppressors
(tumor-suppressor miRNAs) and oncogenes (onco-miRNAs) [13]. Clinically, miRNAs are
receiving rising attention as their function as novel diagnostic and prognostic biomarkers,
as well as future therapeutic agents, is discussed and given that they can affect multiple
target genes involved in pathological processes [11].

For this reason, dysregulated miRNAs are intensely studied in GBM. However, the ex-
pression profile as well as the function of specific miRNAs in GSCs have not yet been
adequately elucidated.

This study investigated changes in the miRNA expression profile in patient-derived,
well-characterized, cultured, sphere-forming GSCs and their differentiated status as ad-
herent GBM cells by utilizing a miRNA PCR array. As a result, a total of 31 dysregulated
miRNAs were identified. Through a literature review and target prediction analyses,
we closely investigated the most dysregulated miRNAs.

2. Materials and Methods
2.1. Cell Culture

After approval from the local ethics committee (Philipps University Marburg, medical
faculty, file number 185/11), patient-derived GSCs as well as primary GBM cell lines were
obtained during surgical resection. Each patient gave written informed consent before sur-
gical resection. Isolation, preparation, and molecular characteristics of GSCs and primary
GBM cell lines from resected tumor tissues were described previously [14,15]. GSC lines
2017/151, 2017/74, and 2016/240 were cultivated in non-cell-culture-treated Petri dishes.
As a medium, DMEM/F12 (DMEM-12-A, Capricorn Scientific, Ebsdorfergrund, Germany),
supplemented with 2% B27 (17504044, Thermo Fisher Scientific, Waltham, MA, USA),
1% amphotericin (15290026, Thermo Fisher Scientific, Waltham, MA, USA), 0.5% HEPES
(H0887, Sigma-Aldrich, Taufkirchen, Germany), and 0.1% gentamycin (A2712, Biochrom,
Berlin, Germany), was utilized. In addition, epidermal growth factor (EGF, 100-15, Pepro-
tech, Hamburg, Germany) and basic fibroblast growth factor (bFGF, 100-18b, Peprotech,
Hamburg, Germany) were both supplemented at a final concentration of 0.02 ng/µL.
Primary differentiated GBM cell lines GBM100 and GBM42 were cultivated in phenol
red-free DMEM (DMEM-HXRXA, Capricorn Scientific, Ebsdorfergrund, Germany) sup-
plemented with 10% fetal calf serum (FCS, S0615, Sigma, Taufkirchen, Germany), 1% peni-
cillin/streptomycin (2321115, Gibco, Carlsbad, CA, USA), 1 mM sodium pyruvate (NPY-B,
Capricorn Scientific, Ebsdorfergrund, Germany), 1% L-glutamine (25030-024, Gibco, Carls-
bad, CA, USA), and 1% non-essential amino acids (11140050, Gibco, Carlsbad, CA, USA).
All cell lines were cultivated in a humidified atmosphere at 37 ◦C and 5% CO2.

2.2. GSC Differentiation

To differentiate GSCs, cells of 2016/240, 2017/151, and 2017/74 were seeded in 6-well
plates at a density of 750,000 cells in 2 mL. To initiate GSC differentiation, 10% FCS (S0615,
Sigma-Aldrich, Taufkirchen, Germany) was supplemented in DMEM/F12. In addition,
bFGF and EGF were withdrawn. After seven days of incubation, light-microscopy images
were taken. Then, cells were harvested for further analyses.
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2.3. miR-425-5p Mimic Transfection

For transient overexpression of miR-425-5p, primary GBM100 and GBM42 cell lines
were transfected with 0.01 µM hsa-miR-425-5p miRCURY LNA miRNA (GeneGlobe ID:
YM00471725-ADA, catalog no.: 339173, Qiagen, Hilden, Germany). In detail, cells were
seeded in a 6-well format at a density of 300,000 cells in 2 mL. After 24 h of incubation and
attaching, the transfection was performed with Lipofectamine 2000 Reagent (11668-030,
Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions.
Meanwhile, 0.01 µM Allstar Negative Control siRNA (1027280, Qiagen, Hilden, Germany)
was transfected as a control. The transfection was repeated after 24 h. Cells were harvested
48 h after the second transfection and further analyzed via qPCR and Western blot.

2.4. RNA and miRNA Isolation

Total RNA with an enriched fraction of miRNAs from cellular pellets was isolated
using the miRNeasy Tissue/Cells Advanced Mini Kit (217684, Qiagen, Hilden, Germany)
according to the manufacturer’s instructions.

2.5. RNA Reverse Transcription (RT) and Quantitive Real-Time Polymerase Chain Reaction (qPCR)

To quantify gene expression on an mRNA level, total RNA was reverse transcribed
using the RNA to cDNA EcoDryTM Premix (639548, TaKaRa, Saint-Germain-en-Laye,
France) according to the manufacturer’s instructions. Quantitative real-time PCR was
performed with a total reaction volume of 20 µL/well, consisting of 10 µL SYBR Green/Rox
Master Mix (PPLUS-R-10 ML, Primer Design, Eastleigh, UK), 2 µL GFAP/CD133 primers
(244900, Qiagen, Hilden, Germany), 6 µL nuclease-free water, and 2 µL cDNA. Expres-
sion of the ribosomal gene RPLP0/XS13 (fw: 5′-TGG GCA AGA ACA CCA TGA TG-3′;
rev: 5′-AGT TTC TCC AGA GCT GGG TTG T-3′) was used as a housekeeping gene for
normalization [16]. PCR experiments were performed on the Applied Biosystems StepOne-
Plus Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA). Relative gene
expression was calculated utilizing the 2−∆∆Ct method.

2.6. miRNA Reverse Transcription and miRNA PCR Array

First, pooled samples for GSCs and differentiated GBM cells consisting of 8.3 ng total
RNA with an enriched miRNA fraction from each of the three cell lines (2017/151, 2016/240,
and 2017/74) were generated. As a next step, reverse transcription of the pooled samples
was performed utilizing a miScript II RT Kit (218161, Qiagen, Hilden, Germany). Then, fol-
lowing the manufacturer’s instructions, a pathway-focused miRNA PCR array (331221 miS-
cript, Qiagen, Hilden, Germany) was conducted utilizing the miScript SYBR Green PCR Kit
(218073, Qiagen, Hilden, Germany). The miRNA PCR arrays were performed on the Ap-
plied Biosystems StepOnePlus Real-Time PCR System (Thermo Fisher Scientific, Waltham,
MA, USA). Data analysis and scatter plot generation were performed using the corre-
sponding online data analysis tool provided by Qiagen (miScript miRNA PCR Data Anal-
ysis, Qiagen, https://dataanalysis.qiagen.com/mirna/arrayanalysis.php?target=upload,
accessed on 1 February 2023). Relative gene expression was calculated utilizing the 2−∆∆Ct

method. RNU6 was used for internal normalization. Results are presented in heatmaps,
which were generated using the GraphPad PRISM 9 software, version 9.1 (Insight Partners,
New York, NY, USA).

2.7. miRNA Reverse Transcription and qPCR

For verification of the miRNA PCR array results and further functional experiments on
miR-425-5p, isolated RNA samples with an enriched fraction of miRNAs were reverse tran-
scribed utilizing the miRCURY LNA RT Kit (339340, Qiagen, Hilden, Germany), according
to the manufacturer’s instructions. Quantitative real-time PCR was performed utilizing the
miRCURY LNA SYBR® Green PCR Kit (339345, Qiagen, Hilden, Germany), according to the
manufacturer’s instructions. As miRNA primers, hsa-miR-17-5p miRCURY LNA miRNA
PCR Assay (YP02119304, 339306, Qiagen, Hilden, Germany), hsa-miR-425-5p miRCURY

https://dataanalysis.qiagen.com/mirna/arrayanalysis.php?target=upload
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LNA miRNA PCR Assay (YP00204337, 339306, Qiagen, Hilden, Germany), hsa-miR-223-3p
5p miRCURY LNA miRNA PCR Assay (YP00205986, 339306, Qiagen, Hilden, Germany),
and hsa-miR-7a-5p miRCURY LNA miRNA PCR Assay (YP00205727, 339306, Qiagen,
Hilden, Germany) were used. For normalization, miR-24-5p (YP00203954, 339306, Qiagen,
Hilden, Germany) and UniSp6 (YP00203954, 339306, Qiagen, Hilden, Germany) were used.
Relative gene expression was calculated utilizing the 2−∆∆Ct method.

2.8. Protein Extraction and Western Blot Analysis

For 30 min, whole cell lysates were incubated in RIPA buffer (50 mM HEPES pH 7.4;
150 mM NaCl; 1% (v/v) NP-40; 0.5% (w/v) natriumdeoxycholate; 0.1% (w/v) SDS; 10 mM
phenantrolin; 10 mM EDTA; PierceTM Protease Inhibitor Mini Tablets, EDTA-free, Thermo
Fisher Scientific; PierceTM Phosphatase Inhibitor Mini Tablets, Thermo Fisher Scientific).
Then, protein samples were prepared in 5× Laemmli buffer (60 mM Tris HCl, pH: 6.8; 2%
(w/v) SDS; 10% (w/v) glycerol; 5% (v/v) ß-mercaptoethanol; 0.01% (w/v) bromophenol
blue) and 10× NuPAGETM sample reducing reagent (Thermo Fisher Scientific, Waltham,
MA, USA). To separate proteins, samples were denatured at 95 ◦C for 5 min, then 12.5%
SDS polyacrylamide gel was utilized for separation. Separated proteins were transferred
onto nitrocellulose membranes (A29591442, GE Healthcare Life Science, Munich, Germany)
followed by blocking in 5% (w/v) milk powder (MP) in TBST (50 mM Tris, pH 7.5; 150 mM
NaCl; 0.1% (w/v) Tween-20), and then incubated for 1 h. The following primary anti-
bodies were utilized: anti-PTEN (1:1000 in 5% MP in TBST, 9559T, Cell Signaling, Leiden,
NL, USA), anti-GFAP (1:1000 in 5% bovine serum albumin in TBST, M0761, Dako GmbH,
Jena, Germany), anti-SOX2 (1:2000 in 5% MP in TBST, ab97959, Abcam, Berlin, Germany),
and anti-GAPDH (glyceraldehyde 3-phosphate dehydrogenase, 1:10,000 in 5% MP in TBST,
181602, Abcam, UK). After overnight incubation with primary antibodies at 4 ◦C, nitrocel-
lulose membranes were washed three times with TBST. Then, membranes were incubated
with horseradish peroxidase-conjugated antibodies (ab2116, Abcam, 1:5000) for 1 h. Mem-
branes were washed again with TBST. By the addition of Western Bright Sirius substrate
(K-12043-D10, Advansta, San Jose, CA, USA), chemiluminescence was detected using
the ChemiDoc MP Imaging System (Bio-rad Laboratories GmbH, Feldkirchen, Germany).
Western blot quantification was realized by using the Image J software version 1.53t (NIH,
Bethesda, MD, USA).

2.9. Kyoto Encyclopedia of Genes and Genomes (KEGG) Analyses

To functionally characterize the most dysregulated miRNAs in patient-derived GSCs and
their differentiated status, KEGG enrichment analysis was performed using the DIANAmiR-
Path v3.0 web app, an online software suite dedicated to the evaluation of the regulatory role
of miRNAs and the identification of controlled pathways [17]. The barplot and the chord
diagram were built in the R environment (v. 4.1.3) with ggplot2, and circlize R packages [18,19].

2.10. Statistical Analysis

Results from multiple replicates are presented as the mean ± standard deviation (SD).
The miRNA PCR array was conducted once. Paired Student’s t-tests were applied for
statistical comparison between the two groups. Results were considered as not significant
(ns) (p > 0.05), significant (*) (p < 0.05), highly significant (**) (p < 0.01), or very highly
significant (***) (p < 0.001) / (****) (p < 0.0001). Statistical analysis was performed utilizing
GraphPad PRISM 9, version 9.1 (Insight Partners, New York, NY, USA).

3. Results
3.1. Differentiation of GSCs

GSC lines 2017/151, 2016/240, and 2017/74 were derived from resected tumor tissues
of three patients with primary, isocitrate-dehydrogenase (IDH) wildtype GBM. Information
regarding molecular-pathological features as well as clinical information is presented in
Table 1. In cell culture, GSCs formed typical non-adherent neurospheres (Figure 1a, left).



Brain Sci. 2023, 13, 350 5 of 13

On differentiation, cells acquired morphological features similar to those of glial cells.
For instance, differentiated cells grew in monolayers attached to the bottom of six-well
plates and developed long, star-shaped cellular protrusions (Figure 1a, right). As previously
demonstrated, a side population analysis was conducted. Here, a population of cells with
a higher efflux, hence a lower intracellular concentration of Hoechst dye, was identified.
Inhibition of ABC transporters with verapamil and concomitant blockage of efflux confirmed
the specificity of the side population as an efflux was no longer detectable [14]. At the
molecular level, GSCs expressed high levels of the stem cell marker CD133. In contrast,
differentiation resulted in a significant decrease in CD133 expression on the mRNA level in
all three GSC lines (Figure 1b, left). On the mRNA level, additional stem cell markers such
as CD44, Sox2, and Nestin were tested with similar, but less consistent trends for Sox2 and
Nestin, while CD44 was induced in differentiated GSCs (Supplementary Figure S1), similar to
the significant increase observed for GFAP mRNA expression (Figure 1b, right).

Table 1. Clinical information and histopathological characteristics of patient-derived GSC lines.
All three patients suffered from primary, isocitrate dehydrogenase (IDH) wildtype glioblastoma.
Here, clinical parameters including age at diagnosis, sex, survival in days, and tumor localization are
presented. Furthermore, histopathological data such as methylation status of the O6-methylguanine-
DNA-methyltransferase (MGMT), p53 accumulation, and Ki67 labeling index (Ki67-Li) are presented.

GSC
Line

Age at
Diagnosis
(in Years)

Sex Survival in
Days Localization MGMT Promotor

Methylation Status Ki67-Li p53 Accumulation

2016/240 48 female 641 right frontal lobe methylated up to
10%

moderately
accumulated

2017/151 66 male 126 right temporal lobe
and right insula methylated up to

20% accumulated

2017/74 61 male 398 right temporal lobe not methylated up to
50%

moderately
accumulated
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Figure 1. Differentiation of GSCs in astrocytic tumor cells. (a) Light microscopy images of
2017/151 spheroid GSCs (left) and adherent differentiated cells (Diff. cells, right). (b) Expres-
sion of CD133 and GFAP on an mRNA level by RT-qPCR in GSCs (green bars) and corresponding
differentiated, astrocytic cells (red bars). Results are given as mean ± SD of three independent
experiments. A paired Student’s t-test was applied to determine significance: * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001. (c) Western Blot of GSCs and Diff. cells showing SOX2 and GFAP
expression, where GAPDH was used for internal normalization. (d) Western Blot quantification
of stem cell marker SOX2 and differentiation marker GFAP in three GSCs lines (green bars) and
differentiated cells (red bars).
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In addition, Western blot analysis demonstrated that the stem cell marker SOX2 is
more greatly expressed in GSCs compared to differentiated cells, while GFAP protein
expression increases on differentiation (Figure 1c,d). To summarize, these data suggest
that all three GSC lines were successfully differentiated into adherent, growing, astrocytic
tumor cells, although to different extents.

3.2. Identification of Dysregulated miRNAs in GSCs and Differentiated Cells

As a screening method to identify changes in miRNA expression induced by GSC
differentiation, a pathway-focused miRNA PCR array was conducted. This was realized
by generating pooled samples of either GSCs or differentiated cells, containing an equal
concentration of miRNAs from each of the three GSC lines and differentiated cell lines,
respectively. Differences in miRNA expression based on fold regulation are presented for
84 tested miRNAs by a heatmap (Figure 2a). While green signals represent upregulation in
GSCs, the red color indicates the downregulation of respective miRNAs in GSCs and conse-
quently higher expression in differentiated cells. All miRNAs exhibiting fold regulation
values > 2 or <−2 were interpreted to be dysregulated by the Qiagen analysis tool. A scatter
plot analysis revealed that from a total of 84 tested miRNAs, 22 miRNAs were more greatly
expressed in GSCs compared to differentiated cells. In contrast, nine miRNAs displayed
lower expression in GSCs and were consequently more greatly expressed in differentiated
cells (Figure 2b). A detailed analysis of these dysregulated miRNAs depicted by a heatmap
revealed that 10 out of 31 miRNAs were particularly strongly dysregulated (Figure 2c and
Table 2). Notably, miR-425-5p, miR-17-5p, miR-424-5p, miR-195-5p, and miR-30c-5p were
highly expressed in GSCs. Meanwhile, miR-223-3p and four members of the let-7 miRNA
family displayed higher expression in differentiated cells. A thorough literature research
was conducted on these 10 miRNAs. Here, we focused on the general role of each miRNA
in GBM and the current status of research concerning GSCs (Table 2).
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Figure 2. Differentially expressed miRNAs in GSCs and differentiated GBM cells. (a) Heatmap
of differentially expressed miRNAs in pooled GSCs and pooled differentiated cells generated by
fold expression values. Fold regulation values > 1 indicate lower miRNA expression in GSCs and
overexpression in differentiated cells (red). Fold regulation values < 0 indicate higher expression
in GSCs in comparison with differentiated cells (green). (b) Scatter plot analysis (log10 of 2ˆ−delta
Ct) of 84 miRNAs tested by the miRNA PCR array. Dotted lines equal log10 of fold regulation of
2 and −2. Green dots indicate upregulation in GSCs, black dots indicate no dysregulation, and red
dots indicate overexpression in differentiated cells. (c) Heatmap of all tested miRNAs exhibiting fold
regulation > 2 or < −2. Fold regulation values > 2 indicate miRNA overexpression in differentiated
cells compared to GSCs (red). Fold regulation < −2 indicates miRNA overexpression in GSCs (green).
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Table 2. Literature review results on highly dysregulated miRNAs identified in the PCR array.
The table includes PCR array results indicated by fold regulation and published data on highly
dysregulated miRNAs. We focused on the general role of each miRNA in GBM and their potential
roles in GSCs. Plus, reported functionally relevant mRNA targets and predicted target genes directly
involved in a GSC or differentiated state, respectively, are listed. For miRNA target prediction,
the online software miRPathDB v2.0 was used.

miRNA Upregulated in Fold Regulation Role in GBM Role in GSCs mRNA Target

miR-17-5p GSCs −8.05

Onco-miRNA [20]
Highly expressed in GBM,

correlated with poor
prognosis [20]

Highly expressed in
GSCs [21–23]
Increases GSC

proliferation [21]

PTEN [23]
GFAP (predicted)

[24]

miR-425-5p GSCs −4.00
Onco-miRNA [25]

Associated with poor
prognosis [25]

Highly expressed in
GSCs [25]
Promotes

neurosphere
formation and GSC

survival [25]

PTEN [26]
GFAP (predicted)

[24]

miR-30c-5p GSCs −4.00

Conflicting data
Promotes chemoresistance

[27]
Inhibition of proliferation,

migration, and invasion [28]
Downregulation in GBM

tissue [28]

Unexplored SOX-9 [28]

miR-424-5p GSCs −4.04

Conflicting data
Effects on migration and

proliferation, induction of
apoptosis [29–31]

Inhibition of
epithelial-to-mesenchymal

transition (EMT) and tumor
growth [31]

Enhances chemoresistance
[30]

Unexplored
Akt-1, RAF1 [29]
GFAP (predicted)

[24]

miR-195-5p GSCs −4.05

Conflicting data
Affects response to

TMZ [32,33]
Inhibits proliferation [34]
Upregulated in recurrent

GBM samples [35]

Unexplored

Cyclin E1 [32]
Cyclin D1 [34]

GFAP (predicted)
[24]

let-7a-5p

Differentiated
cells

4.01

Tumor-suppressor miRNA
family [36,37]

Inhibition of tumor cells’
migration, proliferation,

and invasion [36,37]
Promotes cell cycle arrest

and apoptosis [36]

Low expression in
GSCs [38]

Inhibition of
neurosphere growth

[37]

K-Ras [36]
Musashi-2

(predicted) [24]

let-7e-5p 3.97
MMP9 [39]
Musashi-2

(predicted) [24]

let-7b-5p 3.97

E2F2 [37]
Musashi-2,
Musashi-1

(predicted) [24]

let-7c-5p 4.00 Musashi-2
(predicted) [24]

miR-233-3p Differentiated
cells 3.09

Tumor-suppressor
miRNA [40]

Enhances radiation
sensitivity of GBM cells [40]

Unexplored
ATM [40]
Musashi-2

(predicted) [24]
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Taken together, the PCR array identified a changed miRNA expression profile in GSCs
and differentiated cells and revealed several candidate miRNAs for further investigation
into GSC/GBM cell transition.

3.3. miR-425-5p Is Downregulated in Differentiated GSCs

From all dysregulated miRNAs, four miRNAs, miR-425-5p, miR-17-5p, let-7a-5p,
and miR-223-3p, turned out to be functional candidates in GSCs for tumor cell differ-
entiation. To validate the miRNA expression levels found in our PCR array screening
using pooled miRNAs from all three GSCs (Figure 3a), we determined miRNA expression
levels in all three GSC lines separately (Figure 3b and Supplementary Figure S2). Most
consistently, miR-425-5p was significantly overexpressed in all three GSC lines compared
to differentiated, astrocytic tumor cells (Figure 3b). miR-17-5p proved to be significantly
overexpressed in GSCs (Supplementary Figure S2a). Meanwhile, let-7a-5p and miR223-3p
downregulation in GSCs compared with differentiated cells could not be verified in the
three GSC lines (Supplementary Figure S2b,c).
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Figure 3. Expression of miR-425-5p in GSCs and effects on GFAP and PTEN protein levels in GBM
cells. (a) Expression of miR-425-5p in GSCs (green) and their differentiated state (red). RT-qPCR
results for differentiated 2017/74, 2017/151, and 2016/240 were normalized to undifferentiated
controls. (b) Detailed depiction of miR-425-5p expression in each GSC line (green) and its corre-
sponding differentiated state (red). Results are shown as mean values ± SD of two independent
experiments. (c) miR-425-5p mimic transfection of primary GBM cell lines GBM100 and GBM42.
(d) Representative Western blot demonstrating GFAP and PTEN expression after miR-425-5p mimic
transfection in GBM100 cells. (e) Quantification of GFAP and PTEN protein expression in transfected
GBM100 cells. (f) Representative Western blot demonstrating GFAP and PTEN expression after miR-
425-5p mimic transfection in GBM42 cells. (g) Quantification of GFAP and PTEN protein expression
in transfected GBM42 cells. Two independent experiments were conducted. Results are presented
as mean values ± SD. A paired Student’s t-test was applied to determine significance: ns p > 0.05,
* p < 0.05, *** p < 0.001.

3.4. Transfection of miRNA Mimic Affects Protein Levels of GFAP in Patient-Derived GBM Cells

As shown in Table 2, miR-425-5p was identified to potentially target the GFAP gene,
which is expressed as a marker of differentiated GBM cells, so that downregulation of
miR-425-5p in GSCs could increase GFAP levels in the course of differentiation into GBM
cells. To explore this, we transfected two patient-derived GBM cell strains (GBM100 and
GBM42) with a miR-425-5p mimic miRNA (Figure 3c). About 48 h after transfection, cells
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were lysed and analyzed for protein levels of GFAP and the known miR-425-5p target PTEN.
In GBM100, both GFAP and PTEN protein levels were reduced after mimic transfection
(Figure 3d,e), whereas the results for GBM42 were inconsistent (Figure 3f,g). Those first
results suggested that GFAP is a target gene for miR-425-5p and could potentially regulate
the differentiation state of GBM cells.

3.5. miRNA Profiling in GSC Maintenance and Differentiation

The 10 most regulated miRNAs were analyzed for their biological functions by KEGG
enrichment analysis (Figure 4a). The most significant pathways were “Signaling pathways
regulating pluripotency of stem cells”, “Pathways in cancer”, and “PI3K-Akt signaling”,
a pathway of high importance in GBM. In Figure 4b, the miRNA target relationship to
pathways regulating the pluripotency of stem cells is shown in the form of a chord plot.
All 10 miRNAs are connected to their mRNA targets, thereby showing their contribution to
GSC maintenance or differentiation.

Brain Sci. 2023, 13, x FOR PEER REVIEW 10 of 14 
 

     

 
Figure 4. Bioinformatic analysis of the 10 most dysregulated miRNAs. (a) KEGG enrichment analy-
sis of the 10 most dysregulated miRNAs. The x-axis reports the number of target genes and the 
fraction of miRNAs in the starting list involved in the pathway. The number within the dots repre-
sents the number of miRNAs. (b) The miRNA–target relationship in the KEGG_hsa04550 signaling 
pathway, “Signaling pathways regulating pluripotency of stem cells”. Each link represents a 
miRNA–target interaction. 

4. Discussion 
Due to tumor heterogeneity and limited therapeutic options, GBM remains an incur-

able disease with a devasting prognosis. As modulators of the tumor microenvironment 
and radio-/chemoresistance, GSCs are considered putative future therapeutic targets [6]. 
Even though GSCs play a key role in tumor cell invasion, recurrence, and angiogenesis, 
many underlying signaling pathways remain elusive [41]. MicroRNAs (miRNAs) can act 
as central regulatory molecules of GBM hallmarks such as invasion or immune evasion 
[42]. Therefore, miRNAs are discussed as future therapeutic targets and diagnostic bi-
omarkers [43]. Our study detected differences in the miRNA expression profile of GSCs 
and differentiated tumor cells by PCR array screening. Cultured patient-derived GSCs 
were stimulated to differentiate into astrocytic tumor cells. Although this in vitro differ-
entiation model is commonly used in GSC research, in vivo GSC differentiation is a com-
plex process as the tumor microenvironment is shaped by a variety of different cell types 
such as macrophages, microglia, and mesenchymal cells [44]. 

Based on our results from miRNA PCR array screening, a literature review of mRNA 
targets, and validating experiments in each GSC line, we present four suitable miRNA 
candidates, miR425-5p, miR-17-5p, miR-223-3p, and let-7a-5p, which might be directly 
and indirectly involved in the regulation of GBM cell differentiation. 

Firstly, miR-17-5p, the most dysregulated miRNA in the conducted array, is a known 
onco-miRNA in GBM [20]. Consistent with other studies, miR-17-5p was highly expressed 
in GSCs as it stimulates GSC proliferation [21–23]. As physically adjacent miRNA genes 
are often transcribed at the same time, they are summarized as a cluster. miR-17-5p is 
often analyzed as a part of the miR-17-92 cluster [45]. Notably, four of six miRNAs of the 
miR-17-92 cluster were consistently upregulated in our conducted PCR array. In GBM, 
the miR-17-92 cluster is highly expressed and correlated with a poor prognosis [20]. 

Secondly, miR-425-5p was upregulated in GSCs concordant with a study by La Rocha 
et al. [25]. MiR-425-5p is overexpressed in GBM tissue specimens in comparison to normal 
brain control specimens and acts as an onco-miRNA [25]. Both miR17-5p and miR-425-5p 

(a) (b)

1.3 x 10-3

8.6 x 10-4

4.5 x 10-4

1.0 x 10-4

Figure 4. Bioinformatic analysis of the 10 most dysregulated miRNAs. (a) KEGG enrichment
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4. Discussion

Due to tumor heterogeneity and limited therapeutic options, GBM remains an incur-
able disease with a devasting prognosis. As modulators of the tumor microenvironment
and radio-/chemoresistance, GSCs are considered putative future therapeutic targets [6].
Even though GSCs play a key role in tumor cell invasion, recurrence, and angiogenesis,
many underlying signaling pathways remain elusive [41]. MicroRNAs (miRNAs) can act
as central regulatory molecules of GBM hallmarks such as invasion or immune evasion [42].
Therefore, miRNAs are discussed as future therapeutic targets and diagnostic biomark-
ers [43]. Our study detected differences in the miRNA expression profile of GSCs and
differentiated tumor cells by PCR array screening. Cultured patient-derived GSCs were
stimulated to differentiate into astrocytic tumor cells. Although this in vitro differentiation
model is commonly used in GSC research, in vivo GSC differentiation is a complex pro-
cess as the tumor microenvironment is shaped by a variety of different cell types such as
macrophages, microglia, and mesenchymal cells [44].

Based on our results from miRNA PCR array screening, a literature review of mRNA
targets, and validating experiments in each GSC line, we present four suitable miRNA
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candidates, miR425-5p, miR-17-5p, miR-223-3p, and let-7a-5p, which might be directly and
indirectly involved in the regulation of GBM cell differentiation.

Firstly, miR-17-5p, the most dysregulated miRNA in the conducted array, is a known
onco-miRNA in GBM [20]. Consistent with other studies, miR-17-5p was highly expressed
in GSCs as it stimulates GSC proliferation [21–23]. As physically adjacent miRNA genes
are often transcribed at the same time, they are summarized as a cluster. miR-17-5p is
often analyzed as a part of the miR-17-92 cluster [45]. Notably, four of six miRNAs of the
miR-17-92 cluster were consistently upregulated in our conducted PCR array. In GBM,
the miR-17-92 cluster is highly expressed and correlated with a poor prognosis [20].

Secondly, miR-425-5p was upregulated in GSCs concordant with a study by
La Rocha et al. [25]. MiR-425-5p is overexpressed in GBM tissue specimens in comparison
to normal brain control specimens and acts as an onco-miRNA [25]. Both miR17-5p and
miR-425-5p are known to target phosphatase and tensin homolog (PTEN) mRNA [23,26].
PTEN, a key tumor suppressor, is commonly mutated in GBM carcinogenesis [46]. As a
predicted mRNA target based on miRPathDB v2.0, expression levels of GFAP could be
regulated directly by miR-425-5p and miR-17-5p, suggesting that these miRNAs control
astrocytic cell differentiation [24]. As an experimental proof, mimic miR-425-5p when
transfected into differentiated patient-derived GBM cells, can regulate GFAP expression.
Since these cells are also able to de-differentiate into GSCs, we interpret our findings to
reveal that miR-425-5p is able to contribute, among other critical proteins, to GBM cell
differentiation. Moreover, as chord analysis suggests, miR-425-5p is potentially involved
in gene regulation of IGF1 (insulin growth factor 1), gp 130 (IL6ST), MEIS1 (a homeobox
gene), SMAD5 (TGF-ß pathway), and PCGF5 (a polycomb transcription factor). All of them
could be important mediators of growth signals and cell fate determination in GBM cells.

Furthermore, PCR array analysis identified nine miRNAs that were upregulated in dif-
ferentiated cells. Notably, six of these nine miRNAs are members of the let-7 miRNA family.
Published data revealed that the let-7 family acts as a tumor suppressor in GBM [11,36].
Overexpression of let-7 miRNAs leads to the inhibition of tumor cell migration and pro-
motes apoptosis [36]. According to our PCR array, Degrauwe et al. demonstrated that the
let-7 family is scarcely expressed in GSCs [38]. As an interesting mRNA target, Kirsten rat
sarcoma virus oncogene homolog (K-Ras), an oncogene and activator of its downstream
targets in the mitogen-activated protein kinase (MAPK) pathway, was identified [38].
According to miRPathDB v.2.0 target gene prediction, the stem cell marker Musashi-2 can
be directly regulated by the let-7 family and miR-223-3p so that high expression of these
miRNAs could suppress the GSC phenotype [24,47]. Additionally, miR-223-3p was over-
expressed in differentiated cells. In GBM, miR-223-3p functions as a tumor-suppressor
miRNA; its overexpression enhances radio-/chemosensitivity in cell culture models as
miR-223-3p targets ataxia telangiectasia mutated (ATM) [40]. ATM initiates repair mech-
anisms after radio-/chemotherapy-induced DNA damage and thereby contributes to
radio-/chemoresistance [48]. Since the role of miR-223-3p is currently uninvestigated in
GSCs, future detailed analysis of miR-223-3p and ATM in GSCs is justified.

5. Conclusions

Our study detected a changed miRNA expression profile on GSC differentiation in
a well-defined in vitro setup. Through a miRNA PCR array, 31 dysregulated miRNAs
were identified. About 10 highly regulated miRNAs, including miR-425-5p, miR-17-5p,
miR-223-3p, and the let-7 miRNA family, are promising miRNA candidates for further
investigations aiming to manipulate the differentiation status of GSCs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/brainsci13020350/s1, Figure S1: qPCR analysis of stem cell markers
CD44, Sox2, and Nestin; Figure S2: qPCR analysis of miR425-5p, miR17-5p, let-7a-5p, and miR223-3p
in individual GSC lines.
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