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Abstract: Background: Several complex cellular and gene regulatory processes are involved in pe‑
ripheral nerve repair. This study uses bioinformatics to analyze the differentially expressed genes
(DEGs) in the satellite glial cells of mice following sciatic nerve injury. Methods: R software screens
differentially expressed genes, and the WebGestalt functional enrichment analysis tool conducts
Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomics (KEGG) path‑
way analysis. The Search Tool for the Retrieval of Interacting Genes/Proteins constructs protein
interaction networks, and the cytoHubba plug‑in in the Cytoscape software predicts core genes.
Subsequently, the sciatic nerve injury model of mice was established and the dorsal root ganglion
satellite glial cells were isolated and cultured. Satellite glial cells‑related markers were verified by
immunofluorescence staining. Real‑time polymerase chain reaction assay and Western blotting as‑
say were used to detect the mRNA and protein expression of Sox9 in satellite glial cells. Results: A
total of 991 DEGs were screened, of which 383 were upregulated, and 508 were downregulated. The
GO analysis revealed the processes of biosynthesis, negative regulation of cell development, PDZ
domain binding, and other biological processes were enriched in DEGs. According to the KEGG
pathway analysis, DEGs are primarily involved in steroid biosynthesis, hedgehog signaling pathway,
terpenoid backbone biosynthesis, American lateral skeleton, and melanoma pathways. According
to various cytoHubba algorithms, the common core genes in the protein–protein interaction network
are Atf3, Mmp2, and Sox9. Among these, Sox9 was reported to be involved in the central nervous
system and the generation and development of astrocytes and could mediate the transformation be‑
tween neurogenic and glial cells. The experimental results showed that satellite glial cell marker GS
were co‑labeled with Sox9; stem cell characteristic markers Nestin and p75NTR were labeled satel‑
lite glial cells. The mRNA and protein expression of Sox9 in satellite glial cells were increased after
sciatic nerve injury. Conclusions: In this study, bioinformatics was used to analyze the DEGs of satel‑
lite glial cells after sciatic nerve injury, and transcription factors related to satellite glial cells were
screened, among which Sox9 may be associated with the fate of satellite glial cells.

Keywords: integration analysis; sciatic nerve injury; satellite glial cell; Sox9 expression pattern

1. Introduction
A common clinical condition is peripheral nerve injury (PNI). PNI can result in motor

and sensory dysfunctions, which burden families and society. The research has always
aimed to promote PNI regeneration and repair [1]. Relevant research suggests that com‑
pensation or regeneration may be used to restore the damage. For example, the collat‑
eral branches of healthy neurons can promote nerve regeneration and functional recovery
when the axon regeneration of injured neurons is blocked. Basic research has established a
local sciatic nerve injury (SNI) model that further clarifies the compensatory growth mech‑
anism and regeneration process [2].
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There are two difficulties in treating nerve damage: How can neurons be regenerated
to replace those lost to injury or neurodegeneration? How can secondary tissue damage
(glial scar) that results from a long‑term accumulation of glial cells at the injured site be
prevented or minimized [3]? The ability of glial cells to regenerate differs significantly be‑
tween the peripheral nervous system (PNS) and central nervous system (CNS). Virchow
initially proposed the term “glial cell” in 1850. He believed that the term “glial cell” re‑
ferred to a type of cell composed of neurons embedded in the connective tissue layer. As‑
trocytes, oligodendrocytes, andmicroglia are glial cells in the CNS, whereas Schwann cells
(SCs) and satellite glia are found in the PNS [4]. The glial cells in the CNS offer the growth
factors and structural support required for the regeneration of neurons by removing de‑
bris from the injured site and responding quickly to the nerve injury [5]. It can prevent
the formation of a reactive glial scar, stimulate axon regeneration, and promote the recov‑
ery of motor, sensory, respiratory, and autonomic functioning in rodents after a spinal
cord injury. The research demonstrates that astrocytes are helpful in spinal repair. The
use of astrocyte transplantation in the treatment of spinal cord injury has grown in the
past three decades [6]. A promising therapy for nerve regeneration and repair has recently
emerged and is called in vivo glial neuron transformation technology. This is achieved
by the ectopic production of neurotrophic factors in glial cells and converting endogenous
glial cells into neurons [7]. The direct reprogramming of endogenous glial cells offers con‑
siderable potential for functioning neurons to repair the nerve injury, in contrast to the risk
of immunological rejection and tumorigenesis when exogenous cells are transplanted to
the location of the nerve injury site [8]. Astrocytes are promising source cells to replace
neurons lost due to diseases since they have a common lineage and can differentiate and
proliferate under pathological conditions. Astrocytes can be reprogrammed to become
neurons by regulating transcription factors (TFs) [9]. For example, NeuroD1 can effectively
reprogram gray matter astrocytes into functional neurons [7].

The PNS contains myelinated glial cells called SCs. Their plasticity is crucial to pe‑
ripheral nerve regeneration following trauma and peripheral neuropathy. When a nerve
is injured, SCs are quickly activated by the signal induced by the injury and begin the repair
process in response. SCs perform dynamic cell reprogramming to promote nerve regen‑
eration and functional recovery during the repair process. They actively promote neuron
survival, damaged axon disintegration, myelin sheath clearance, and axon regeneration
by expressing several new genes, which regulate and drive the regeneration process [10].
Treating nerve damagewith SCs transplantation is reliable, effective, and promising. How‑
ever, a single SCs transplant is insufficient to promote the complete recovery of neural func‑
tion. More approaches are required to support SCs transplantation as a nerve injury treat‑
ment [11]. The TF c‑Jun, which is quickly upregulated following SC injury, controls the
reprogramming and repair process of SCs. The injury will result in dysfunction, neuronal
death, and failure of functional recovery without c‑Jun. Although c‑Jun is unnecessary
for developing SCs, it is crucial for reprogramming SCs to repair the damage [12]. Satel‑
lite glial cells (SGCs) are another type of glial cell in the PNS. In sensory ganglia, SGCs
wrap sensory neurons and regulate their microenvironment and signal transmission [4].
SGCs are similar to astrocytes. They act as a buffer for the extracellular environment by
expressing glial fibrillary acidic protein (GFAP) and potassium and calcium channels [13].
Additionally, both cell types serve as boundary cells in the nervous system, which can con‑
duct intercellular signal transduction using chemical messengers and calcium waves [14].
Increasing intercellular coupling via gap connections, decreasing the expression of the in‑
ward rectifier potassium channel 4.1, and increasing the expression of GFAP and the p75
neurotrophin receptor (p75NTR), PNI‑induced SGCs to appear reactive [13]. According to
Matthias et al. [15], SGCs can be partially reprogrammed, which may be related to their
traits and the plasticity of their precursors. The difficulty of conducting in vitro and in vivo
experiments may be why little is known about the biology of SGCs compared to other glial
cells in the CNS. Currently, neuropathic pain is the main topic of most studies on satellite
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glial cells, especially those involving chronic pain and inflammatory diseases. SGCs in‑
volved in neurogenesis, regeneration, and damage repair are rarely reported.

This study integrated and analyzed the gene expression profile data set in the Gene
Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) in
SGCs following SNI. We suggest using bioinformatics to mine core genes related to PNI
and repair and focus on TFs in core genes. Because transcription factor‑mediated cell repro‑
gramming aids in understanding how glial cells mature into functional neurons and pro‑
mote the recovery of neural function, it is an effective way for cell transformation during
nerve regeneration [4]. The development of an SNImodel to produce SGCs for verification
offers a new clue for the peripheral glial cell replacement therapeutic strategy.

2. Materials and Methods
2.1. Data Extraction

Use the following search terms to find the results: “Satellite glial cells, SNI” (key‑
words), and “Musmusculus” (biology). The followingwere the inclusion criteria: (1) satel‑
lite glial cell samples of mice were diagnosed; (2) there were >3 samples in each group;
(3) single‑cell expression profile; (4) for satellite glial cells, there is only a single cause of SNI
and no other treatment factors. Each group had to have >3 samples, and 114 gene set enrich‑
ment serieswere retrieved from theGEOdatabase of theNational Center for Biotechnology
Information (https://www.ncbi.nlm.nih.gov/geo/; accessed on 16 June 2022). The original
gene expression profile met these requirements for GSE120284, which was integrated and
analyzed. This profile was sequenced using the gpl21103 Illumina HiSeq 4000 sequencing
platform. Finally, eight samples were analyzed, including samples from a sham operation
group (GSM 3978516, GSM 3978518, GSM 3978520, andGSM 3978522) and an injury group
(GSM 3978501, GSM 3978503, GSM 3978505, and GSM 3978507) [16].

2.2. DEGs Analysis
Preprocessing of the original GSE120284 dataset included normalization and log2 con‑

version. The thermal heat map was then drawn based on the amount of DEGs, and a vol‑
cano plot was created based on the log2 fold change and p value (|log2FC| > 1, p < 0.05). R
software was used to draw the figures.

2.3. Functional Enrichment Analysis of DEGs
Analysis of DEGs using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) was performed using the WebGestalt (http://www.webgestalt.org/,
accessed on 16 June 2022) database. Genes related to molecular function, biological pro‑
cess, and cell composition were found using GO analysis. A signaling pathway‑based
visualization of the enrichment analysis is displayed.

2.4. Protein–Protein Interactions (PPIs) Analysis of DEGs
The PPIs of DEGswere analyzed, the gene data were integrated, and upregulated and

downregulated genes were mapped via a PPI network diagram using the Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING) database (https://string‑db.org/, ac‑
cessed on 16 June 2022). Core genes were screened using Cytoscape (Ver 3.6,
Beijing, China).

2.5. SNI Model in Mice
Five‑day‑old female C57/BL6 mice were purchased from the Department of Experi‑

mental Animals, Kunming Medical University, license no. SCX (Dian) K2020–0004. All
experimental protocols were approved by the Animal Experiment Ethics Committee of
Kunming Medical University. A 0.2 cm skin incision was made along the unilateral sci‑
atic nerve trunk before injecting sodium pentobarbital 30 mg/kg (WuXi AppTec, Shanghai,
China) intraperitoneally into the model animals. The muscle layer was bluntly separated
with hemostatic forceps to expose the sciatic nerve trunk. The incision was then cut with

https://www.ncbi.nlm.nih.gov/geo/
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surgical scissors. [17]. A total of 36 mice were randomly assigned to four groups (n = 9
per group): (1) Sham 3d group, (2) SNI 3d group, (3) Sham 7d group, and (4) SNI 7d group.

2.6. Cell Culture
C57BL/6 mice were disinfected with 75% ethanol for 10 min and sacrificed in cervical

position; the mice in the sham operation group and the operation group were decapitated.
The skin on the back and ribs of the mice were removed with scissors, along with the
muscles surrounding the spine, exposing the spine. The blood vessels and spinal cord
were cleaned, and the dorsal root ganglion (DRG) was clamped using ophthalmic micro
tweezers. DRG were located at the L4 segment on the opposite side of the injured side.
The nerve fibers on the DRG were removed and the capsule on the surface of the DRG
was stripped. The capsule on the surface of the DRG was stripped, and the nerve fibers
were removed. About 10 DRG were inserted in each well of a six‑well plate containing
DRG‑SGCs culturemedium and cultured in a 37 ◦C, 5% carbon dioxide incubator (Thermo
Fisher Scientific, Waltham, MA, USA) [18].

2.7. Immunofluorescence Staining
The cell cultures were placed in six‑well plates, washed with phosphate‑buffered

saline (HyClone, Logan, Utah, USA), mixed with 0.3% Triton X‑100 (Sigma Aldrich, St.
Louis, MO, USA), and then incubated at room temperature for 1 h. The primary antibodies
used were glutamine synthetase (GS) (1:1000, Abcam, Cambridge, UK), GFAP (1:1000, Ab‑
cam, Cambridge, UK), p75NTR (1:1000, Abcam, Cambridge, UK), Nestin (1:1000, Abcam,
Cambridge, UK), and SRY‑box9 (Sox9) (1:1000, Abcam, Cambridge, UK). A combination
containing the primary antibody and 5% goat serum albumin (1:1000, Santa Cruz, Dallas,
Texas, USA) was combined and incubated at 4 ◦C overnight. The following day, the cell
cultures were incubated at room temperature for 30min, washedwith phosphate‑buffered
saline with Tween 20 (PBST), and then incubated with a secondary antibody immunoglob‑
ulin G (1:1000, Abcam, Cambridge, UK). The second antibody was diluted with 5% goat
serum albumin (Gibco, Grand Island, NY, USA) at room temperature for 2 h. First, cells
werewashedwith PBST and stainedwith nuclear dye 4′, 6‑diamino‑2‑phenylindole (DAPI)
(1:1000, Sigma Aldrich, St. Louis, MO, USA), which was diluted with 2% goat serum albu‑
min. Finally, the cells were washed with PBST. Images were captured using fluorescence
microscopy (DS‑Vi1 and Az100, Nikon, Tokyo, Japan). Image J (Ver 1.8.0, Bethesda, MD,
USA) was used to count the number of positive immunofluorescent cells.

2.8. Real‑Time (RT) Polymerase Chain Reaction Assay
SGCs were treated with the TRIzol solution (Invitrogen, Carlsbad, CA, USA) to ex‑

tract their total RNA. Complementary (cDNA) was reverse‑transcribed using SuperScript
III (Takara, Osaka, Japan). GADPHwas used as a negative control, and the SYBR quantita‑
tive qPCR kit (Takara, Osaka, Japan)was used tomeasure the relative expression ofmRNA.
The ABI Prism 7500 Rapid Sequence detection system (Applied Biosystems, Carlsbad, CA,
USA) was used to perform qRT‑PCR. The relative expression levels of mRNA were cal‑
culated and quantified using the 2−∆∆Ct method. The primer sequence for Sox9 was as
follows: F 5′‑GTGCAAGCTGGCAAAGTTGA‑3′, R 5′‑TGCTCAGTTCACCGATGTCC‑3′.

2.9. Western Blotting Assay
Total protein was extracted from SGCs, and each tube contained 200 µL of a deter‑

gent lysate (containing 2 µL of phenylmethylsulfonyl fluoride and 2 µL of phosphatase
inhibitor). A microplate analyzer (DG‑3022A, Tecan, Männedorf, Switzerland) was used
to determine the protein concentration after diluting the samples. The extracted protein
supernatant and 5× protein loading buffer (4:1, Solarbio, Beijing, China) were placed in
boiling water for a 10‑min denaturation process. After electrophoretic gel preparation, the
primary antibodies were β‑actin (1:500, Bioss, Beijing, China) and Sox9 (1:1000, Abcam,
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Cambridge, UK). We scanned the film for recovery value analysis (Bio‑Rad, Hercules, CA,
USA). Image J (Ver 1.8.0, Bethesda, MD, USA) was used to count gray value.

2.10. Statistical Analysis
Prism software (Ver 7.0, GraphPad Software, San Diego, CA, USA) was used for data

analysis. All data are expressed as mean± standard deviation (S.D.). Analysis of variance
(ANOVA) was used, followed by Bonferroni post‑hoc test between groups. p < 0.05 was
considered statistically significant.

3. Results
3.1. Identification of DEGs in GSE120284

A total of 991 DEGs were identified by R software. Among them, 383 genes were
upregulated, and 508 genes were downregulated (Figure 1a). A Pearson correlation anal‑
ysis was used to create the clustering heat map. The data followed a normal distribution
after undergoing logarithmic transformation, and hierarchical clustering was carried out.
The clustering distance was averaged by the correlation coefficient matrix calculated by
Pearson (Figure 1b).
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3.2. GO and KEGG Pathway Enrichment Analysis of DEGs
The GO analysis revealed that DEGs are primarily enriched in biological processes

related to sterol, cholesterol, secondary alcohol, and other biological processes. DEGs
are mainly associated with negative regulation of cell development, mitochondrial ATP
synthesis‑coupled proton transport and basal plasma membrane, and other related cell
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components. DEGs are mainly related to PDZ domain binding, cell adhesion molecule
binding, ubiquitin‑like protein conjugating enzyme binding, and other molecular func‑
tions (Figure 2a,b).Additionally, the KEGG pathway analysis revealed that DEGs are pri‑
marily involved in the pathways for steroid biosynthesis, hedgehog signaling, terpenoid
backbone biosynthesis, amyotrophic lateral sclerosis, and melanoma (Table 1).
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Table 1. KEGG pathway enrichment analysis.

ID Description p‑Value Gene ID

mmu00100 Steroid biosynthesis 0.00000000256 Sc5d/Dhcr24/Hsd17b7/Tm7sf2/Lss/Dhcr7/Msmo1
/Sqle/Nsdhl/Cyp51

mmu04340 Hedgehog signaling pathway 0.000165308 Kif3a/Btrc/Bcl2/Smurf2/Prkacb/Cdon/Ccnd1/Kif7
/Spop/Csnk1d

mmu00900 Terpenoid backbone biosynthesis 0.000339229 Hmgcr/Hmgcs1/Fdps/Acat2/Pcyox1/Ggps1

mmu05014 Amyotrophic lateral sclerosis 0.000622229

Atp5h/Atg14/Chchd10/Atp5b/Atp5j/Atp5c1/Uqcr11
/Bcl2/Atp5o/Pik3r4/Wipi2/Optn/Cox6c/Cox7a1
/Tpr/Nup107/Nxt2/Cyc1/Atxn2l/Tuba1c/Tnfrsf1a
/Xbp1/Seh1l/Tubb2b/Tubb6/Hspa5/Map1lc3a/Dct

n2/Tuba1a/Bax

mmu05218 Melanoma 0.000991453 Cdh1/Igf1/Hgf/E2f1/Fgf1/Ccnd1/Gadd45a/Cdkn1a
/Bax/Fgf3

mmu04310 Wnt signaling pathway 0.001001666
Ctnnd2/Frzb/Daam2/Map3k7/Btrc/Dvl2/Fzd3/Fz
d1/AF366264/Prkacb/Ccnd1/Vangl1/Cxxc4/Siah1

b/Tle6/Rnf43/Fzd6

mmu05016 Huntington disease 0.001358182

Atp5h/Ppargc1a/Atg14/Atp5b/Atp5j/Atp5c1/Uqc
r11/Slc1a3/Atp5o/Pik3r4/Kcnj10/Wipi2/Sp1/Cox6
c/Cox7a1/Cyc1/Tuba1c/Vdac3/Tubb2b/Tubb6/Itp

r1/Dctn2/Tuba1a/Cltb/Bax

mmu05132 Salmonella infection 0.001392876

Dynlt3/Map3k7/Vps33a/Bcl2/Wasf3/Rab7b/Dynll
2/Tuba1c/Tnfrsf1a/Rhog/Myl12b/Tubb2b/Tubb6
/Pik3c2b/Podxl/Dctn2/Casp4/Tuba1a/Nfkbia/Rps3

/Casp7/Bax

mmu05226 Gastric cancer 0.00207011 Cdh1/Hgf/E2f1/Dvl2/Fgf1/Fzd3/Bcl2/Fzd1/Ccnd1
/Gadd45a/Abcb1a/Cdkn1a/Fzd6/Bax/Fgf3

mmu05012 Parkinson disease 0.002389542

Atp5h/Atp5b/Keap1/Atp5j/Atp5c1/Uqcr11/Atp5o
/Prkacb/Cox6c/Cox7a1/Mfn1/Cyc1/Tuba1c/Vdac3

/Maoa/Xbp1/Tubb2b/Tubb6/Hspa5/Itpr1/
Tuba1a/Bax
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3.3. PPI Network Construction and Core Genes Analysis
The STRING online tool was used to conduct a PPI network analysis of DEGs, which

resulted in the identification of interactions between 849 nodes (proteins related to DEGs
and their related proteins) and 3164 edges (differences between proteins related to DEGs
and their related proteins) (Figure 3). Cytoscape software was used to screen the top
10 core genes; common core genes in different algorithms areAtf3, Mmp2, and Sox9, which
are upregulated after SNI. Interestingly, the three core genes are all TFs (Table 2).
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Table 2. Top 10 core genes in different algorithms.

Different Algorithms

Bottleneck EPC Closeness Readiality

Top 10 core genes

Ank3 ↑ Smurf2 ↓ Ccl2 ↑ Ccl2 ↑
Cenpf ↑ Ace ↑ Ctgf ↑ Cenpf ↑
Atf3 ↑ Ccl2 ↑ Hgf ↓ Ctgf ↑
Gngt2 ↑ Ctgf ↑ Atf3 ↑ Atf3 ↑

Rab11fip5 ↑ Hgf ↓ Plau ↑ Plau ↑
Kif22 ↑ Atf3 ↑ Cdkn1a ↑ Cdkn1a ↑
Kif3a ↓ Cdkn1a ↑ Mmp2 ↑ Mmp2 ↑
Mmp2 ↑ Kif22 ↑ Igf1 ↓ Igf1 ↓
Igf1 ↓ Mmp2 ↑ Gm3839 ↑ Sox9 ↑
Sox9 ↑ Sox9 ↑ Sox9 ↑ Cks2 ↑

↑: Upregulated gene expression; ↓: Downregulated gene expression.

3.4. SNI Model and SGCs Culture
We located the sciatic nerve accurately (Figure 4) and built the mold. DRG cells were

isolated and cultured from the injured contralateral side in a particular medium. Then,
immunofluorescence was used to identify and culture the SGCs at 3d. The number of
positive cells expressing SGC‑specific markers GFAP and GS in the injury group was sig‑
nificantly higher than in the Sham group (Figure 5). The co‑labeling results of GS and Sox9



Brain Sci. 2023, 13, 281 8 of 14

are also shown, and they were significantly expressed in the injured group compared with
the Sham group (Figure 6). Simultaneously, stem cell characteristic markers Nestin and
p75NTR were labeled SGCs, and they were significantly expressed in the injured group
compared with the Sham group (Figure 7). These findings suggest that SGCs can be la‑
beled with Sox9, which may be a potential marker. In addition, stem cell markers Nestin
and p75NTR can also label SGCs, suggesting that SGCs may have stem‑like properties.
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3.5. Sox9 mRNA and Protein Expression
The results showed that mRNA expression of Sox9 in the SGCs injured group was

upregulated compared to that in the Sham group at 3d and 7d (Figure 8). The protein
expression of Sox9 in the SGCs injured group was upregulated compared to that in the
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Sham group at 7d (Figure 9). Collectively, these results suggest that mRNA and protein
expression of Sox9 in SGCs were increased after SNI.
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4. Discussion
SNI is the most prevalent PNS, characterized bymotor and sensory fiber damage [19].

After SNI, cell structure and function change the spatial distribution of motor neurons and
glial cells [20]. A study showed that glial cells in DRG play an important role in the model
of neuropathic pain and chronic constriction injury of the sciatic nerve, but the specific role
is still unclear. The regeneration process following SNI is related to biological activity in
DRG. The regeneration process involves several gene expression changes, among which
TFs play a crucial role [21]. The ability of TFs to induce cell differentiation, dedifferentia‑
tion, and transdifferentiation has been confirmed by many studies [22].

In this study, 991 DEGs, including 383 upregulated genes and 508 downregulated
genes, were discovered by integrating and analyzing the information on the gene expres‑
sion profile of SGCs following SNI. DEGs mostly concentrate on biosynthesis in biolog‑
ical processes. DEGs are mainly related to the negative regulation of cell development,
mitochondrial ATP synthesis coupled with proton transport, and matrix membrane. Re‑
gardingmolecular function, DEGs are associated with PDZ domain binding, cell adhesion
molecule binding, a ubiquitin‑like protein, coupling enzyme binding, etc. The KEGG anal‑
ysis showed that DEGswere predominantly abundant in the biosynthetic pathway, inflam‑
matory disease pathway, neurodegenerative disease pathway, and tumor signal pathway.

The core genes Atf3, Mmp2, and Sox9, which are all upregulated and appear simul‑
taneously according to the algorithm in the Cytohubba plug‑in, are selected by Cytoscape
after it analyzes the core genes in the PPI network.

Interestingly, the three core genes are TFs. TFs act as regulatory factors and select
genes, determining cell types, development patterns, and specific pathways (such as im‑
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mune response). According to the analysis of relevant literature, Atf3 does not exist in
the DRG neurons of normal adult rodents. Still, it is exhibited in the sensory neurons of
DRG after PNI and regulates axonal regeneration [23]. Lin JH et al. [24] concluded that
the expression of Atf3 in neurons of neurofilament heavy chain‑passive DRG in the acute
phase was a potential biological hallmark of chronic pain in the lumbar radiculopathy rat
model. Matrix metalloproteinases (Mmps) are inflammatory response proteins that regu‑
late extracellular matrix remodeling, cell interaction, and signal transduction [25]. Mmp2
is a gelatinase with several functions at the neurovascular interface [26]. Mmp2 can be
used as a molecular target of neuralgia in the DRG [27]. Sox9 is a member of the Sox TFs
family, closely associated with stem cell biology, cell reprogramming, lineage, and differ‑
entiation [28]. In the CNS glial region, Sox9 accumulates during development. According
to some research, Sox9 may regulate neurogenesis and mediate the switch from neuro‑
genesis to gliogenesis [29,30]. Qiu B’s team [31] showed that functional astrocytes might
be produced directly from fibroblasts by overexpressing the three TFs, NFIA, NFIB, and
SOX9. These induced astrocytes to express GFAP and S100β, and other astrocyte markers.
However, there are not many reports on Sox9 in PNS, which also aroused our interest.

Li’s team [32] found that three days after PNI, GFAP‑positive cells started to surround
DRG neurons, and these cells proliferated in vivo due to nerve injury. The progenitor cell
markers p75NTR and Nestin are expressed simultaneously by these types of proliferating
cells, which may represent SGCs. This is connected to the fact that, after PNI, the number
of sensory neurons in DRG initially decreased but then returned to normal levels after
a few months; however, the specific mechanism is yet unknown. Based on this, our team
developed a primary culturemethod that produced very pure SGCs from rat DRGwithout
digestion. The cells began to display themarkers for neural crest progenitor cells, p75NTR,
GFAP, and GS after three days of culture [18]. After SNI in mice, SGCs were isolated from
the DRG using the culture method. Immunofluorescence verified that they expressed the
glial cell markers GFAP and GS and the progenitor cell markers Nestin and p75NTR.

In comparison to before the injury, there were more tagged positive cells after the
nerve injury. SGCs, Sox9, and GS can be co‑labeled; after nerve injury, there were more
co‑labeled positive cells than before.

Sox9 is a CNS astrocyte marker [33] associated with astrogenesis and whose expres‑
sion in the brain affects both the development and survival of neuronal precursors and
neurons [34]. Sox9‑positive cells proliferate in the spinal cord parenchyma after spinal
cord injury and participate in the development of a glial scar [35]. In this study, we found
that Sox9‑positive cells in SGCs proliferated after PNI, and Sox9 mRNA and protein ex‑
pression increased by RT‑PCR and Western blotting, which was consistent with the trend
of Sox9 expression in integrated analysis. Sox9 was expressed in the PNS SGCs like the
CNS astrocytes, and its expression level increased in response to nerve injury. SGCs can
be labeled using Nestin and p75NTR. After PNI, the number of positive cells increases,
consistent with previous studies suggesting that SGCs may be peripheral glial cells with
stem cell characteristics [18]. This could be the difference between SGCs and astrocytes, or
it could be the determinant of the difference in the ability of the CNS and PNS to regen‑
erate differently.

Currently, the ideal treatment for SNI is autologous nerve transplantation. However,
this approach compromises healthy nerves, necessitates a highly intensive surgery, and
leaves room for other advanced transplantation options [36]. Using stem cells from neu‑
ral stem cells, bone marrow, adipose tissue, and embryonic stem cells has emerged as a
possible therapeutic approach for PNI. In animal models, inserting these cells into the sev‑
ered sciatic nerve can trigger nerve regeneration and myelin synthesis. In the next few
years, this treatment approach might become a conventional technology; however, further
research is required [37]. Microarray technology is used in the immune response, acute
inflammation, apoptosis, cell adhesion, ion transport, and extracellular matrix to screen
DEGs of SNI. Interleukin‑6, interleukin‑1, integrin, c‑sarcoma, cardiovascular antigen‑
related cell adhesion molecules, chemokine ligand, matrix metalloproteinase, etc., are im‑
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portant factors [38]. Studies suggest that regulating the inflammatory response is still ef‑
fective in promoting peripheral nerve regeneration [16,38]. TFs might offer new clues for
the study of SGCs and peripheral nerve regeneration.

5. Conclusions
In conclusion, this study used bioinformatics to analyze the gene expression profile in

SGCs following SNI and to screen the TF Sox9 thatmaydetermine the fate of SGCs. Further
investigation is required to understand how Sox9 regulates SGCs’ fate and mediates the
transformation between neurogenic and glial origins in PNS.
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