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Abstract: This study aimed to determine the effects of balance training with weight shift-triggered
electrical stimulation to improve balance, lower-extremity motor function, and activities of daily
living in patients with stroke. The participants were randomly allocated to the balance training
with electrical stimulation group (BT-ESG, n = 29) or the balance training group (BTG, n = 30). Both
groups were trained 5 times per week for 6 weeks for 50 min per session. To evaluate static balance,
postural sway was assessed and dynamic balance was assessed using the Berg Balance Scale (BBS),
Timed Up and Go (TUG) test, and functional reach test (FRT). Lower-extremity motor function was
assessed using the Fugl–Meyer assessment. Daily activities were assessed using the Modified Barthel
Index. As for static balance, BT-ESG showed a significant improvement compared to BTG in postural
swat in both the eyes-open (velocity moment; effect size, 0.88; 95% confidence interval, −1.16 to
−1.30), or eyes-closed state (velocity moment; effect size, 0.81; 95% confidence interval, −1.22 to
−0.27). Dynamic balance, which includes TUG (effect size, 0.90; 95% confidence interval, −4.67 to
−1.25), BBS (effect size, 1.26; 95% confidence interval, −2.84 to 6.83), and FRT (effect size, 1.45; 95%
confidence interval, 1.92 to 4.08), in addition to lower-extremity motor function (effect size, 1.38;
95% confidence interval, 2.25 to 4.97), and activities of daily living (effect size, 2.04; 95% confidence
interval, 2.04 to 937), showed significant improvement in BT-ESG compared to BTG. These results
suggest that balance training with weight shift-triggered electrical stimulation effectively improves
balance, lower-extremity motor function, and activities of daily living in patients with stroke.
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1. Introduction

Postural symmetry is essential for motor system function. The ability to transfer
weight from one leg to the other is a fundamental component of walking and activities of
daily living (ADL) [1]. Significant problems in chronic stroke patients include asymmetrical
weight-bearing, body imbalance, and defects in weight transfer ability [2]. Patients with
hemiplegia due to stroke show unbalanced weight-bearing, with less than 25–43% of the
body weight on paretic limbs in the standing position [3–5]. Chronic stroke patients adopt
compensatory strategies and an asymmetrical posture that puts less weight on the paretic
limb, thereby not putting weight on the paretic limb [2,6]. This imbalance between the
paretic and non-paretic limbs significantly reduces the walking ability of chronic hemiplegic
patients, putting them at risk of falls and limiting their ADL [6,7]. The ideal goal in the
functional rehabilitation of stroke patients is to restore their walking ability by maintaining
a symmetrical posture with even weight support [2].

Electrical stimulation has been used for various purposes in the rehabilitation of
stroke patients. It is an effective method for improving balance and walking ability and
restoring posture and motor function [8]. Neuromuscular electrical stimulation induces
muscle contraction on the paralyzed side and is widely used to prevent foot drop during
gait training in patients with stroke [9]. Electrical stimulation induces functionally useful
movements in muscles that cannot control voluntary movements in the central nervous
system, thereby increasing the strength of specific muscles [10].
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Electrical stimulation reportedly has the ability to improve the lower-extremity motor
function of stroke patients [9,10]. However, it is necessary to induce muscle contraction at a
specific time because equal weight-bearing is delayed, but current methods are insufficient.
Thus, an electrical stimulation intervention method that can improve weight distribution
and postural control ability between the paretic and non-paretic sides of stroke patients
is needed.

An intelligent healthcare system that can help improve health based on IT technology
has recently emerged [11,12]. In particular, as smartphones have become popular, technol-
ogy that connects wearable devices that record health-related information and smartphones
to provide this information has developed [13]. Wearable devices help health management
by collecting data on patterns such as the number of steps, amount of physical activity,
movement, and posture [14]. The use of wearable devices in the rehabilitation area can
effectively promote motor learning by providing information accurately and quickly in
real time [14].

Previous studies demonstrated the effectiveness of weight transfer training through
biofeedback in hemiplegic patients at improving balance and walking ability [15]. As such,
the augmentative feedback-based training method, which is useful in clinical practice,
is being studied in various ways to improve patient function [16]. Stroke patients wore
smart shoes and a wearable device and were trained with reinforcement feedback to reduce
weight dependence of the non-paretic limb and improve gait asymmetry in the increased
stance and single-support phases of the paretic limb [17,18].

Therefore, we hypothesized that weight dependence focused on the non-paretic limb
could be controlled using balance training that induces equal weight support with electrical
stimulation feedback, along with a pneumatic-pressure insole. We also believed that it
would improve balance, lower-extremity motor function recovery, and ADL in patients
with stroke. This study aimed to investigate the effects of balance training with weight
shift-triggered electrical stimulation on static balance, dynamic balance, lower-extremity
motor function recovery, and ADL in hemiplegic patients.

2. Materials and Methods
2.1. Subjects

Participants were recruited from chronic stroke patients hospitalized at S Hospital in
Seoul, South Korea by publicizing the research purpose and inclusion criteria. In addition,
the current study recruited late chronic phase patients whose onsets were more than
a year without spontaneous recovery to observe the effects of intervention even more
clearly. Among stroke patients, those who understood verbal instructions and had a Mini-
Mental State Exam score of ≥24 were included. Those who could stand independently
without assistance, with a Brunnstrom motor recovery level ≥4, with severe neglect or
musculoskeletal abnormalities, with superficial metal (e.g., staples, pins and external
fixators), who were suffering from cerebellar disease or dizziness, or with cardiovascular
disease were excluded.

Among the patients who wished to participate, those who met the selection criteria
were given an explanation of the study purpose, procedures, and precautions and were
included upon completing a voluntary consent form. The study was approved by the
Research Ethics Committee of Kyungdong University.

This was a randomized controlled trial. Because the intervention was an exercise,
blinding of the therapist was not performed, and only the assessor was blinded so that the
subject did not know the group allocations. A pilot study using the same exercise protocol
was conducted to determine the sample size. Outcome measures in the pilot study were
the Timed Up and Go (TUG) test, Berg Balance Scale (BBS), and functional reach test (FRT).
We determined the effect size (f = 0.29) based on the value of the TUG test from the pilot
study. The alpha error was set to 0.05, and the power was set to 0.8. Therefore, a total of
26 participants were required. Considering a dropout rate of 10%, 30 participants per group
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were selected. G* Power version 3.19 (Heinrich Heine University Düsseldor, Düsseldorf,
Germany) was used for the sample size calculations.

2.2. Experimental Procedure

Seventy-five patients were recruited for the study. After receiving an explanation
of the study procedure, eight people refused to participate, while another seven were
excluded because they did not meet the selection criteria. Sixty subjects were randomly
assigned to the balance training with electrical stimulation group (BT-ESG; n = 30) or the
balance training group (BTG; n = 30). To minimize selection bias, a computer program
called Random allocation software (version 2.0) (M. Saghei, Isfahan, Iran) was used [19],
and the ratio of the two groups was 1:1, and the sequence of patients was in the order of
patient number.

Subjects in the BT-ESG performed balance training for 50 min 5 times per week for
6 weeks using a weight shift-triggered electrical stimulation device. Subjects in the BTG
performed balance training for 50 min 5 times per week for 6 weeks without a weight
shift-triggered electrical stimulation device. Pre- and post-tests were conducted to evaluate
the effectiveness of training before and after intervention. The primary outcome was
static balance and dynamic balance, and lower-extremity motor function and ADL were
evaluated as a secondary outcome. All evaluations were performed in triplicate and
averaged by three physiotherapists. All tests were performed by raters blinded to the
participants’ information. Participants who were unable to continue the program due to
changes in their medical condition during the intervention period and those participating
in less than 80% of the total program were excluded from the final study. In the BT-ESG,
one patient who was transferred to another hospital during the experiment was excluded,
while no subjects in the BTG dropped out.

Finally, 29 individuals from the BT-ESG and 30 from the BTG participated. All subjects
underwent pre- and post-tests, and data from these tests were statistically analyzed (Figure 1).
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2.3. Experimental Method
2.3.1. Weight Shift-Triggered Electrical Stimulation Device

The weight shift-triggered electrical stimulation device triggers a low-frequency output
and induces muscle contraction when a decrease in the pressure signal is detected by the
insole pressure-measuring device inside the shoe.

We developed an insole-type pressure-measuring device to measure the weight shift
in stroke patients. The device measured the air pressure recorded by the weights of both
feet. The weight-bearing ratio is calculated by converting the force applied to the affected
and unaffected sides from the sum of both feet. The device consisted of an insole with an
air tube, a central device, and a control unit. The air insole measures the pressure caused
by the air cap inserted into the sole using an air pressure-measuring device. It wirelessly
transmits signals to the central device, which sends signals from both feet to the control
device. The control device was developed as a smart phone application.

When the patient tried to transfer the weight from the healthy side to the affected side,
the weight support rate of the healthy side decreased, and the electric stimulation device
operated as a trigger. Two electrical stimulation devices (EMS-1000; Cyber Medic, Iksan,
Republic of Korea) with two channels were used. Electrodes were attached to the rectus
femoris, biceps femoris, gastrocnemius lateral head, and tibialis anterior muscle bellies,
which are important muscles for weight bearing [20–22]. Activation was checked every
time training was performed, and the position of the electrodes was attached. All electrodes
were square hydrogel electrodes (HRTS50AP 50 × 54 mm2; Hurev, Wonju, Republic of
Korea). When 90% of the measured value was reached in the insole-type measuring
device on the unaffected side, the electrical stimulation device was triggered and the
threshold value was adjusted according to individual characteristics. Electrical stimulation
was delivered to the muscles through electrodes when the input stimulation reached a
threshold. A rectangular two-phase pulse with a pulse width of 300 µs was used. Pulse
intensity (mA) was chosen to elicit contraction of the affected limb according to the target
intensity (5–60 mA; mean, 16–18 mA). The standard current frequency is 30–35 Hz. Patients
were asked to contract lower-extremity muscles when actively supporting weight. The
intensity of the electrical stimulation was below the level of inducing muscle contraction.
The intensity was adjusted for each patient according to the patient’s muscle contraction
ability and sensory state (Figure 2).
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2.3.2. Balance Training Program

The balance training program was designed to improve weight shift in stroke patients
and was based on the exercise programs of previous studies. The total exercise time was
50 min and consisted of 10 min of warm-up, consisting of stretching and a range of motion
exercises to relieve spasticity and leg muscle massage, 30 min of main exercise with weight
shift as the main exercise, and 10 min of cool-down. The weight shift exercises included the
following: (1) sideways weight shift; (2) diagonal forward shift; (3) diagonal back weight
shift; (4) weight shift up a short flight of stairs; (5) weight shift down a short flight of
stairs; and (6) sideways weight shift on the platform. Each patient’s functional ability was
evaluated and the program was configured accordingly.
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2.4. Outcome Measurements
2.4.1. Static Balance Ability

A postural assessment system (GB300; Metitur Ltd., Jyvaskyla, Finland) was used
to measure static balance ability. The system consisted of a movable triangular platform
for feet marked with a ruler on the platform for proper foot positioning. It was used
to determine the balance and rehabilitation outcomes and administer the training. This
instrument has been widely used to measure balance in adults, the elderly, and stroke
patients [23–25]. In the test–retest method, the intraclass correlation coefficient (ICC; 0.83)
of the measuring instrument exceeded 0.83 [26]. The sampling frequency was 50 Hz. The
subject stood still on the equipment with eyes open for 30 s 3 times. The subjects were then
measured 3 times while standing forward for 30 s with closed eyes.

2.4.2. Dynamic Balance Ability

The TUG test is used to evaluate the dynamic balance ability of stroke patients. The
TUG test is a simple and rapid functional movement test, consisting of standing up, walking
3 m, returning, and sitting back down. It measures the time taken to sit in a chair with
armrests and a backrest, stand up, walk 3 m, walk back, and return to sitting in the chair.
This test measures the dynamic balance, functional movement, and gait ability of stroke
patients with lower-extremity disabilities such as spasticity. It is a highly reliable and valid
method for assessing risk (ICC = 0.99) [27]. In this experiment, a chair with a height of
50 cm was used for measurements. The measurements were performed three times using a
stopwatch, and the mean value was calculated and recorded.

The FRT was used to evaluate stability limits. During this measurement, the subject
stood approximately 10 cm away from the wall, bent their shoulder at 90◦, made a fist, and
extended their arm forward as far as possible parallel to the floor. The evaluation–revaluation
reliability and inter-measurement reliability were high at r = 0.89 and r = 0.98, respectively [28].
In this experiment, three measurements were performed and the mean was recorded.

The BBS is used to measure balance in patients with stroke or older adults. The 14 items
were scored on a 5-point scale from 0 to 4 for a total possible score of 56. This tool has high relia-
bility and internal validity for assessing balance ability (r = 0.99 and r = 0.98, respectively) [29].

2.4.3. Lower-Extremity Motor Function

Lower-extremity motor function was assessed in this study using the Fugl–Meyer
assessment lower-extremity scale, which assesses functional recovery in patients with
stroke. Each item on the test was rated on the following 3-point scale: 0 points for not being
able to progress, 1 point for partial task completion, and 2 points for full task completion.
The perfect score for lower-limb function was 34 points, and the test items consisted of
the hip, knee, ankle, and coordination joints. Moreover, it is possible to evaluate balance,
sensation, and pain; however, only lower-extremity function was considered in this study.
This test has good inter- (r = 0.94) and intra-rater (r = 0.99) reliabilities [30].

2.4.4. Activities of Daily Living (ADL)

The Modified Barthel Index (MBI) was used to evaluate the subjects’ ADL. The MBI is
a scale that can be used to evaluate the level of performance in daily life. It includes the
following 10 items: personal hygiene, bathing, feeding, toileting, stair climbing, dressing,
bowel control, bladder control, ambulation, wheelchair transfer, and mobility. Each item
was scored numerically according to the degree of assistance required by the individual.
The maximum score for each figure is 100 points. A score of 0–24 indicates complete
dependence, 25–49 indicates severe dependence, 50–74 indicates moderate dependence, and
75–90 indicates little dependence. The inter- (r = 0.99) and intra-rater (r = 0.99) reliabilities
were high [31].
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2.5. Data Analysis

The Statistical Package for the Social Sciences (SPSS version 19; IBM, Armonk, NY,
USA) was used for the statistical analysis. To confirm the assumption of data normality,
the Shapiro–Wilk test was used, which confirmed that the assumption of normality was
satisfied. Two-way repeated measure ANOVA was used to analyze the main effects of
“training type” (BT-ESG or BTG) and “time” on static and dynamic balance and function,
and the interaction of treatment type and time was analyzed. Before and after comparisons
within groups were analyzed using a paired t-test. Effect sizes were calculated to assess
the strength of the training effect, and 95% confidence intervals, which reflect the actual
changes in addition to errors, were calculated. The statistical significance level (α) was set
at p < 0.05.

3. Results
3.1. General Characteristics of the Subjects

Sixty subjects were enrolled in this study. Of them, one from the BT-ESG dropped out,
while all the subjects from the BTG completed the study. A total of 59 subjects completed
the study. Before the intervention, the general characteristics of the two groups were
homogeneous (Table 1).

Table 1. General characteristics of the subjects.

BT-ESG
(n = 29)

BTG
(n = 30) χ2/t p

Age (year) 66.24 ± 7.01 68.87 ± 7.30 1.409 0.164
Height (cm) 163.48 ± 7.46 161.93 ± 10.20 0.664 0.509
Weight (kg) 60.50 ± 8.01 60.93 ± 8.64 0.199 0.843

Body mass index (point) 22.60 ± 2.34 23.16 ± 1.81 1.033 0.306
Duration of stroke (month) 14.17 ± 5.87 16.33 ± 5.84 1.417 0.162

MMSE 25.83 ± 1.23 25.53 ± 1.01 1.008 0.318
MBI 52.99 ± 8.52 54.92 ± 8.96 0.846 0.401

Gender (male/female) 16/13 17/13 0.013 0.908
Paretic side (right/left) 15/14 20/10 0.243 1.364

Stroke type (infarction/hemorrhage) 19/10 18/12 0.661 0.192

Values are expressed as mean ± standard deviation. The independent t-test and chi-squared tests were used to
compare the dependent variables between the two groups. BT-ESG, balance training with electrical stimulation
group; BTG, balance training group; MMSE, Mini-Mental State Examination; MBI, Modified Barthel Index.

3.2. Changes in Static Balance Ability

Changes in static balance ability, medial and lateral sway speed, anterior and posterior
sway speed, and velocity of moment variables showed significant improvement after the
intervention in both groups, regardless of the eyes-open or eyes-closed state (p < 0.05).
However, the BT-ESG showed greater improvement than the BTG (p < 0.05) (Table 2).

Table 2. Changes in static balance ability.

BT-ESG
(n = 29)

BTG
(n = 30)

Time
F(p)

Interaction
F(p)

Effect Size
(d)

CI for
Differences

Lower Upper

EO
M-L speed (mm/s)

Pre 4.08 ± 1.36 4.12 ± 1.36
Post 2.93 ± 0.66 3.56 ± 1.02 50.691 6.115 −1.07 −0.11

Pre–Post −1.15 ± 1.01 * −0.56 ± 0.83 * (0.000) (0.016) 0.64

EO
A-P speed (mm/s)

Pre 5.99 ± 1.49 6.17 ± 1.28
Post 4.70 ± 1.42 5.50 ± 1.33 127.546 12.789 −0.97 −0.27

Pre–Post −1.30 ± 0.76 * −0.67 ± 0.57 * (0.000) (0.001) 0.93
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Table 2. Cont.

BT-ESG
(n = 29)

BTG
(n = 30)

Time
F(p)

Interaction
F(p)

Effect Size
(d)

CI for
Differences

Lower Upper

EO
Velocity moment

(mm2/s)

Pre 4.33 ± 1.41 4.28 ± 1.17
Post 2.84 ± 1.40 3.52 ± 1.24 108.358 11.436 −1.16 −0.30

Pre–Post −1.48 ± 0.69 * −0.76 ± 0.94 * (0.000) (0.001) 0.88

EC
M-L speed (mm/s)

Pre 4.35 ± 1.36 4.39 ± 0.97
Post 3.21 ± 0.93 3.88 ± 1.11 83.943 12.052 −0.99 −0.26

Pre–Post −1.14 ± 0.75 * −0.51 ± 0.63 * (0.000) (0.001) 0.90

EC
A-P speed (mm/s)

Pre 5.92 ± 1.76 5.57 ± 0.81
Post 5.02 ± 1.42 5.11 ± 0.91 91.159 9.877 −0.73 −0.16

Pre–Post −0.09 ± 0.57 * −0.46 ± 0.53 * (0.000) (0.003) 0.82

EC
Velocity moment

(mm2/s)

Pre 5.02 ± 1.96 4.61 ± 1.79
Post 3.69 ± 1.47 4.02 ± 1.68 64.438 9.766 −1.22 −0.27

Pre–Post −1.33 ± 0.94 * −0.58 ± 0.88 * (0.000) (0.003) 0.81

Values are expressed as mean ± standard deviation. * means significant difference within groups. BT-ESG, balance
training with electrical stimulation group; BTG, balance training group; EO, eyes open; EC, eyes closed; M-L,
mediolateral; A-P, anterioposterior; CI, confidence interval.

3.3. Changes in Dynamic Balance Ability

The BT-ESG and BTG showed significant improvements in TUG and BBS scores after
training, with significantly better improvements in the former versus latter (p < 0.05) (Table 3).

Table 3. Changes in dynamic balance ability.

BT-ESG
(n = 29)

BTG
(n = 30)

Time
F(p)

Interaction
F(p)

Effect Size
(d)

CI for Differences
Lower Upper

TUG
(sec)

Pre 36.05 ± 4.41 34.58 ± 4.58
Post 30.99 ± 3.99 32.48 ± 5.11 0.552 12.014 −4.67 −1.25

Pre–Post −5.06 ± 2.74 * −2.10 ± 3.72 * (0.000) (0.000) 0.90

BBS
(point)

Pre 28.69 ± 6.89 29.70 ± 7.37
Post 34.86 ± 6.45 31.03 ± 6.75 56.721 23.577 2.84 6.83

Pre–Post 6.17 ± 4.71 * 1.33 ± 2.71 * (0.000) (0.000) 1.26

FRT
(cm)

Pre 14.56 ± 3.73 12.89 ± 3.53
Post 17.99 ± 3.82 13.32 ± 3.84 51.188 30.922 1.92 4.08

Pre–Post 3.43 ± 2.72 * 0.43 ± 1.13 * (0.000) (0.022) 1.45

Values are expressed as mean ± standard deviation. * means significant difference within groups. BT-ESG, balance
training with electrical stimulation group; BTG, balance training group; TUG, Timed Up and Go test; BBS, Berg
Balance Scale; FRT, functional reach test; CI, confidence interval.

3.4. Changes in Lower-Extremity Motor Function and ADL

Both the BT-ESG and BTG showed significant improvements in the Fugl–Meyer
assessment lower-extremity scale and MBI scores after training, with significantly better
improvements in the former versus latter (p < 0.05) (Table 4).

Table 4. Changes in lower-extremity motor function and ADL.

BT-ESG
(n = 29)

BTG
(n = 30)

Time
F(p)

Interaction
F(p)

Effect Size
(d)

CI for Differences
Lower Upper

FMA
(point)

Pre 15.10 ± 3.03 14.74 ± 3.22
Post 19.84 ± 4.57 15.87 ± 2.64 74.366 28.130 2.25 4.97

Pre–Post 4.74 ± 3.39 * 1.13 ± 1.53 * (0.000) (0.000) 1.38

MBI
(score)

Pre 52.99 ± 8.52 54.92 ± 8.96
Post 60.79 ± 12.58 57.01 ± 8.10 71.552 23.817 2.04 9.37

Pre–Post 7.80 ± 5.72 * 2.09 ± 8.10 * (0.000) (0.000) 0.81

Values are expressed as mean ± standard deviation. * means significant difference within groups. BT-ESG, balance
training with electrical stimulation group; BTG, balance training group; FMA, Fugl–Meyer assessment; MBI,
Modified Barthel Index; CI, confidence interval.
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4. Discussion

Electrical stimulation is a harmless method used to enhance the activation of residual
muscles. In a study of stroke patients, electrical stimulation was used to recover patients
with reduced function or paralysis [9,10]. In this study, it was applied to the four lower-
extremity muscles that are necessary for weight support by triggering a weight shift, and
muscle contraction was induced at an appropriate time to support weight support. Electri-
cal stimulation induces direct muscle mobilization, unlike visual or auditory feedback [32]
used in previous balance training studies. In this study, both groups showed significant
improvements in static balance, dynamic balance, lower-extremity motor function, and
ADL, and the BT-ESG showed significant improvement versus the BTG.

Maintaining postural balance is a complex task that requires appropriate sensory
inputs and motor control [33]. An asymmetrical weight load causes the center of gravity to
become unstable, increasing movement variability and making balancing difficult, owing
to postural fluctuations. In this study, static balance ability was evaluated using postural
sway, while dynamic balance ability was assessed using the TUG, FRT, and BBS. Both
groups showed significant improvement, while the BT-ESG showed greater improvement
than the BTG.

In this study, postural sway in the BT-ESG improved with a mediolateral speed increase
of 28.2%, anterioposterior speed of 21.5%, velocity moment of 34.4% with eyes open and
mediolateral speed of 26.2%, anterioposterior speed of 15.2% and velocity moment of
26.5% with eyes closed, while postural sway in the BTG improved with a mediolateral
speed increase of 13.6%, anterioposterior speed of 10.9%, velocity moment of 17.8% with
eyes open and a mediolateral speed of 11.6%, anterioposterior speed of 8.3% and velocity
moment of 12.8% with eyes closed. In this study, postural sway in the BT-ESG showed
more remarkable improvement compared to the BTG.

Even when proprioception is normal, postural sway increases more when the eyes
are closed versus open [34]. In particular, when proprioception is impaired, such as in
stroke patients, postural agitation becomes more severe when the eyes are closed [35].
Lobo et al. [36] showed that weight shift training and proprioceptive training improved
the balance ability of stroke patients. Weight-bearing training, which induces a shift
in the center of gravity toward the midline, reportedly improves joint stability, postural
control, and balance by promoting load receptor feedback to the central nervous system and
forcing the paralyzed limb to bear weight [36,37]. Cha et al. [38] reported that weight shift
training is an intervention that can improve stroke patients’ proprioceptive and balance
abilities. Moreover, applying somatosensory stimulation, such as electrical stimulation
and manipulation of the surface beneath the feet to alter the proprioceptive input to the
legs, effectively improves the sensory retraining and balance ability of stroke patients [8].
In this study, postural agitation improved more significantly in the BT-ESG than the BTG
with electrical stimulation along with balance training, in which an insole-type pressure-
measuring device was inserted under the foot of a chronic stroke patient and weight
support was induced.

With dynamic balance, the TUG time showed a decrease of 14%. Since the TUG test
includes gait, sitting, standing, and turning, balance ability is a predictor of gait [39]. The
FRT showed an improvement of 23.6%, confirming improved stability. The BBS showed
a 21.5% improvement, confirming that it is an intervention method that can mitigate the
risk of falling. In this study, the progress of balance ability is thought to include improved
postural symmetry by enhancing lower-limb muscle activation on the affected side and
the weight-bearing capacity of the affected side. Previous studies reported that improving
muscle tone, joint flexibility, and lower-extremity symmetry on the affected side improved
balance ability [40–42].

Balance training with weight shift-triggered electrical stimulation was performed in
stroke patients with asymmetrical weight-bearing, that is, asymmetrical plantar pressure,
improved motor function, stimulated sensory input on the paralyzed leg, and repetitive
use of the non-paretic leg. In this balance training program, weight shift-triggered electrical
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stimulation was provided so that the weight load could be symmetrically induced, while
the center of the body moved in various directions in a standing position. Feedback made
the subject aware of the incorrect posture, and their balance ability was improved because
muscle contraction of the paretic leg was induced.

Alhirsan et al. [43] and Lin et al. [44] reported that repetitive task performance without
feedback in stroke patients could continuously increase compensatory actions, create an
inappropriate posture, and negatively restore motor function. In this study, the movement
of hip extension on the affected side led to the improvement of dynamic balance by promot-
ing weight-bearing and electrical stimulation on the affected side. When severe postural
fluctuations occur while maintaining balance, the hip joint strategy is used, and the FRT
evaluates the limit of stability while using the hip joint strategy as much as possible [28,45].
Balance training with weight shift-triggered electrical stimulation improved the dynamic
balance ability by increasing the weight-bearing rate on the paralyzed side. Moreover,
these results were consistent with those of a previous study that reported that dynamic bal-
ance was improved through weight shift training for stroke patients and a previous study
reported that it was more beneficial to improve balance when combined with electrical
stimulation balance training [46]. This finding is consistent with the results reported by
Mahmoudi et al. [47].

A significant cause of postural balance problems in stroke patients is an imbalance in
lower-extremity function and muscle activity between the affected and unaffected sides.
The current study attempted to improve the lower-extremity function of the affected
leg through balance training, which induces muscle contraction by triggering electrical
stimulation of the affected leg. Since the Fugl–Meyer assessment lower-extremity scale
evaluates voluntary movement and active contraction of the leg, it proved the effectiveness
of this training for inducing muscle contractions in the affected leg [48]. In this study,
the Fugl–Meyer assessment lower-extremity scale showed an improvement of 31.4%, con-
firming that the lower-extremity function was improved. Previous studies also reported
that neuromuscular electrical stimulation and weight shift training reduced muscle tone
through muscle activity on the affected side and improved lower-limb functional recov-
ery [49,50]. Balance training with weight shift-triggered electrical stimulation is thought to
lead to changes in lower-limb function by promoting the use of the affected side.

As for ADL, both groups showed significant improvement in the MBI score, but a
greater improvement was observed in the BT-ESG. In previous studies, balance training
seemed to have a positive effect by improving ADL in stroke patients [51]. These results
are consistent with previous research results, showing that balance has a high correlation
with ADL [52]. In this study, improved weight transfer ability improved balance ability
and lower-limb function, which impacted daily life.

In this study, balance training with weight shift-triggered electrical stimulation im-
proved balance ability and lower-extremity function, improving daily life movements.
However, since no gait measurement was performed, it is difficult to conclude whether
improvements in balance ability, lower-extremity function, and ADL are correlated with
gait ability and the risk of falling. In addition, since all the study participants were chronic
stroke patients with stroke onset of more than 1 year, the effect of the intervention cannot
be generalized to all patients. Further research is needed to address these points.

5. Conclusions

Balance training with weight shift-triggered electrical stimulation, compared with
balance training alone, resulted in significant improvements in static balance, dynamic
balance, lower-extremity motor function, and ADL in chronic stroke patients. Since the
primary outcome of this study used several primary variables for dynamic and static
balance, multiplicity adjustment was clearly important. Our findings suggest that balance
training with weight shift-triggered electrical stimulation can help to improve the postural
symmetry and functional movements of stroke patients.
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