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Abstract: Background: Rabbit models involving neck arteries are of growing importance for the
development of preclinical aneurysm models. An optimal understanding of the anatomy is primordial
to allow the conception of models while minimizing mortality and morbidity. The aim of this study is
to give reliable anatomical landmarks to allow a standardized approach to the neck vessels. Methods:
We performed a necropsy on nine specimens from ongoing experimental studies. We measured the
distance between the origins of the right and left common carotid artery (rCCA/lCCA) and between
the rCCA and the manubrium sterni (MS). The structures at risk were described. Results: Female
New Zealand White rabbits (NZWR) weighing 3.7 ± 0.3 kg and aged 25 ± 5 weeks were included.
The rCCA origin was located 9.6 ± 1.2 mm laterally and 10.1 ± 3.3 mm caudally to the MS. In all
specimens, the lCCA originated from the aortic arch, together with the brachiocephalic trunk (BCT),
and 6.2 ± 3.1 mm proximally to the rCCA origin. The external and internal jugular veins, trachea
and laryngeal nerve were the main structures at risk. Conclusions: The data help to localize both
CCAs and their origin to guide surgical approaches with the manubrium sterni as a main landmark.
Special attention has to be paid to the trachea, jugular veins and laryngeal nerves.

Keywords: aneurysm; animal model; New Zeeland White Rabbit; carotid arteries; anatomy

1. Introduction

Due to its availability and easy handling, the rabbit model has been widely established
and well characterized for preclinical studies [1]. Its vascular anatomical, physiological
and hemodynamical characteristics, close to humans, make it an ideal model for vascu-
lar pathologies and, more specifically, to study the pathophysiology and treatments of
aneurysms [2–8]. The surgical creation of aneurysms is usually performed on rabbit neck
arteries, which have a comparable diameter to the human brain’s major arteries (such as the
middle cerebral artery). Among the various existing models, the elastase-digested stump
aneurysm, consisting of an endovascular application of the elastase enzyme at the origin of
the right common carotid artery (rCCA) and the ligation of the artery, is probably the most
common one [9–12]. However, the procedure can be associated with complications and
additional mortality due to the presence of the aberrant origin of the tracheoesophageal
branches and the superior thyroid artery from the proximal portion of the CCA [13]. In
order to overcome this issue, research groups developed an open technique to expose the
rCCA at its origin and surgically temporarily clip the vessel during the application of the
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elastase solution and ligate the artery afterward [9,12]. Furthermore, complex aneurysm
creation, such as bifurcation aneurysm models, always implies an open approach, including
the dissection of the neck arteries and microsurgical anastomosis [14–16], where a good
knowledge of anatomy is mandatory to avoid lesions of vital structures, such as the trachea,
great vessels (arteries and veins) and nerves of the neck, as well as the pleura. However, the
exact vascular anatomy of the rabbit is not well described, and previous radiological studies
have suggested a high variability in the anatomical position of vascular structures [17,18].
Moreover, the region of the CCA’s origin contains the above-mentioned vital structures,
which can be at risk of damage during aneurysm creation surgeries.

The aims of this work are to describe reliable landmarks for the localization of the
origin of the CCAs; to observe how the anatomical variation of the vessels may impact
the surgical approach; and to describe which anatomical structures are at higher risk of
damage during surgeries on the neck arteries.

2. Materials and Methods
2.1. Study Design and Animals

In this study, n = 9 cadavers of female New Zealand White (NZW) rabbits (Charles
River Laboratories) weighing 3.7 kg (±360 g) and with a mean age of 25 ± 5 weeks were
included. Specimens were received after euthanasia, performed in the setting of previ-
ous experimental series. The original studies were performed in accordance with the
institutional guidelines for the care and use of experimental animals and following the
ARRIVE guidelines. They were approved by the animal care committee of the Canton
of Bern, Switzerland (approval number BE 108/16). Euthanasia was performed by intra-
venous injection of pentobarbital 120 mg/kg (Esconarkon ad us. vet., Streuli, Switzerland).
Dissection and anatomical measures were performed immediately after euthanasia.

2.2. Approach and Measures

Each rabbit was dissected in the region of the neck from the larynx to approximately
the third rib in order to expose the great vessels of the neck and the surrounding structures.
After a median skin incision, the musculature of the neck was exposed and dissected. The
sternocephalicus muscle (SCM) was reclined rostrally in order to expose the underlying
vessels. The tissues around the CCAs were dissected to allow good visibility of the vascular
structures and surrounding nerves. To access the region of the brachiocephalic trunk
and the rCCA origin, the medial part of the first rib was removed. The brachiocephalic
trunk (BCT), rCCA and left CCA (lCCA) were exposed to allow for measurements. The
distance between the rCCA origin and manubrium tip (incisura jugularis) was measured
in craniocaudal and mediolateral directions using a tape ruler and a measuring clip. In the
same way, the distance between both rCCA and lCCA origins was recorded. Lastly, we
identified both CCAs’ origins and classified them into 3 variations, based on the previously
described classification by Ding et al. [17]: Type 1: lCCA originating from the bifurcation of
the aortic arch and the BCT; Type 2: lCCA originating from the aortic arch; Type 3: lCCA
originating from the BCT itself, next to the rCCA (Figure 1).

2.3. Neck Dissection

In order to describe the relevant anatomical structures at risk during an approach
to the rCCA, we performed a complete neck dissection. Each step was photographically
documented and every structure was described, based on anatomical atlas references [19,20].
First, a median skin incision was performed from the manubrium tip to the hyoid bone.
The fat pad was removed in order to expose the superficial musculature (Figure 2A). The
descending pectoral muscle (DPM) (Figure 2B), first rib and tip of the manubrium were
removed to allow access to the caudal part of the great vessels (Figure 2C). Meticulous
soft tissue dissection around the vascular and neural structures was performed in order to
follow the courses of the structures. Both sternocephalicus muscles (SCMs) were cranially
reclined to access the deep musculature (Figure 2D), and finally, the sternothyroid muscle
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(STM), running above the trachea, was cranially reclined, and pericardial fat was exposed
(Figure 2E). Pericardial fat was finally removed to expose the heart and the origin of
the great vessels (Figure 2F). The structures identified to be at risk during the approach
to the neck vessels were defined as structures in direct contact with the carotid arteries
or structures that have to be strongly manipulated during the approach. These were
documented in detail.
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Figure 1. Classification of the three CCAs’ origin variations. Type 1: lCCA originating from the
bifurcation of the aortic arch and the BCT (A); Type 2: lCCA originating from the aortic arch (B); Type
3: lCCA originating from the BCT, next to the rCCA (C).
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Figure 2. Illustration of the dissection step by step. (A) After median skin incision and fat pad
resection. (B) After removal of the lDPM and first rib on the left side. (C) After removal of the rDPM
and first rib on the right side. (D) After section and reclination of both SCM. (E) After section and
reclination of the STM. (F) After dissection of the heart cavity. Note the reclined SCM/STM in the
white triangles in (D–F).
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3. Results

The tip of the manubrium sterni is a reliable landmark to guide dissection and find
the origin of the rCCA, which should be located about 1 cm laterally and 1 cm caudally to
it. The sternocephalicus muscle is a good landmark to find and follow the course of the
CCAs on both sides of the trachea. During dissection, special attention should be paid to
the jugular veins, the laryngeal nerves and the trachea itself.

3.1. Distance between rCCA’s Origin, Manubrium and lCCA’s Origin

The mean distance between the origin of the rCCA at the BCT and the tip of the
manubrium in the mediolateral direction was 9.6 mm ±1.2 mm. In the craniocaudal
direction, the mean distance was 10.1 mm ±3.3 mm. Detailed data are shown in Table 1
and Figure 3. The mean distance separating the origin of the rCCA and the lCCA was
6.2 mm ±3.1 mm. Detailed data are shown in Table 2 and Figure 3.

Table 1. Measured distance between the tip of the manubrium and the origin of the right com-
mon carotid artery at the brachiocephalic trunk in a mediolateral direction (SD ± 1.2 mm) and a
craniocaudal direction (SD ± 3.3 mm).

Animal Number Mediolateral Direction (mm) Craniocaudal Direction (mm)

1 10 8

2 10 7

3 10 10

4 10 8

5 8 6

6 12 15

7 9 12

8 9 15

9 8 10

Mean (±SD) 9.6 (±1.2) 10.1 (±3.3)

Table 2. Measured distance between both origins of the common carotid arteries (SD ± 3.1 mm).

Animal Number Distance (mm)

1 4

2 4

3 6

4 4

5 12

6 4

7 8

8 4

9 10

Mean (±SD) 6.2 (±3.1)
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Figure 3. Measured distance between the tip of the manubrium and the origin of the right com-
mon carotid artery at the brachiocephalic trunk in a mediolateral direction (SD ± 1.2 mm), in the
craniocaudal direction (SD ± 3.3 mm) and distance between RCCA and LCCA origins (SD ± 3.1 mm).

3.2. Variations of CCA’s Origin

In all nine animals (100%), the rCCA originated from the BCT, and the lCCA originated
from the bifurcation of the BCT and the aortic arch, corresponding to the Type 1 variation.
No rabbits showed Types 2 or 3 vessel locations with lCCA directly originating from the
aortic arch or lCCA originating next to the rCCA from the BCT. We also did not observe the
aberrant variation of the subclavian artery (SCA) anatomy (Figure 1).

3.3. Descriptive Anatomy

After skin incision and subcutaneous fat tissue dissection, the first layer of muscles
inserting on the manubrium sterni becomes visible: first, the sternocephalicus muscle (SCM)
and then, medially to it and laying above the trachea, the sternothyroid (STM) and the
sternohyoid muscles (SHMs). The transverse/descending pectoral muscles (TPM/DPM)
find their origin at the manubrium sterni and insert laterally in the crista humeri (Figure 4A).
The SCM covers the CCAs and the internal jugular veins (IJVs) on both sides of the trachea
and has to be dissected and reclined to access the vessels. Cranially, the CCAs run medially
to the SCM, whereas caudally, they run more laterally (Figure 4C). Under the SCM and
laterally to the STM and SHM run the CCAs, the vagal nerve and the IJV. The three
structures are bounded together with connective tissue. Cranially, these connective tissues
are rather loose, and the distance between the artery and vein measures about 5–10 mm.
However, caudally, the EJV comes medially in contact with the artery, and the nerve crosses
in between. This makes a dissection more difficult in the caudal area (Figures 4D and 5). In
most cases, a transversal jugular vein can be seen at the level of the manubrium sterni and
limits further dissection caudally. The vein is an anastomosis between both EJVs and can
be cut in the middle to allow access to the caudal portion of the great vessels (Figure 4B).
Further, caudally, the rCCA runs under the clavicle and comes above the trachea to join the



Brain Sci. 2023, 13, 222 6 of 12

rSCA at the BCT. Laterally, the vagal nerve (VN) crosses above the SCA and the EJV and
IJV and meets the right subclavian vein (rSCV). The BCT meets the aortic arch and both
aorta and SCV join the heart. The thymus can be observed superficially covering this part
of the vessels. On the left side, the lCCA crosses above the trachea to join the origin of the
BCT on the aortic arch. Figure 5 gives an overview of the deep neurovascular structures
after the resection of the muscular and bony layers.
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Figure 4. (A) Frontal view of the first superficial layer after skin incision and subcutaneous fat tissue
dissection. (B) Frontal view after proximal section and reclination of the rSCM on the right side.
(C) Left lateral view (surgical view for the approach on the left side of the neck) after resection of the
lDMP and lTPM and dissection of the connective and fat tissue to free the neurovascular structures.
The dotted line highlights the course of lCCA. (D) Cranial oblique overview on the right side (surgical
view for the approach on the rCCA) after resection of the SCMs, the rDPM and rTPM and section of the
TJV. The dotted line highlights the course of the rCCA. Abbreviations: *—tip of the manubrium sterni;
+—section point of the transversal jugular vein; Tr—trachea; rSCM—right sternocephalicus muscle;
lSCM—left sternocephalicus muscle; STM—sternothyroid muscle; rDPM—right descending pectoral
muscle; rTPM—right transverse pectoral muscle; lSSM—left sternoscapular muscle; rEJV—right
external jugular vein; lEJV—left external jugular vein; rIJV—right internal jugular vein; lIJV—left
internal jugular vein; rTSV—right transverse scapular vein; TJV—transversal jugular vein; lSCV—left
subclavian vein; lCCA—left common carotid artery; rCCA—right common carotid artery; lVN—left
vagal nerve; rVN—right vagal nerve.
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Figure 5. Frontal overview of the deep neurovascular structures of the neck after resection of the
muscle layers and cranial part of the thoracic cage. SCM, STM, SHM, DPM, TPM, and SSM, as well
as the clavicle, the three first ribs and the cranial third of manubrium sterni were removed. Subcuta-
neous fat, thymus and pericardial fat were dissected and removed to free the vessels and nerves. The
dotted lines highlight the course of the rCCA and lCCA. Abbreviations: Tr—trachea; Hea—heart;
Th—thymus; SCM—sternocephalicus muscle; STM—sternothyroid muscle; DPM—descending pec-
toral muscle; TPM—transverse pectoral muscle; SSM—sternoscapular muscle; rEJV—right external
jugular vein; lEJV—left external jugular vein; rIJV—right internal jugular vein; lIJV—left internal jugu-
lar vein; rSCV—right subclavian vein; lSCV—left subclavian vein; Ao—aorta; BCT—brachiocephalic
trunk; lCCA—left common carotid artery; rCCA—right common carotid artery; lVN—left vagal
nerve; rVN—right vagal nerve.

4. Discussion

The rabbit aneurysm model is of great interest for the study and better understanding
of the pathophysiological aspects of human intracranial aneurysms [4,5,7,21–27]. Scientists
are constantly developing new models or refining the existing models for the creation of
aneurysms on rabbit neck arteries [5–7,9,11,14,16,28–32]. The elastase-induced aneurysm
model is one of the most commonly used and well described [28,29,33–37] and is widely
used for endovascular device testing [38–48]. However, in a previous series, the peripro-
cedural mortality of the rabbit elastase model was reported at around 8% [49,50]. Given
the number of studies that conceal complications and mortality rates, this number could
be even higher. For instance, research investigating the morbidity of the model showed
complication rates reaching >50% [49–52]. As morbidity and mortality could influence the
quality of the scientific result [53], and given the growing importance of animal welfare in
preclinical studies, the impact of complications must not be underestimated and should be
a concern for every scientist.

If the age and weight of the animal, as well as the duration of the procedure, have been
demonstrated to be determinizing factors for postoperative complications, the direct injury
of the structures of the neck through endovascular or surgical procedures are recognized to
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be a critical source of failure. In order to efficiently improve the techniques, avoid pitfalls
and develop new approaches with lower morbidity and mortality, the clinician and/or
scientist have to acquire sufficient knowledge of the anatomy of the animal. Unfortunately,
the current literature and even the veterinary educational resources lack exact information
about detailed anatomy and its possible variations, particularly in the region of the neck.
This study gives anatomical reliable landmarks to allow a standardized approach to the
neck vessels, with low morbidity and mortality. This study shows that in order to expose
the origin of the rCCA, the manubrium sterni can be used to guide the dissection, which
should be performed about 1 cm laterally and caudally to the incisura jugularis. There
are no relevant variations to expect between animals of the same breed and with similar
ages, as we found only variability of a few millimeters between the rabbits. However, the
distance between the rCCA and lCCA origins varied between 4 and 12 mm in this study.
Thus, the origin of one CCA should not be used to guide the dissection of the second
one, and dissection from cranial to caudal is recommended to find the origin of the CCAs.
Instead, the SCM can be used to find and follow the CCAs, which run laterally to the caudal
part of the muscle and medially to its cranial part. As the muscle plays a key role in head
motion, especially rotation and inclination, lesions have to be avoided during dissection,
and smooth instruments such as anatomical forceps and vessel loops are of great help for
this step of the surgery. Furthermore, the SCM runs laterally to the external jugular vein
(EJV), which is at risk of injury while dissecting the lateral part of the muscle. A wet swab
provides good protection against sharp instrument manipulation and prevents dryness
and weakening of the wall.

On the other hand, Ding et al. already focused on the possible variations concerning
the carotid arteries that may impact endovascular approaches in the elastase model [17].
The authors found three main variations of the carotid origins (Figure 1) that can impact
catheterizing as well as open surgery. In the present study, both CCAs originate from the
BCT according to the Type 1 variation described by Ding et al., with the rCCA originating
from the BCT and the lCCA originating from the bifurcation of the BCT and aortic arch.
This is also consistent with most of the data shown in the anatomical atlas references [19,20].
Variations of these origins or other uncommon variant arteries may, however, significantly
affect the surgery and even impact the testing of endovascular techniques in an aneurysm
model. Although rare, these variations have, thus, to be known and taken into consideration
while working with such models. Furthermore, some authors experimented with dramatic
tracheal necrosis and hemorrhage after endovascular elastase application in order to create
an aneurysm [13,52,54], revealing the presence of aberrant superior thyroid arteries or
anastomosis from the carotid arteries. This complication can be avoided by proceeding
with open procedures, which allows the closure of the variant branches [9,12,33,55,56].
In order to perform safe interventions, anatomical landmarks and specific anatomical
descriptions are definitely needed. Surgeons performing an approach to the great neck
vessels have to pay special attention to numerous vital structures. The jugular veins, which
run directly laterally to the rCCA and cross the right subclavian artery to form the rSCV, are
at high risk of damage during the dissection of the proximal part of the CCAs. At the level
of the rCCA origin from the BCT, the EJV comes directly in contact with the artery and may
be adherent with it. The dissection has to be performed carefully on the side of the artery
in order to avoid any damage to the venous wall. Such injuries are often untreatable and
may result in the death of the animal. A different, important structure is the vagal nerve,
including its laryngeal branches, which run directly with the CCAs and sometimes form the
nervous plexus, which can be easily damaged by dissecting the vessels. Such injuries may
lead to laryngeal paresis, which appears clinically as postoperative stridor and increases
inspiratory effort. According to the severity of the damage, this can elevate intrapulmonary
negative pressure with consecutive pulmonary edema, respiratory depression and death.
Moreover, as illustrated in our study, the CCAs run along both sides of the trachea and cross
above it to join the BCT and aortic arch. The trachea is a rather strong structure. However,
direct pressure or traction during the dissection should be avoided in order to ensure
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correct ventilation during the surgery, and the surgeon should pay attention not to injure
the tracheal wall using sharp instruments during the approach. Lastly, the thymus lays just
above the proximal rCCA and BCT and may obstruct the dissection of the proximal part of
the CCA. So far, injury of the thymus has not been described as a mortal lesion, and it does
not seem to cause any relevant morbidities in the postoperative phase. However, swelling
and bleeding due to rough manipulation can significantly complicate the dissection, and
we recommend preserving the gland as long as possible with the application of a wet swab.

The presented comprehensive overview should help surgeons to plan their opera-
tion and to minimize perioperative morbidity and mortality. In the same way, it is sup-
posed to improve scientific results and support the development of further, sophisticated
aneurysm models.

5. Conclusions

Our study demonstrates the tip of the manubrium sterni being a reliable landmark
to guide dissection and find the origin of the rCCA, which should be located about 1 cm
laterally and 1 cm caudally to it. The sternocephalicus muscle also helps to find and follow
the course of the CCAs on both sides. Great variations of the CCAs’ origin are rare within
the NZW rabbit strain, and the insights into the specific anatomy of the neck provided
in this study should help surgeons to avoid complications and improve surgical and
scientific results.
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