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Abstract: Background: While type 2 diabetes (T2D) is a major risk for ischemic stroke, the associated
vessel wall characteristics remain essentially unknown. This study aimed to clarify intracranial vas-
cular changes on three-dimensional vessel wall imaging (3D-VWI) using fast spin echo by employing
7Tesla (7T) magnetic resonance imaging (MRI) in T2D patients without advanced atherosclerosis as
compared to healthy controls. Methods: In 48 T2D patients and 35 healthy controls, the prevalence
of cerebral small vessel diseases and intracranial plaques were evaluated by 3D-VWI with 7T MRI.
Results: The prevalence rate of lacunar infarction was significantly higher in T2D than in controls
(n = 8 in T2D vs. n = 0 in control, p = 0.011). The mean number of intracranial plaques in both
anterior and posterior circulation of each subject was significantly larger in T2D than in controls
(2.23 in T2D vs. 0.94 in control, p < 0.01). In T2D patients, gender was associated with the presence
of intracranial plaques. Conclusion: This is the first study to demonstrate the high prevalence of
intracranial plaque in T2D patients with neither confirmed atherosclerotic disease nor symptoms by
performing intracranial 3D-VWI employing 7TMRI. Investigation of intracranial VWI with 7T MRI
is expected to provide novel insights allowing early intensive risk management for prevention of
ischemic stroke in T2D patients.

Keywords: vessel wall imaging; intracranial plaques; diabetes; high resolution magnetic
resonance imaging

1. Introduction

Type 2 diabetes (T2D) is a major risk factor for ischemic stroke, which often results in
physical impairment and cognitive dysfunction [1]. East Asian populations especially, as
compared to Caucasians, have been characterized as having high morbidity and mortality
due to cerebral stroke [2]. In Japan, the risk of cerebral infarction after adjustment for multi-
ple potential factors was found to be approximately two to four times higher for subjects
with T2D than those with normal glucose tolerance [3]. A large Asian cohort study showed
T2D to be a significant risk factor for ischemic strokes of three major subtypes, i.e., lacunar,
large-artery occlusive, and embolic infarctions [4]. While intensive investigations have
revealed the pathogenic factors associated with cerebral atherosclerosis in T2D, including
intra-arterial stenosis or fibrous cap rupture of atheroma accompanied by hyperglycemia
as well as insulin resistance, the mechanisms have yet to be fully elucidated. Brain imaging
studies may facilitate clarifying the mechanisms underlying vascular damage, but unex-
pectedly, the association of T2D with the prevalence of cerebral small vessel disease (SVD),
such as deep white matter hyperintensities (DWMH) and cerebral microbleeds (CMBs) [5],
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is not yet understood. Thus, more precise investigations of the cerebral vascular state in
T2D patients are required.

Aiming to evaluate intracranial vascular changes in terms of lumen caliber, magnetic
resonance angiography (MRA), computed tomography angiography (CTA), and digital
subtraction angiography (DSA) have been used, but accurately visualizing morphological
changes in cerebral vessel walls is found to be difficult. Intracranial vascular imaging
advancements in recent years have been achieved by applying high-resolution vessel wall
imaging (VWI) employing magnetic resonance imaging (MRI), providing useful informa-
tion on plaque characteristics including morphology and components [6–9]. Concurrently
with improvements in imaging techniques and protocols [9], VWI investigations have
become increasingly widely used in various disease types, including T2D. In T2D patients
with cerebrovascular symptoms, poor glycemic control reportedly has a greater impact
on the disease burden and the vulnerability of intracranial atherosclerotic plaques [10]. In
addition, a study recruiting patients with acute ischemic stroke revealed an association
between having diabetes and intracranial plaque number as well as high hemoglobin A1c
(HbA1c) and stronger plaque enhancement on imaging [11].

Furthermore, the development of ultra-high-field 7.0 Tesla (7T) MRI, which provides
an increased signal-to-noise ratio (SNR) of the inflow signal at a high spatial resolution [12],
demonstrates more detail regarding vascular conditions [13,14]. While the most current
intracranial VWI studies have been performed at a 3-Tesla field strength, a few VWI
investigations using 7T MRI equipment have recently been examined to allow for high-
resolution imaging [15,16]. Zwartbol et al. performed VWI employing 7T MRI on patients
with a history of vascular disease and showed a significant association of intracranial
atherosclerosis with presence of diabetes [17]. However, all of patients enrolled in this
study had a past history of severe atherosclerosis, and only 19% had diabetes. Taking the
findings of prior studies together, most of the enrolled patients had either symptoms or
at least one comorbidity of cerebrovascular disease such that wall vessel lesions in T2D
patients without advanced cerebral atherosclerosis remain a largely unexplored topic.

Therefore, in order to determine whether intracranial vascular changes are associated
with diabetes and if so, their nature and severity, we designed this cross-sectional study
using high resolution VWI at 7T MRI in T2D patients without advanced atherosclerosis.

2. Materials and Methods
2.1. Study Subjects

The study subjects were 48 T2D patients admitted to Iwate Medical University Hospital
during the period from November 2014 to May 2021. T2D was defined as taking glucose-
lowering medications or HbA1c ≥ 6.5% or fasting blood glucose ≥ 126 mg/dL, on the
basis of the diagnostic criteria proposed by the Japan Diabetes Society [18]. Hypertension
was defined as systolic blood pressure (sBP) ≥ 140 mmHg and/or diastolic blood pressure
(dBP) ≥ 90 mmHg and/or taking antihypertensive medications. Dyslipidemia was defined
as low-density lipoprotein cholesterol ≥ 140 mg/dL and/or triglycerides ≥ 150 mg/dL
and/or high-density lipoprotein cholesterol (HDL-C) < 40 mg/dL and/or taking antihy-
perlipidemic medications. Diabetic retinopathy was diagnosed by ophthalmologists based
on the international clinical diabetic retinopathy scales. Diabetic nephropathy was defined
as urine albumin excretion (UAE) ≥ 30 mg/g creatinine [18]. Diabetic neuropathy was
defined as the presence of two of the following three findings: typical subjective symptoms
of symmetrical distal neuropathy, bilaterally decreased Achilles tendon reflexes, or an
inability to sense vibration [18].

Thirty-five metabolically healthy volunteers were enrolled as controls. The exclusion
criteria applied to assure “metabolically healthy” status were the absence of hyperglycemia,
high blood pressure, and lipid profile abnormalities at the most recent medical check-up
and no past history of diabetes and/or hypertension and/or dyslipidemia.

None of the study subjects had any history of either coronary heart disease, cere-
brovascular disease, or peripheral artery disease. Written informed consent was obtained
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from all participants. This study was approved by the Institutional Review Board of Iwate
Medical University (MH2019-156). The study was conducted according to the Declaration
of Helsinki.

2.2. MR Protocols

We used a 7T MRI scanner (Discovery MR950; GE Healthcare, Milwaukee, WI, USA)
with quadrature transmission and a 32-channel receive head coil. Sagittal T1-weighted
(T1W) three-dimensional (3D) fast spin echo (FSE) VWI [19–21] performed by apply-
ing the following parameters: TR, 600 ms; TE, 14.4 ms; length of echo train, 8; FA, 90◦;
FOV, 20 cm; matrix size, 512 × 224; slice thickness, 0.8 mm; reconstructed voxel size,
0.39 × 0.39 × 0.4 mm (after zero-fill interpolation); number of slices, 452; and acquisition
time, 13 min 30 s. Furthermore, high-resolution 3D time-of-flight (TOF) MRA [22,23] was
acquired using a 3D spoiled gradient recalled echo sequence with the following scanning
parameters: TR, 12 ms; TE, 2.4 ms; FA, 12◦; FOV 240 mm; matrix size 768 × 384; slice
thickness, 0.6 mm; reconstructed voxel size, 0.23 × 0.23 × 0.3 (after zero-fill interpolation);
number of slices, 352; and acquisition time, 10 min 26 s. In addition, conventional brain
MRI, e.g., T1-weighted, T2*-weighted, and fluid-attenuated inversion recovery (FLAIR)
images, were also obtained [24]. We performed 3D-VWI to evaluate vessel wall lesions; 3D
TOF MRA to evaluate vessel lumen; T1-weighted and FLAIR images to evaluate lacunar,
PVH, DWMH, and brain atrophy; and T2*-weighted to evaluate CMBs.

2.3. Data Analysis

Three authors (M.Sh., S.Y., and Y.T.) blinded to the subjects’ clinical and demographic
characteristics, i.e., age, sex, body weight, body mass index (BMI), sBP, dBP, smoking
history, HbA1c, liver enzymes, and lipid profiles, analyzed the data. Moreover, two authors
(M.Sh. and F.M.) performed construction of the curved planar reformation (CPR) images,
obtained by 3D-VWI, including bilateral imaging of the internal carotid artery (ICA),
middle cerebral artery (MCA), vertebral artery (VA), and basilar artery (BA), using a 3D
workstation (Ziostation 2; Ziosoft Inc., Tokyo, Japan).

3D-VWI images were reformatted to achieve short-axis multi-planar reconstruction
(MPR) and long-axis CPR to delineate vascular wall properties in the intracranial arteries.
The images thus obtained were visually evaluated. The short-axis MPR of the horizontal
portions of the intracranial arteries (ICA, MCA, VA, and BA) were generated with 1.0 mm
intervals and FOV 80 × 80 mm. Moreover, long-axis CPR images were created every 5º for
360º. By using these images, the presence or absence of plaque, the shapes of plaques, and
the signal intensity of plaques in the intracranial arteries could be compared between T2D
and control subjects. According to previous investigations, determining cut-off values for
VWI with MRI correspond to relevant histological findings of intraplaque components [25].

A board-certified senior radiologist (M.Sa., with more than 20 years of experience)
blinded to the clinical status of the patients visually evaluated all images twice each for
the presence of any abnormalities. This radiologist concurrently determined narrowing or
interruption of the ICA, MCA, VA, and BA, as indicated by a decrease in signal intensity on
the MRA-MIP images due to reduced blood flow. Conventional brain MRI scans were also
obtained in order to assess DWMH and periventricular hyperintensity (PVH), applying the
Fazekas grade, lacunar infarctions, brain atrophy, and microbleeds [26].

2.4. Statistical Analysis

Quantitative data are presented as the mean with standard deviation (SD). Statistical
analyses were conducted employing the Student’s t-test with data showing a normal
distribution, while the Mann–Whitney U test was used for those showing a non-normal
distribution. Chi-square test or Fisher’s exact test was used to determine associations
between two categorical variables. The significance level was set at p < 0.05. All statistical
analyses were performed using SPSS version 26 (SPSS Japan Inc. Tokyo, Japan).



Brain Sci. 2023, 13, 217 4 of 10

3. Results

Among those receiving MR examinations, one of the control subjects insisted upon
cessation of the scanning procedures due to claustrophobia. The remaining 35 controls and
all 48 T2D patients were eligible for further analyses.

The clinical characteristics of the enrolled subjects were shown in Table 1. The average
HbA1c was 9.5% in T2D patients. Age and proportion of males were similar, but body
weight, BMI, sBP, dBP, proportion of current or former smokers, and triglyceride levels
were higher in the T2D than in the control group. In contrast, HDL-C values were lower
in the patients with T2D than in the controls. In the T2D group, 43.8% of patients had the
comorbidity of hypertension, and 66.7% of these patients also had dyslipidemia.

Table 1. Clinical characteristics of subjects.

T2D Control
p-Value

(n = 48) (n = 35)

Age (years) 53.2 ± 6.3 50.7 ± 5.3 0.067
Male (%) 64.6 54.3 0.344

Body weight (kg) 71.7 ± 11.9 61.6 ± 9.4 <0.01
Body mass index

(kg/m2) 26.1 ± 4.2 22.4 ± 2.3 <0.01

Systolic blood
pressure (mmHg) 128.8 ± 14.4 115.9 ± 14.0 <0.01

Diastolic blood
pressure (mmHg) 80.4 ± 10.8 73.5 ± 9.5 <0.01

Former or current
smoking (%) 50.0 14.3 <0.01

HbA1c (%) 9.5 ± 3.0 5.5 ± 0.3 <0.01
AST (IU/mL) 27.5 ± 24.2 21.4 ± 5.0 0.96
ALT (IU/mL) 33.3 ± 27.4 20.3 ± 9.8 <0.01
γ-GTP (IU/mL) 62.8 ± 105.4 41.9 ± 47.7 0.278

TC (mg/dL) 191.4 ± 49.0 197.9 ± 35.0 0.554
TG (mg/dL) 149.8 ± 77.0 81.7 ± 35.4 <0.01

LDL-C (mg/dL) 114.3 ± 39.1 108.3 ± 23.6 0.42
HDL-C (mg/dL) 51.6 ± 13.8 71.7 ± 15.3 <0.01

Hypertension, n (%) 21 (43.8) 0
RAS inhibitor, n 15
Calcium channel

blocker, n 9

Dyslipidemia, n (%) 32 (66.7) 0
Statin, n 14

Fibrate, n 6
Values are presented as means (±SD). Analyzed by Student’s t-test or chi-square test. T2D, type 2 diabetes;
HbA1c, hemoglobin A1c; AST, aspartate aminotransferase; ALT, alanine aminotransferase; γ-GTP, γ-glutamyl
transpeptidase; TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein-cholesterol; HDL-C, high-
density lipoprotein-cholesterol; RAS, renin-angiotensin system.

The conventional brain MRI scans revealed that the prevalence of lacunar infarction
was significantly high in T2D compared with controls (n = 8 in T2D vs. n = 0 in control,
p = 0.011). In contrast, no significant difference was found in the proportion of CMBs,
DWMH, PVH, and brain atrophy between the two groups (Table 2). Next, apparent brain
damage and large-vessel abnormalities were analyzed using 3D-VWI with 7TMRI (Figure 1).
On high-resolution 3D-VWI, eccentric plaques were identified significantly more often
in T2D patients than in controls. In both anterior and posterior circulation, the mean
number of plaques in T2D patients was 2.23, whereas that of controls was 0.94, suggesting
the prevalence of intracranial plaque to be significantly higher in the former (p < 0.01).
Similarly, in the anterior circulation, the mean number of plaques in T2D patients was
larger than in controls (1.52 vs. 0.51, p < 0.01), while no marked difference was detected in
the posterior circulation (T2D 0.71 vs. controls 0.43, p = 0.069) (Table 3).
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Table 2. Prevalence of SVD.

T2D Control p-Value

Lacunar infarction 8 (16.7%) 0 (0%) 0.011
CMBs 2 (4.2%) 2 (5.7%) 0.565
PVH 2 (4.2%) 0 (0%) 0.311

DWMH 8 (16.6%) 2 (5.7%) 0.119
Brain atrophy 2 (4.2%) 0 (0%) 0.331

Plaque number is presented as numbers (%). Analyzed by Fisher’s exact test. T2D, type 2 diabetes; CMBs, cerebral
microbleeds; PVH, periventricular hyperintensity; DWMH, deep white matter hyperintensity.
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Figure 1. T1-weighted three dimensional vessel wall imaging (3D-VWI) in type 2 diabetes mellitus 
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Figure 1. T1-weighted three dimensional vessel wall imaging (3D-VWI) in type 2 diabetes mellitus
(T2D) patients and a control. (A) A 59-year-old man with T2D had wall thickening at left MCA with
high signal indicating atherosclerotic plaque, visualized by curved planar reformation (CPR) (arrow)
and axial-sectional view (triangle). (B) A 56-year-old woman with T2D showed wall thickening
at right VA with a high signal indicating atherosclerotic plaque, visualized by CPR (arrow) and
axial-sectional view (triangle). (C) No plaques were detected in a 58-year-old woman from the control
group, visualized by CPR (arrow) and axial-sectional view at indicated location by arrow.

Table 3. Mean number of intracranial plaques per person.

T2D Control p-Value

Anterior and
posterior circulation 2.23 ± 0.23 0.94 ± 0.21 <0.01

Anterior circulation 1.52 ± 0.18 0.51 ± 0.12 <0.01
Posterior circulation 0.71 ± 0.12 0.43 ± 0.13 0.133

Plaque number is presented as the mean value ± standard error. Analyzed by Mann–Whitney U test. Anterior
Circulation includes internal carotid artery and middle cerebral artery. Posterior Circulation includes vertebral
artery and basilar artery. T2D, type 2 diabetes.
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In order to clarify the factors influencing intracranial plaque formation, T2D patients
were divided into two groups according to the presence of plaques in both anterior and
posterior circulation, and differences in clinical parameters were compared. The only
factor associated with the presence of plaques in T2D patients was gender (Table 4). Preva-
lence of comorbidities, i.e., hypertension and/or dyslipidemia, did not differ between the
two groups.

Table 4. The risk factors of plaque presence in both anterior and posterior circulation in T2D patients.

Type 2 Diabetes p-Value

(+) n = 38 (−) n = 10

Age (years) 53.6 51.3 0.310
Male (%) 29 (76.3) 2 (20) <0.01

sBP (mmHg) 129.6 125.6 0.441
dBP (mmHg) 81.8 74.9 0.060

HbA1c (%) 9.3 10.1 0.572
AST (IU/mL) 29.4 20.1 0.284
ALT (IU/mL) 35.5 25.2 0.297
γ-GTP (IU/mL) 71.2 30.8 0.285

TC (mg/dL) 187.5 206.3 0.285
TG (mg/dL) 155.4 128.6 0.333

LDL-C (mg/dL) 112.6 120.5 0.577
HDL-C (mg/dL) 49.6 59.4 0.430

eGFR (mL/min/1.73m2) 74.4 78.8 0.389
Former or current smoking (%) 21(55.2) 3(30.0) 0.155

Hypertension, n (%) 17 (42.1) 4 (40.0) 0.542
RAS inhibitor, n (%) 12 (31.6) 3 (30.0) 0.602

Calcium channel blocker, n (%) 9 (23.7) 0 0.094
Dyslipidemia, n (%) 26 (63.2) 6 (60.0) 0.594

Statin, n (%) 11 (28.9) 3 (30.0) 0.612
Fibrate, n (%) 4 (10.5) 2 (20.0) 0.355

Diabetic neuropathy (%) 22 (57.8) 5 (50.0) 0.654
Diabetic retinopathy (%) 16 (42.1) 5 (50.0) 0.654

Diabetic nephropathy (%) 13 (34.2) 4 (40.0) 0.733
Lacunar infarction (%) 8 (21.1) 0 (0) 0.112

CMBs (%) 2 (5.3) 0 (0) 0.459
PVH (%) 1 (2.6) 1 (10.0) 0.299

DWMH (%) 6 (15.8) 2 (20.0) 0.751
Brain atrophy (%) 2 (5.3) 0 (0) 0.459

Analyzed by Student’s t-test or chi-square test or Fisher’s exact test. sBP, systolic blood pressure; dBP, diastolic
blood pressure; HbA1c, hemoglobin A1c; AST, aspartate aminotransferase; ALT, alanine aminotransferase; γ-GTP,
γ-glutamyl transpeptidase; TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein-cholesterol; HDL-
C, high-density lipoprotein-cholesterol; eGFR, estimated glomerular filtration rate; RAS, renin-angiotensin system;
CMBs, cerebral microbleeds; PVH, periventricular hyperintensity; DWMH, deep white matter hyperintensity.

4. Discussion

To our knowledge, this is the first study to demonstrate an increased number of
intracranial plaques using high-resolution 3D-VWI with 7T MRI in T2D patients without
apparent atherosclerotic disease. While the prevalence of SVD in those with T2D had yet
to be fully clarified, these results suggested that a large proportion of asymptomatic T2D
patients may have early-stage cerebral atherosclerosis. Investigation of intracranial VWI
with 7T MRI is expected to provide novel insights for early initiation of intensive risk
management aimed at preventing ischemic stroke in patients with T2D.

Since several previous studies focusing on vascular wall changes were conducted
in patients with comorbidities, either ischemic stroke or transient ischemic attacks, the
vessel wall characteristics of asymptomatic subjects are largely unknown. Therefore, we
enrolled subjects who had no history of either cerebrovascular diseases or coronary heart
disease as well as being free of peripheral artery disease, and we examined whether they
had arterial anomalies or gross vascular lumen abnormalities using MRA. Even among
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seemingly low-risk subjects, a high prevalence of intracranial plaques in T2D patients
without atherosclerotic disease confirmed the potential risk for cerebrovascular disease
associated with diabetes. These results suggested that early detection of intracranial
changes using 3D-VWI might be useful for evaluating the cerebral infarct risk as well as
the initiation of intensive treatments for risk factors in asymptomatic T2D patients.

Intracranial atherosclerosis is regarded as a major cause of ischemic stroke and tran-
sient ischemic attack development. Conventional vascular imaging, such as CTA, DSA, and
MRA, demonstrated lumen caliber changes [27] but with limited efficacy due mainly to un-
certainty in the detection of non-specific signals. The recent development of MRI sequences
allows for sensitive detection of vessel wall changes, including those that have not yet
caused luminal narrowing, as well as investigation of the underlying pathology in vivo [28].
It is highly likely that identification of plaque characteristics, for instance, intra-plaque
hemorrhage, lipid content, and so on, leading to intracranial atherosclerotic disease, will
become possible with this innovation [29]. Additionally, in order to optimize the conditions
for the assessment of vessel wall changes, we constructed CPR images from all 3D-VWI,
including the ICA, MCA, VA, and BA obtained from each subject. Because of the tortuous
anatomy of intracranial arteries, an arduous process is required for accurate visualization
of 3D-VWI based on stretching these tortuous courses through the application of technical
conditions allowed by the current hardware and software environments [30]. Although
these burdensome tasks would be hard to practice in routine examinations, the construction
of large numbers of CPR images enabled us to determine the number of plaques in major
intracranial arteries, leading to the recognition of early cerebral atherosclerosis risk in the
asymptomatic T2D patients in this study.

Another strength of this study is imaging analyses using high-resolution 7T MRI. The
advantages of a high-magnetic field include the increased SNR and contrast-to-noise ratios,
which can be exploited for imaging at a higher spatial resolution, thereby allowing clear
visualization of distal small arterial branches and thin vessel walls by suppressing the back-
ground signal [22,23]. Zhu et al. refined high-resolution 3D MRI techniques for intracranial
VWI at both 3- and 7T in patients with intracranial artery disease and concluded that the
latter provided better image quality and improved confidence in diagnosis [31]. Similarly,
a study with asymptomatic elderly volunteers showed visibility of intracranial VWI was
equal to or significantly better at 7T than at 3T MRI [32]. In accordance with previous
comparative studies, intracranial VWI at 7T MRI has a high capability for visualizing
the vascular condition in detail, suggesting that the findings obtained in this study are
both highly reliable and informative. While 7T MRI is not as yet being used clinically, a
growing body of research might allow the utility of VWI with ultra-high-field MRI for the
investigation of cerebral vascular complications in high-risk subjects such as T2D.

The findings obtained from this 7T MRI study, which can be summarized as a high
prevalence of intracranial plaque in T2D patients, are novel but apparently obvious, being
consistent with those of previous 3T MRI studies [10,11]. Therefore, we performed compar-
ative analyses aimed at determining risk factors for intracranial arterial plaque prevalence
in T2D. Unexpectedly, only the male gender was identified as a factor related to plaque
prevalence. Several studies have shown HbA1c values were strongly associated with
multiple intracranial stenoses as evaluated by MRA, reflecting the severity of intracranial
atherosclerosis [33]. In fact, prolonged hyperglycemia is regarded as a major risk factor for
atherosclerosis development as well as a microvascular disease [34] due to the accumu-
lation of advanced glycation end-products (AGE) [35], activation of the post-receptor for
AGE pathway, and enhancement of the polyol pathway in vascular endothelial cells [36].
However, temporal values of HbA1c do not always reflect long-term glycemic control.
Since most of the T2D patients enrolled in this study were compelled to admit for treatment
of poor glycemic control, their HbA1c values at the time of investigation may have been at
nearly the peak when the MRI examinations were conducted. Recent increases in HbA1c
values, which may not actually have reflected long-term poor glycemic control in some of
the enrolled patients, might have resulted in the loss of a statistically significant relationship
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between the presence of plaque and HbA1c values. In addition, age and the presence of
hypertension were not related to the presence of intracranial plaque. We cannot precisely
explain these unexpected results. In previous reports, neither the presence of hypertension
nor current blood pressure was reported to be a significant factor for either the existence or
the vulnerability of intracranial plaque in diabetic subjects based on high-resolution MRI
investigation [10,11,33], which is consistent with the findings obtained in this study. In our
T2D patients with intracranial plaque, the proportions with elevated blood pressure and
being administered calcium channel blockers both tended to be high, suggesting that they
might have hard-to-treat hypertension requiring multiple medications. Further large-scale
studies are required to elucidate the influences of both aging and hypertension on cerebral
vessel wall changes in asymptomatic T2D patients.

The major limitation of this study is its cross-sectional design, raising the possibility
that our results show only associations. The relationship between the presence of intracra-
nial plaques and the development of SVD in T2D awaits confirmation in a longitudinal
study. Second, 43.8% of our T2D patients had hypertension, and 66.7% of them had dys-
lipidemia. Thus, the findings related to intracranial plaque cannot be assumed to reflect a
direct effect of diabetes itself. Recruiting T2D patients without comorbidities might resolve
this issue but would be a highly challenging endeavor. Third, contrast enhancement of
intracranial arterial walls reportedly suggests atherosclerotic changes [6,25]. However, we
did not obtain postcontrast images in this study, mainly due to both ethical considerations
and the burden on patients, i.e., invasiveness. Fourth, quantitative criteria for intracranial
plaque characteristics have not yet been established. Fifth, evaluations of VWI by a single
board-certified senior radiologist might have led to detection bias of intracranial plaque.
Sixth, plaque presence in the circle of Willis, including the anterior cerebral artery and
posterior cerebral artery, was unexamined in this study. Seventh, although vessel wall
plaques are generally known to exist at the bifurcation or curved portion of the artery, the
association of plaque presence with vessel morphology has not been considered. Finally,
our sample size was too small to allow sufficiently powered statistical analysis to be per-
formed. Therefore, the results are preliminary rather than definitive, necessitating further
studies to test our findings in a large subject population.

5. Conclusions

In conclusion, this study is the first demonstration of the high prevalence of intracranial
plaque in subjects with T2D by employing intracranial 3D-VWI obtained with 7TMRI.
Our data can be applied to elucidating intracranial vessel wall lesions associated with
hyperglycemia and also raise the possibility of 3D-VWI being used in clinical practice in
the future.
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