
Citation: Zhu, Y.; Song, Z.; Wang, Z.

A Prediction Model for Deciphering

Intratumoral Heterogeneity Derived

from the Microglia/Macrophages of

Glioma Using Non-Invasive

Radiogenomics. Brain Sci. 2023, 13,

1667. https://doi.org/10.3390/

brainsci13121667

Academic Editors: David Brown and

Terry Lichtor

Received: 24 October 2023

Revised: 25 November 2023

Accepted: 27 November 2023

Published: 1 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

brain
sciences

Article

A Prediction Model for Deciphering Intratumoral
Heterogeneity Derived from the Microglia/Macrophages of
Glioma Using Non-Invasive Radiogenomics
Yunyang Zhu † , Zhaoming Song † and Zhong Wang *

Department of Neurosurgery, The First Affifiliated Hospital of Soochow University, No. 899, Pinghai Road,
Suzhou 215006, China
* Correspondence: wangzhong761@163.com
† These authors contributed equally to this work.

Abstract: Microglia and macrophages play a major role in glioma immune responses within the
glioma microenvironment. We aimed to construct a prognostic prediction model for glioma based
on microglia/macrophage-correlated genes. Additionally, we sought to develop a non-invasive
radiogenomics approach for risk stratification evaluation. Microglia/macrophage-correlated genes
were identified from four single-cell datasets. Hub genes were selected via lasso–Cox regression,
and risk scores were calculated. The immunological characteristics of different risk stratifications
were assessed, and radiomics models were constructed using corresponding MRI imaging to predict
risk stratification. We identified eight hub genes and developed a relevant risk score formula. The
risk score emerged as a significant prognostic predictor correlated with immune checkpoints, and a
relevant nomogram was drawn. High-risk groups displayed an active microenvironment associated
with microglia/macrophages. Furthermore, differences in somatic mutation rates, such as IDH1
missense variant and TP53 missense variant, were observed between high- and low-risk groups.
Lastly, a radiogenomics model utilizing five features from magnetic resonance imaging (MRI) T2
fluid-attenuated inversion recovery (Flair) effectively predicted the risk groups under a random
forest model. Our findings demonstrate that risk stratification based on microglia/macrophages can
effectively predict prognosis and immune functions in glioma. Moreover, we have shown that risk
stratification can be non-invasively predicted using an MRI-T2 Flair-based radiogenomics model.

Keywords: glioma; microglia; macrophages; radiomics; immunogenomics

1. Introduction

Microglia and macrophages play pivotal roles as immunocytes within the glioma
microenvironment [1–4]. Microglia originate from primitive yolk sac myeloid precursors
and derive from primitive myeloid progenitors [1,5]. They represent an ontogenetic pop-
ulation in the mononuclear phagocyte system, establishing residence within the brain
during embryogenesis. Conversely, macrophages typically infiltrate the central nervous
system in response to pathological cues. Despite their shared phagocytic nature, microglia
and macrophages exhibit distinctive behaviors within the tumor microenvironment [6].
Notably, they have been observed to exhibit a low frequency of attacking glioma cells.
Instead, their role has been strongly linked to immunosuppression, immune tolerance,
tumor proliferation, tumor metastasis, and angiogenesis [2,7,8]. These functions might be
due to the factors released by microglia and macrophages, such as stress-inducible protein
1 (STI1), epidermal growth factor (EGF), CSF-1, transforming growth factor-β (TGF-β),
and MT1-MMP [9–14]. Depletion of microglia has been shown to diminish tumor prolif-
eration and invasiveness [14,15]. The field of immunotherapy has witnessed remarkable
progress, particularly in immune vaccine development [16], adoptive cell transfer [17],
and immune checkpoint blockade [18,19], though much progress in immunotherapy has
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been achieved in the treatment of melanoma [20,21], non-small-cell lung cancer [22], and
prostate cancer [23]. However, glioma has remained relatively resistant to breakthroughs in
immunotherapy. With the development of single-cell sequencing, it has gradually become
convenient to study the immune microenvironment for glioma immunotherapy.

Radiomics has become a powerful tool to study the relationship between imaging
features and clinical characteristics. It has been applied in predicting IDH mutation [24],
prognosis [25], and tumor-infiltrating macrophages [26]. However, the realm of radio-
genomics in glioma remains relatively uncharted. Our endeavor seeks to elucidate the
potential correlations between radiomic features and immunogenomic risk stratification in
the context of glioma.

In the course of our research, we subjected single-cell datasets to dimensionality re-
duction using Uniform Manifold Approximation and Projection (UMAP) to identify genes
correlated with microglia/macrophages. The prognostic and immunogenomic characteris-
tics of different risk stratification groups were studied in detail. A radiomics model was
constructed to predict risk stratification groups. It might offer non-invasive and convenient
predictions before surgical operations.

2. Methods
2.1. Dataset Acquisition and Processing

We accessed four single-cell RNA-sequencing (scRNA-seq) datasets for UMAP analy-
sis. CGGA-scRNA-seq data was acquired from the Chinese Glioma Genome Atlas (CGGA),
while GSE131928, GSE159416, and GSE193884 datasets were sourced from the Gene Ex-
pression Omnibus (GEO) database. The RNA-seq data, along with complete clinical
information of 702 glioma patients in The Cancer Genome Atlas Glioblastoma Multiforme
and Lower-Grade Glioma (TCGA-GBM/LGG) database, were obtained from UCSC Xena
(http://xena.ucsc.edu/ (accessed on 1 January 2023)). From this cohort, 603 patients with
information related to survival time, IDH mutation, and 1p19q codeletion were selected
for further prognostic study. To validate our findings, we utilized the RNA-seq data and
clinical information from the CGGA-325 and CGGA-693 datasets. The datasets included
glioblastomas, astrocytomas, oligodendrogliomas, and oligoastrocytomas. The tumors
studied in our research encompassed a range of WHO grades, including grades 2, 3, and 4
(the latter grade includes GBM, which is the most aggressive and lethal form of glioma).

The expression levels of hub genes in normal tissue were obtained from the Genotype-
Tissue Expression (GTEx) dataset. Batch effect correction was performed using the R
package termed “SVA”. Single-nucleotide polymorphism (SNP) data of TCGA-GBM and
TCGA-LGG were acquired from UCSC Xena to calculate tumor mutational burdens (TMBs).
In addition, MRI data corresponding to TCGA-GBM/LGG patients were obtained from The
Cancer Imaging Archive (TCIA). Patients with integral MRI data and clinical information
were selected for further radiomics study.

2.2. Identification of Microglia/Macrophage-Correlated Clusters by Uniform Manifold
Approximation and Projection (UMAP) Algorithm

We harnessed the UMAP algorithm, a non-linear dimensionality reduction technique
rooted in manifold learning and topological data analysis, to analyze the single-cell se-
quencing datasets. The “Seurat” package in R facilitated UMAP application, with data
normalization conducted via “LogNormalize” and variable feature selection by employing
the “vst” method. Distinct cell clusters were demarcated using established cell markers.
Notably, TMEM119 served as a specific marker for microglia, distinguishing them from
macrophages. Additional microglia markers included SALL1, P2RY12, and CX3CR1, while
macrophage markers encompassed CD68, CD86, CD163, TSPO, and ITGA4. Oligodendro-
cyte markers were OLIG2, FA2H, UGT8, and CNP, while tumor markers included SOX2,
PARP1, CD44, and PTPRZ1. T-cell markers encompassed CD8, CD3, CXCR3, and CCR6.

http://xena.ucsc.edu/
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2.3. Construction of a Risk Score Model

We calculated the intersection of genes that correlated with microglia/macrophages
in the four scRNA-seq datasets using the “UpSetR” package in R. Then, univariate Cox
regression analysis was utilized for the preliminary screening of prognostic genes (p < 0.01).
Least absolute shrinkage and selection operator (LASSO) regression analysis was applied
by “glmnet” package in R for the final selection of hub genes. The LASSO coefficients based
on the lambda.1se model were incorporated as coefficients for risk score computation.

Risk score = ∑n
i=1 coefi × expressioni

Moreover, we categorized all patients into high-risk and low-risk cohorts using the
median risk score. As for the value equal to the median value, we defined them as low-risk
groups artificially. We calculated risk scores based on genes with prognostic values. Hence,
our risk referred primarily to survival. However, it should not be ignored that behind the
differences in survival is heterogeneity itself (e.g., immune microenvironment and main
activation pathways in different groups). We used the “survival” package in R to perform
a Kaplan–Meier survival analysis, using the log-rank test to compare the survival curves of
different groups to determine if there are significant differences between them.

2.4. Expression and Enrichment Analysis of Hub Genes

Gene expressions in glioma were obtained from TCGA-GBM/LGG dataset and the
expressions in normal tissue were obtained from the GTEx dataset. The expression com-
parison between glioma and normal tissue was calculated based on transcripts per million
reads (TPM) form after log2 transformation. Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) functional enrichment analysis were applied by “cluster-
profiler” package. Additionally, we employed Gene Set Enrichment Analysis (GSEA) to
elucidate the immunological functions associated with the hub genes, considering the least
adjusted p-values and q-values.

2.5. Correlation among Hub Genes and Immunologic Scores

The stromal scores, immune scores, and ESTIMATE scores were calculated by “esti-
mate” package. The correlogram among hub genes, risk scores, stromal scores, immune
scores, ESTIMATE scores, and tumor purity was drawn with “corrgram” package.

2.6. Tumor Mutational Burden (TMB)

Somatic mutation data in TCGA-GBM and TCGA-LGG were processed using the
“mutect2” principle and obtained from UCSC Xena. The detailed mutation information of
each group was visualized using waterfall plots created by the “maftools” R package.

2.7. Prognostic Prediction Ability of Risk Score

In TCGA-GBM/LGG, 603 patients with integral information on survival time, age,
grade, IDH mutation, and 1p19q codeletion were divided into high-risk groups and low-risk
groups according to the median number of risk scores. A total of 313 patients in CGGA-325
and 657 patients in CGGA-693 were used as the validation set. Then, prognostic factors,
including risk score, age, grade, IDH mutation, and 1p19q codeletion, were incorporated
to construct a nomogram to assess the 1-year, 2-year, 3-year, and 5-year overall survivals
(OS) of glioma. TCGA-GBM/LGG dataset was the training set, while CGGA-325 and
CGGA-693 were the testing sets. The calibration curves of TCGA-GBM/LGG, CGGA-325,
and CGGA-693 were drawn to evaluate the calibration of the model. The concordance
index (C-index) was used to evaluate the prediction ability.

2.8. Gene Set Variation Analysis (GSVA)

We utilized the gene set variation analysis (GSVA) algorithm, a nonparametric, unsu-
pervised algorithm, to demonstrate the biological function of microglia and macrophages
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among different risk scores. Pearson correlation analysis was applied to calculate the corre-
lation between the risk score and microglia- and macrophage-related immune processes.
A heatmap was created using the “pheatmap” package. Gene lists for immune function
were obtained from the AmiGO 2 portal (http://amigo.geneontology.org/amigo (accessed
on 1 January 2023)) and http://download.baderlab.org/EM_Genesets/current_release/
Human/symbol (accessed on 1 January 2023).

2.9. Immune Checkpoints

We calculated the Pearson correlation between the risk score and immune checkpoints
in glioma. The correlations among the risk score and immune checkpoint genes such as
LAG3, TIM-3, TMIGD2, PD-1, CD200R1, TIGIT, HVEM, CTLA4, and CD47 were visualized
using the “circlize” package. To enhance clarity, we displayed the -log10 (p-value) in
the diagram.

2.10. Radiomics Feature Extraction and Processing

MRI images corresponded with TCGA-GBM/LGG patients that were acquired from
the Cancer Imaging Archive (TCIA). Currently, T2 fluid-attenuated inversion recovery
(Flair) imaging has replaced T1 enhancement imaging in the delineation of tumor borders,
especially in LGG. Clear T2 Flair images of 168 glioma patients before the first operation
were selected for further study. Format conversion of DICOM to NIfTI, N4 Bias Field
Correction, Z-score normalization, and voxel sizes resampling to 1 mm × 1 mm × 1 mm
were all realized by “SimpleITK” in Python. After preprocessing, ITK-SNAP was utilized to
preliminarily delineate the glioma regions semiautomatically. Then, the regions of interest
(ROI) were corrected manually by two experienced neurosurgeons, respectively.

“PyRadiomics” in Python was applied to extract 1439 radiomic features with the
following filters. Texture feature filters: first order; shape; gray-level co-occurrence matrix
(GLCM); gray-level run-length matrix (GLRLM); gray-level size-zone matrix (GLSZM);
gray-level dependence matrix (GLDM); and neighboring gray-tone-difference matrix
(NGTDM). Image filters: no image filter (original); wavelet filter; Laplacian of Gaussian
(LoG) filter with the kernel size of 1, 2, 3, 4, 5; square of image intensities (Square) filter;
square root of the absolute image intensities (SquareRoot) filter; logarithm of the absolute
image intensities (Logarithm) filter; exponential filter of the absolute image intensities
(Exponential) filter; magnitude of the local gradient of the image (Gradient) filter; and
local binary pattern (LBP) filter of 2D and 3D. These features are used to describe differ-
ent aspects of the image, as well as information such as texture, shape, and intensity in
the imaging.

The intraclass correlation coefficients (ICC) of features were estimated by “Pingouin”
in Python. Features whose ICC > 0.75 were regarded as reproducible and included for
further study.

2.11. Risk Stratification Prediction Model of Radiomics Features

All samples were randomly divided into training sets (70%) and testing sets (30%) by
“train_test_split” function of “sklearn” in Python. The Z-score normalization of training sets
and testing sets was applied by “StandardScaler” function of “sklearn” in Python. Patients
were divided into high-risk and low-risk groups according to the median number of
immunogenomic risk scores calculated before. t-test was applied to estimate the significant
difference in features between high-risk group and low-risk group. If the data showed
homogeneity of variance (p > 0.05) by Levene test, t-test would be applied, while Welch
t-test would be used for the data without homogeneity of variance (p < 0.05). The calculation
of Levene test, t-test, and Welch t-test were realized by “scipy” in Python. Features with
significant predictive value of risk stratifications were further selected by Lasso algorithm.
Random forest (RF) model and Support Vector Machine (SVM) model were used to predict
the risk group stratification, respectively, by “sklearn” in Python. Ten-times and ten-
fold crossing validation were applied in SVM model, while crossing validation was not

http://amigo.geneontology.org/amigo
http://download.baderlab.org/EM_Genesets/current_release/Human/symbol
http://download.baderlab.org/EM_Genesets/current_release/Human/symbol
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necessary for random forest model since the out-of-bag (OOB) scores were true in “sklearn”.
The receiver operating characteristic (ROC) curves were performed, and the areas under
the curves (AUC) were utilized to assess the accuracy of different models.

3. Results
3.1. UMAP Clusters of Four scRNA-Seq Datasets

CGGA scRNA-seq dataset was dimensionally reduced into five clusters (Figure 1A),
including microglia, macrophages, T cells, oligodendrocytes, and tumors. A total of
1559 correlated genes were included in the microglia cluster and macrophage cluster.
GSE131928 scRNA-seq dataset (Figure 1B) was divided into the tumor cluster, microglia/
macrophage cluster, oligodendrocyte cluster, and T-cell cluster. Since the distinguishment
of microglia and macrophages was difficult, we defined the microglia/macrophage cluster
(blue), which contains both of them. A total of 1732 correlated genes were included in
the microglia/macrophage cluster. The GSE159416 scRNA-seq dataset (Figure 1C) was
dimensionally reduced into the microglia cluster, macrophage cluster, oligodendrocyte
cluster, and tumor cluster. A total of 2710 correlated genes were included in the microglia
and macrophage cluster. The GSE193884 scRNA-seq dataset (Figure 1D) was divided into
the microglia cluster, macrophage cluster, oligodendrocyte cluster, and tumor cluster. A
total of 3174 correlated genes were included in the microglia cluster and macrophage cluster.
An upset diagram (Figure 2) exhibited the distribution of microglia/macrophage-correlated
genes in the four sets. A total of 219 genes included in all four sets were chosen for the
next study.
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Figure 1. UMAP dimensionally reduced graphic of (A) CGGA scRNA−seq dataset, (B) GSE131928
scRNA−seq dataset, (C) GSE159416 scRNA−seq dataset, and (D) GSE193884 scRNA−seq dataset.
Red cluster: tumor. Blue cluster: microglia or microglia/macrophages. Lavender cluster: macrophages.
Brown cluster: T cell. Green cluster: oligodendrocyte.
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3.2. Microglia/Macrophage-Correlated Hub Genes

Univariate Cox regression analysis was utilized to preliminarily choose 178 prognosis-
associated genes (p < 0.01) among 219 intersection genes. Then, Lasso–Cox regression
was implemented to cut out unnecessary coefficients. The Lasso coefficient spectrum
(Figure 3A) showed that eight coefficients in lambda.1se would be best and achieve a
convenient model. The eight hub genes (Figure 3B) were RPL3 (coef = −0.185786153),
RPL12 (coef = −0.138474971), PTEN (coef = −0.128668434), IFNGR2 (coef = 0.013864264),
KLF10 (coef = 0.025299618), PLAUR (coef = 0.078538366), MSN (coef = 0.203390786), and
IKBIP (coef = 0.302327871). All eight hub genes showed significantly higher expressions in
glioma than in normal tissue (Figure 3C). The risk scores were calculated by a summation
of expression × coefficient (formula was shown in Section 2).
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3.3. Functional Enrichment Analysis

Go enrichment analysis (Figure 4A) showed that the biological functions of hub
genes were focal adhesion, cell–substrate junction, cytosolic and ribosome, etc. The KEGG
enrichment analysis (Figure 4B) revealed that hub genes had the functional pathways of
the ribosome, proteoglycans in cancer, PD-L1 expression, and PD-1 checkpoint pathway in
cancer, endometrial cancer, and interestingly, coronavirus disease (COVID-19). Single-gene
GSEA analysis (Figure 5) of RPL3, RPL12, PTEN, IFNGR2, KLF10, PLAUR, MSN, and
IKBIP were calculated, and the top five immunological functions and pathways with the
least adjusted p values and q values were displayed. Interestingly, RPL3, RPL12, and
PTEN, whose coefficients of risk score were negative numbers, had normalized enrichment
scores (NES) <−1 in immune processes such as “adaptive immune response”, “leukocyte
differentiation”, “leukocyte migration”, “leukocyte mediated immunity”, “innate immune
response”, “T cell activation”, “antigen processing, and presentation via MHC class I”. It
meant RPL3, RPL12, and PTEN had negative regulation effects on the pathways above.
As for IFNGR2, KLF10, PLAUR, MSN, and IKBIP, whose coefficients of risk score were
positive numbers, most of the NES values of immunological pathways were also >1. It
might indicate that coefficients of risk score had a positive correlation with immunological
functions and pathways.
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Figure 4. (A) Go enrichment analysis of hub genes. (B) KEGG enrichment analysis of hub genes.

3.4. Tumor Mutational Burden (TMB)

According to the median number of risk scores, patients in TCGA-GBM/LGG were
divided into a high-risk group and a low-risk group. A total of 324 samples with corre-
sponding mutation information were in the high-risk group, and 334 samples with the
information were in the low-risk group. Waterfall plots revealed that TP53 mutation was
the main mutation in the high-risk group (Figure 6A), while the IDH1 missense variant was
the main mutation in the low-risk group (Figure 6B). The missense variant counted for the
majority of TP53, IDH1, TTN, EGFR, PTEN, etc., in the high-risk group and the majority of
IDH1, TP53, etc., in the low-risk group. The Frameshift variant counted for the majority of
ATRX in both groups, followed by the intron variant. Mutations of IDH1 and ATRX were
more frequent in the low-risk group, and mutations of TP53, EGFR, and TTN were more
frequent in the high-risk group.
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3.5. Correlation of Hub Genes and Immunologic Scores

A correlogram (Figure 6C) showed that RPL3, RPL12, and PTEN, whose coefficients
of risk score were <0, had negative correlations with risk score, stromal score, immune
score, and ESTIMATE score and positive relationships with tumor purity. IFNGR2, KLF10,
PLAUR, MSN, and IKBIP, whose coefficients of risk score were >0, had positive correla-
tions with risk score, stromal score, immune score, and ESTIMATE score and negative
relationships with tumor purity. The risk score had a positive correlation with stromal
score, immune score, and ESTIMATE score.
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3.6. Prognostic Prediction Ability of Risk Score

A total of 603 patients in TCGA-GBM/LGG with integral clinical information were
divided into a high-risk group and a low-risk group according to the median number. Then,
313 patients in CGGA-325, and 657 patients in CGGA-693 were divided by the same rule
as applied to validation sets. In the KM curves, the low-risk group showed a significantly
better prognosis than the high-risk group in TCGA-GBM/LGG (Figure 7A), CGGA-325
(Figure 7B), and CGGA-693 (Figure 7C). It indicated that the method to dichotomize patients
according to risk score had statistical significance in prognostic prediction.

3.7. GSVA Indicated the Correlation of Risk Score and Microglia/Macrophage Immune Responses

The heatmap of gene set variation analysis (GSVA) (Figure 7D) revealed that risk
score had a remarkable positive correlation with “immune response to tumor cell”, “Mi-
croglia pathogen phagocytosis pathway”, “microglial cell activation”, “microglia differenti-
ation”, “macrophage proliferation”, “macrophage activation”, “macrophage chemotaxis”,
“macrophage migration”, and “macrophage differentiation”. In addition, the risk score
had a negative correlation with “response to macrophage colony-stimulating factor”. The
result of GSVA indicated a close correlation between risk score and microglia/macrophage
immune responses.
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Figure 7. Kaplan−Meier (KM) curves of high-risk group and low-risk group in (A) TCGA−GBM/LGG,
(B) CGGA−325, and (C) CGGA−693. (D) Heatmap of correlation of risk score and mi-
croglia/macrophage immune responses calculated by GSVA. Sphere size of the right part was
the absolute value of Pearson R value. Sphere color changed with p value. (E) Pearson correlation
between risk score and immune checkpoints. The color of upper inner part of the circle changed with
Pearson R value, and the color of lower inner part changed with Pearson −log10 (p value).

3.8. Correlation of Risk Score and Immune Checkpoints

The correlationship among risk score and CD47, CTLA4, HVEM, TIGIT, CD200R1,
PD-1, TMIGD2, TIM-3, and LAG3 were revealed by Pearson relevance analysis (Figure 7E).
The risk score had positive relevance with checkpoints of CTLA4, HVEM, CD200R1, PD-1,
and TIM-3, while it had negative relevance with TMIGD2. Though the p value color of
TMIGD2 was not deep, as we chose the −log10 (p-value) to display it, the actual p value
of TMIGD2 was 9.61 × 10−10. So, the negative relevance of the risk score and TMIGD2
was valid.

3.9. Nomogram of Risk Score

A nomogram (Figure 8A) containing the parameters of risk score, grade, age, IDH
mutation, and 1p19q codeletion was designed to predict the overall survival rate. Integral
information with all the parameters of 592 patients in TCGA-GBM/LGG was the training
dataset. Integral information of 305 patients in CGGA-325 and 543 patients in CGGA-693
were the testing sets. In the nomogram, risk score and age were the major contributing
factors to overall survival. The C-index (Figure 8B) of the risk score was 0.85, indicating a
good predictor of prognosis. The C-index of the training set was 0.874. In the testing set, it
was 0.72 in CGGA-325 and 0.743 in CGGA-693, showing a good prediction ability. Sterling
prediction accuracy was revealed by 1-year, 2-year, 3-year, and 5-year calibration curves in
the training set (Figure 8C) and testing sets (Figure 8D,E).
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glioma based on TCGA-GBM/LGG. (B) C-index of parameters in nomogram and C-index of the
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diagram of CGGA-325. (E) Calibration diagram of CGGA-693. Red line: 1-year calibration curve.
Orchid line: 2-year calibration curve. Orange line: 3-year calibration curve. Limegreen line: 5-year
calibration curve.

3.10. Radiomics Models for Predicting Risk Stratification

T2 flair has shown an unparalleled advantage in the delineation of glioma borders,
especially in LGG. So, 168 MR T2 flair images in TCIA corresponding to patients in TCGA-
GBM/LGG were selected for the radiomics study. N4 biasField correction, Z-score nor-
malization, and voxel size resampling were carried out before feature extraction. Patients
were classified into a high-risk group and a low-risk group by the rules described above.
Five radiomics features were finally selected after T-test and lasso regression in the training
set (Figure 9B). The radiomics features were “original shape Maximum2DDiameterRow”
(lasso coef = −0.035783); “wavelet-LLL firstorder Range” (lasso coef = 0.022346); “log-
sigma-2-0-mm-3D glszm HighGrayLevelZoneEmphasis” (lasso coef = −0.008832); “log-
sigma-1-0-mm-3D glszm LowGrayLevelZoneEmphasis” (lasso coef = 0.020434); and “log-
sigma-2-0-mm-3D glszm LowGrayLevelZoneEmphasis” (lasso coef = 0.000006) (Figure 9C).
Since features were derived from the same MR imaging, there was some correlation among
different features (Figure 9D). The random forest (RF) model and Support Vector Machine
(SVM) model were applied to predict the risk group stratification, respectively. C-index
has an excellent value in evaluating one single model, while it is not as good as AUC in
multiple models. ROC curves were used to evaluate the random forest model and SVM
model. In the training set (Figure 9E), the AUC of the random forest model was 0.9639,
which was better than 0.7946 in the SVM model. In the testing set (Figure 9F), the AUC
of the random forest model was 0.7502, which was worse than 0.8417 in the SVM model.
However, the AUC of the SVM model in the testing set was greater than that in the training
set. It might result from the lack of sample volume, and the data in the testing set just had
a better fit with the SVM model. Finally, the random forest model might be a better model.
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4. Discussion

In the realm of central nervous system disease, gliomas represent a significant and
prevalent form characterized by a daunting prognosis. Despite the integration of im-
munotherapies, such as adoptive cell transfer and immune checkpoint inhibitors, their
efficacy in glioma treatment remains marginal [27]. The main concern of most immunother-
apy research eventually returns to T cells and T-cell-related immune pathways [28,29].
Nonetheless, gliomas predominantly feature microglia and macrophages as the key im-
mune cells, marking a deviation from the typical T-cell-focused therapies and signaling a
paucity of advancements in glioma immunotherapy.

Our investigation utilized these methodologies to discern microglia/macrophage-
associated gene clusters within four multicenter single-cell sequencing datasets. Sub-
sequent prognostic correlation analyses selected hub genes and associated risk scores,
while functional enrichment analyses, including GSEA, delineated the immunological
functions of these genes. GSVA of the risk score indicated a comprehensive regulatory
influence on microglia/macrophages by the hub genes collectively. The risk score demon-
strated a robust prognostic prediction capacity, confirmed by a corresponding nomogram.
Mutation analysis revealed that IDH1 and ATRX mutations were prevalent within the
low-risk cohort, whereas TP53 and EGFR mutations were more common in the high-risk
group, aligning with the existing literature that associated the latter with poorer prog-
noses [30,31]. Moreover, a positive correlation was identified between the risk score and
immune checkpoints, namely CTLA4, HVEM, CD200R1, PD-1, and TIM-3, which are impli-
cated in tumor-mediated immunosuppression and evasion, akin to the role of microglia
and macrophages in glioma. However, our study design is primarily observational, and
therefore, we cannot establish definitive causality based on our results alone. It is worth
noting, however, that most of the genes that comprise the risk score have oncogenic effects.
In a sense, our findings may be responsible for the development of gliomas.

In the intricate landscape of glioma pathogenesis, the elucidation of risk scores de-
rived from pivotal hub genes—RPL3, RPL12, PTEN, IFNGR2, KLF10, PLAUR, MSN, and
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IKBIP—emerged as a critical component in understanding the disease’s progression and
patient stratification. These genes, through their diverse functions and pathways, have been
implicated in the modulation of tumor biology, including proliferation, apoptosis, and the
tumor microenvironment’s immune response. RPL3 and RPL12 are part of the ribosomal
protein cohort, traditionally viewed as housekeeping genes; however, recent studies sug-
gested their involvement in p53 signaling and cellular stress responses, underpinning their
potential roles in tumorigenesis [32,33]. PTEN is a well-documented tumor suppressor
gene, and its loss of function mutation is a hallmark of glioma, which would contribute
to unregulated PI3K/Akt signaling, promoting oncogenic processes [34]. IFNGR2, the
receptor for interferon-gamma, plays a dual role in immune response modulation and
is associated with the polarization of microglia and macrophages within the glioma mi-
croenvironment, influencing immunogenicity and the efficacy of immunotherapies [35,36].
KLF10, a transcription factor, is implicated in the regulation of TGF-β signaling, a path-
way known for its contribution to the immunosuppressive milieu [37–39]. PLAUR, or
urokinase receptor, is instrumental in extracellular matrix remodeling, a process integral to
tumor invasion and angiogenesis. It also affects the recruitment and phenotype of immune
cells in the tumor context [40,41]. MSN, an actin-binding protein, has been implicated
in the cytoskeletal reorganization associated with cell shape and motility [42], facets cen-
tral to glioma cell invasion, and interactions with the microenvironment. IKBIP, while
less characterized, has been postulated to interact with NF-kB signaling, a pathway with
known implications in glioma progression and inflammation, possibly affecting microglial
activation states [43].

Radiomics is a non-invasive and convenient method for diagnosis. We extracted
image features of MRI T2 flair imagings and tried to construct the model to predict the
risk stratification groups. The AUC of the random forest model showed a good prediction
effect. However, the AUC of SVM in the testing set was higher than that in the training set.
It might be a result of the incompletely consistent distribution, and data in the testing set
just better fit the SVM model. More samples were required to reduce this bias. Either way,
the random forest model was a better prediction model.

Our study aimed to find a non-invasive prediction model without craniotomy, and we
could not confirm the World Health Organization (WHO) grade and pathological subtypes
before the operation. So, although studying gliomas in different grades and pathological
subtypes, respectively, would increase the accuracy of prediction models, we still persisted
in designing the model in the main category of glioma to imitate the clinical situation
without explicit pathological results. We designed the prediction model for the large class
of glioma before the identification of the operation and pathological examination. Although
it may sacrifice some accuracy, we still believe it is worthwhile.

We used four single-cell RNA datasets to select genes that correlated with microglia
and macrophages. Those single-cell datasets had the advantage of cluster analysis, while
they lacked clinical data and MRI imaging. Then, we analyzed the prognosis based on
TCGA-GBMLGG and CGGA datasets, which had a large number of clinical samples as well
as transcriptome gene data. MRI data were obtained from the TCIA dataset. The patients
in the TCIA dataset were in one-to-one correspondence with those in TCGA-GBMLGG.
Only a few patients lacking appropriate MRI imaging were excluded. Despite the inherent
heterogeneity across the datasets analyzed in this study, we employed a compendium of
bioinformatics algorithms to mitigate batch effects effectively. A salient limitation, however,
was the absence of corroborative in vitro or in vivo experiments to substantiate our bioin-
formatics predictions. Future experimental research is imperative to elucidate the precise
significance and influence of varied cell populations—including microglia, macrophages,
and neoplastic cells—as contributory factors in glioma pathogenesis. Additionally, while
histological confirmation of specific cell types within the tumor microenvironment is piv-
otal, our study’s design and methodological framework did not extend to such histopatho-
logical evaluations. Typically, the identification of microglia and macrophages in tumor
sections necessitates immunohistochemistry (IHC). The unavailability of corresponding
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IHC-stained sections within TCGA or the single-cell sequencing cohorts precluded this
line of investigation in our analysis. Looking forward, it is imperative that our subsequent
research incorporates prospective data accrual and meticulous validation studies. Such
endeavors will be crucial in ascertaining the generalizability of the identified radiogenomic
markers and in establishing their prognostic utility for clinical outcomes in patients with
newly diagnosed glioma. More importantly, in a Sankey plot using the CGGA-693 cohort
(Figure S1), we found that most patients (71.3%) predicted as being in a high-risk group in
our model were finally confirmed as having a high WHO grade (III and IV). It indicated
that the parameters of our model, such as hub gene expressions and radiomics features,
might have potential correlations with pathological subtypes. Moreover, it revealed that
our risk stratification could classify a subset of WHO grade IV patients (18.8%) as low-risk
patients (Figure S1). At the same time, 28.7% of WHO grade II patients were also defined
as high-risk. This finding held significant implications for guiding treatment selection.

We looked forward to finding some relationships between immunogenomics and
radiomics. We also wanted to find a convenient and non-invasive way to assess risk
stratification. More imaging cases were required to narrow the bias. Furthermore, deep
learning, which could make the imaging–immunogenomics model “smarter”, will be of
great necessity in a future study.

5. Conclusions

To summarize, our study advanced the understanding of glioma prognostication by
integrating the analysis of immune microenvironment heterogeneity through state-of-the-
art single-cell sequencing. The identification of hub genes and their associated risk scores
unveiled significant prognostic implications. The observed correlation between genetic risk
factors and immune checkpoint expression underscored the complexity of glioma immuno-
suppression mechanisms, potentially guiding future immunotherapy strategies. Moreover,
the development of a radiogenomics model enhanced the non-invasive predictive capabil-
ity, offering a promising tool for risk stratification in clinical settings. Our research paved
the way for future explorations that may ultimately lead to improved prognostic tools and
personalized therapeutic regimens for glioma patients.
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Abbreviation

UMAP (Uniform Manifold Approximation and Projection); STI1 (stress-inducible protein 1);
EGF (epidermal growth factor); TGF-β (transforming growth factor-β); scRNA-seq (Single-Cell RNA
Sequencing); CGGA (Chinese Glioma Genome Atlas); GEO (Gene Expression Omnibus); TCGA-
GBM/LGG (Cancer Genome Atlas–Glioblastoma Multiforme and Lower-grade Glioma); GTEx
(Genotype-Tissue Expression); SNP (single-nucleotide polymorphism); TMB (tumor mutational bur-
den); TCIA (The Cancer Imaging Archive); LASSO (least absolute shrinkage and selection operator);
TPM (transcripts per million reads); GO (Gene Ontology); KEGG (Kyoto Encyclopedia of Genes
and Genomes); GSEA (Gene Set Enrichment Analysis); OS (overall survival); C-index (concordance
index); MRI (magnetic resonance imaging); T2 Flair (T2 fluid-attenuated inversion recovery); ROI
(regions of interest); GLCM (gray-level co-occurrence matrix); GLRLM (gray-level run-length matrix);
GLSZM (gray-level size-zone matrix); GLDM (gray-level dependence matrix); NGTDM (neighboring
gray-tone-difference matrix); LoG (Laplacian of Gaussian); SquareRoot (square root of the absolute
image intensities); LBP (local binary pattern); RF (random forest); SVM (Support Vector Machine);
OOB (out of bag); ROC (receiver operating characteristic); AUC (area under the curve); WHO (World
Health Organization).
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