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Abstract: An ocean of studies have pointed to abnormal brain laterality changes in patients with bipo-
lar disorder (BD). Determining the altered brain lateralization will help us to explore the pathogenesis
of BD. Our study will fill the gap in the study of the dynamic changes of brain laterality in BD patients
and thus provide new insights into BD research. In this work, we used fMRI data from 48 BD patients
and 48 normal controls (NC). We constructed the dynamic laterality time series by extracting the
dynamic laterality index (DLI) at each sliding window. We then used k-means clustering to partition
the laterality states and the Arenas–Fernandez–Gomez (AFG) community detection algorithm to
determine the number of states. We characterized subjects’ laterality characteristics using the mean
laterality index (MLI) and laterality fluctuation (LF). Compared with NC, in all windows and state 1,
BD patients showed higher MLI in the attention network (AN) of the right hemisphere, and AN in
the left hemisphere showed more frequent laterality fluctuations. AN in the left hemisphere of BD
patients showed higher MLI in all windows and state 3 compared to NC. In addition, in the AN of
the right hemisphere in state 1, higher MLI in BD patients was significantly associated with patient
symptoms. Our study provides new insights into the understanding of BD neuropathology in terms
of brain dynamic laterality.

Keywords: bipolar disorder; fMRI; dynamic laterality index; laterality time series

1. Introduction

Bipolar disorder (BD) is a chronic mental disorder caused by disturbances in the
functioning of the brain, characterized by alternating episodes of depression and hypoma-
nia [1,2]. BD severely affects more than 1% of the world’s population and is characterized by
lifelong episodes [3]. BD can cause severe mental distress and is also life-threatening [4,5].
In recent years, more and more studies have focused on the lesions of brain diseases, and
BD patients have received much attention [6,7]. The mining of brain properties in BD
patients can help provide beneficial information for disease prevention and treatment.

Functional laterality of the brain, which is the functional asymmetry of the hemi-
spheres, plays an important role in the identification of mental disorders [8]. As an effective
neuroimaging index, fMRI has been widely used to study the laterality of brain function
in recent years [7,9,10]. Especially in the exploration of the laterality of brain function in
BD patients, some studies have shown abnormal changes in the laterality of brain func-
tion in BD patients. For example, asymmetric functional connectivity changes have been
reported in BD patients [11–13]; some of these altered brain regions play important roles
in specific subnetworks, and it also indicates how specific functions in the corresponding
subnetworks may be affected as a result. Research has also reported that BD patients have
laterality changes in brain activation signals at the level of subnetworks and pointed out the
correlation between such changes and different emotional symptoms [14–16]. According
to the above, we can understand the phenomenon of laterality changes in the brain of
patients with BD, and these studies provide crucial evidence for the neurodevelopmental

Brain Sci. 2023, 13, 1646. https://doi.org/10.3390/brainsci13121646 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci13121646
https://doi.org/10.3390/brainsci13121646
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0002-9758-6954
https://doi.org/10.3390/brainsci13121646
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci13121646?type=check_update&version=1


Brain Sci. 2023, 13, 1646 2 of 14

mechanism of patients with BD. However, these studies have studied the brain from a
static perspective, ignoring the dynamic interaction process of the brain over time.

It is well known that the state of the brain is a dynamic pattern that changes over
time [17]. The capture of dynamic changes can help us obtain more effective potential
information [18]. Therefore, capturing the dynamic changes of the brain from fMRI is a
key initiative in BD research [19,20]. The dynamic patterns of interactions in the brain of
BD patients could be effectively distinguished from those of healthy people [21,22], and
the corresponding lesions could be manifested in specific subnetworks [23,24]. In terms of
brain state transition patterns, BD patients have also been reported to exhibit abnormalities
related to subnetworks and increased instability of cognitive processes [25,26]. In addition,
some studies have pointed out that BD patients have abnormal neurobiological features of
changes in spontaneous brain activity signals [27]. These studies have shown that dynamic
features play a crucial role in the expression of BD patients, and the capture of dynamic
information is conducive to us exploring BD disease pathology effectively. Based on these
studies, we hypothesized that the laterality of the human brain changes over time, and it is
very meaningful to explore it for BD research.

This paper aims to consider the brain properties from the perspective of temporal
dynamics, and thus to explore how the brain laterality of BD patients has changed. At the
same time, functional subnetworks of the brain play an important role in BD research [28].
Therefore, the focus of this paper is to analyze whether the brain subnetwork of BD patients
shows corresponding lesions by mining the changes in brain dynamic laterality. Given the
above large number of studies, the brain dynamic and brain laterality manifestations of BD
contribute to the diagnosis of the disease. Therefore, further exploration of the dynamic
changes of laterality will help to provide more accurate clinical diagnosis guidance. We
used fMRI data from 48 BD patients and 48 age- and sex-matched normal controls (NC) to
construct laterality time series, respectively. We assessed dynamic laterality in BD patients
using two indices, namely the mean laterality index (MLI) and laterality fluctuation (LF),
to determine the differences between the groups. We explored not only across all windows
but also in different time clusters. The number of states was determined by the k-means
clustering algorithm and Arenas–Fernandez–Gomez (AFG) community detection algorithm.
We also investigated the correlation of abnormal dynamic laterality changes with the clinical
features of BD patients. The study of brain dynamic laterality in BD patients may provide a
new perspective on the study of brain injury in BD patients.

2. Materials and Methods
2.1. Subjects

All data included in this work were acquired from the University of California Los
Angeles (UCLA) Consortium for Neuropsychiatric Phenomics (CNP) LA5c Study project,
and the study was approved by the UCLA Institutional Review Board; data are available
through the OpenfMRI database (accession number: ds000030, https://legacy.openfmri.
org/dataset/ds000030/) [29]. Finally, we obtained 48 BD patients and 48 matched NCs,
which is shown in Table 1. Patient symptoms were assessed using the Brief Psychiatric
Rating Scale (BPRS), the Scale for Assessment of Negative Symptoms (SANS), and the
Young Mania Rating Scale (YMRS) [30–32].

Table 1. Demographic and clinical characteristics (mean ± standard deviation [SD]).

Subjects NC (n = 48) BD (n = 48) p

Age (years) 33.77 ± 9.0 35.23 ± 9.0 0.436 a

Gender (M/F) 26/22 27/21 0.837 b

Education level(years) 14.94 ± 1.5 14.60 ± 1.9 0.350 a

Handscore c 0.93 ± 0.1 0.93 ± 0.1 0.760 a

BPRS d N/A 44.73 ± 10.9 N/A

https://legacy.openfmri.org/dataset/ds000030/
https://legacy.openfmri.org/dataset/ds000030/
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Table 1. Cont.

Subjects NC (n = 48) BD (n = 48) p

SANS d N/A 21.63 ± 14.1 N/A
YMRS d N/A 12.02 ± 11.0 N/A

Unless otherwise indicated, all data are represented as mean ± standard deviation. a The p value was obtained
using a two-sample two-tailed t-test. b The p value was obtained using a χ2 test. c The Handscore described the
handedness of subjects. It was obtained using a formula (Right − Left)/(Right ± Left). d The BPRS, SANS, and
YMRS scores were used to assess the symptom severity of patients with BD.

2.2. Data Acquisition and Data Processing

Functional MRI data for all participants were collected on a 3T Siemens Trio scanner,
using a T2*-weighted echoplanar imaging (EPI) sequence. The relevant parameters are
as follows: repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle = 90◦, slice
thickness = 4 mm, slice number = 34 and 152 time points. Resting-state fMRI data were
preprocessed using the DPARSF toolbox [33]. The first 10 volumes were discarded, to ensure
that the subject was acclimated to the environment and the scanner was calibrated [34]. The
subsequent steps included slice timing, realign, head motion correction, and normalization
to the Montreal Neurological Institute (MNI) space (resampled into 3 × 3 × 3 mm3 voxels);
a Gaussian kernel of 4 mm full width at half height (FWHM) was used for smoothing.
Data were linearly detrended and regressed out the nuisance covariates, including white
matter, cerebrospinal fluid signal, and Friston-24 parameters of head motion. Finally, the
data were temporally filtered (0.01 ≤ f ≤ 0.1 Hz), which can effectively reflect neuronal
fluctuations [35].

2.3. Laterality Time Series Construction and Analysis

We used the dynamic laterality index (DLI) and adopted a sliding window approach
to capture the dynamics of laterality to construct laterality time series [36]. The formula for
calculating the DLI for window t:

DLIt = r
(

ROIt
i , GSt

L
)
− r

(
ROIt

i , GSt
R
)

(1)

The ith region of interest is Pearson correlated with the left hemisphere global signal
or the right hemisphere global signal, respectively. The fisher-z transformation was then
performed, and the difference between the above two was calculated.

The entire rs-fMRI time series was segmented into several overlapping sub-time series
by the sliding window method. The DLI of different brain regions in each window was
evaluated. The comparison of window sizes indicates that the minimum window length
should not be less than the inverse of the minimum frequency of the time series [37].
Therefore, we chose a window size of 50 TR and a window step size of 1 TR, to capture
the rapid dynamic changes of the brain more securely. Thus, the 142 time points of each
subject were divided into 93 windows (Figure 1B).

We calculated two measures of dynamic laterality. The MLI represents the mean
laterality index, which is obtained by averaging over all Windows. LF represents laterality
fluctuation, which is the standard deviation across all Windows (Figure 1D). The cortical vol-
ume of the template brain was parcellated into 90 regions of the AAL atlas [38] (Figure 1A),
and each region in the network is assigned to 5 (Division within hemispheres) subnetworks
based on the network division of the network proposed by Yong H et al. [39].

2.4. Temporal State Extraction and Analysis

To identify the state of lateral performance across time in the brain, we determined
the final mean pattern category as the centroid through a three-stage temporal clustering
method. We first clustered the laterality time series for everyone using the k-means
clustering algorithm, and then cluster the centroids obtained above. The final number of
clusters was determined using an Arenas–Fernandez–Gomez (AFG) community detection
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algorithm with multi-resolution screening capabilities. In the k-means algorithm, the
distance metric we chose was the cosine distance metric. Because laterality time series
based on different brain regions and time windows will contain far more features than the
sample size, we chose the cosine similarity measure which is more suitable for measuring
higher dimensional data [40–42]. The AFG community detection algorithm was chosen,
with a resolution parameter from 0.1 to 1.5 and a step size of 0.1 [43]. In this paper,
according to the existing research on the general state number determination and parameter
selection of temporal clustering, the parameter range was selected to ensure that the reliable
physiological significance of the division could be obtained [17,36]. In this process, we look
for the most persistent (i.e., the most stable) division across multiple scales, resulting in the
optimal number of clusters. Finally, cluster centroids obtained during the appeal process
were applied separately to all participants, resulting in all brain laterality state partitions
(Figure 1C).
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Figure 1. Schematic diagram of the data preprocessing and dynamic laterality analysis process.
(A) The data preprocessing process included removing the first 10 volumes, slice timing, head
movement correction, normalization, smoothing, linear detrending, regression of excess covariates,
etc. Finally, the fMRI time series of the corresponding ROI were extracted by matching them to
the AAL template. (B) The DLI of each ROI was calculated within each window by the sliding
window method. Laterality time series were constructed for all ROI of all subjects by window sliding.
(C) The laterality time series of all subjects were clustered using a combination of k-means clustering
algorithm and AFG community detection algorithm. The AFG community detection algorithm can
help us to determine the optimal number of clusters, namely the k value. (D) The mean laterality
index and laterality fluctuation were calculated to extract the dynamic laterality characteristics of the
subjects. GSL, global signal of the left hemisphere; GSR, global signal of the right hemisphere; ROI,
region of interest. DLI, dynamic laterality index; MLI, mean laterality index; LF, laterality fluctuation.
AFG, Arenas-Fernandez-Gomez. NC, normal controls; BD, bipolar disorder.

2.5. Statistical Analysis

To avoid the influence of irrelevant variables on the experiment, we performed an
analysis of group differences in demographic and clinical data. Demographic and clinical
data were analyzed using SPSS version 25.0 (IBM Corp., Armonk, NY, USA). Group differ-
ences in demographic information, including age, education, and handscore were analyzed
with two-tailed t-tests. We used a χ2 test to analyze the gender data. For dynamic later-
ality parameters, a two-sample two-tailed t-test was used to analyze differences between



Brain Sci. 2023, 13, 1646 5 of 14

BD patients and NC. A threshold of p < 0.05 was considered to indicate significance for
between-group differences. Especially for subnetwork or brain region attributes, the false
discovery rate (FDR) correction was performed at this threshold (p < 0.05).

For those dynamic laterality parameters that showed statistically significant group
differences, we used Spearman correlation to analyze the relationship between dynamic
laterality characteristics and BD symptom severity. When the uncorrected p value was
0.05, a significant relationship was considered. This was because these correlations are
exploratory in nature.

3. Results
3.1. Demographic and Clinical Data

Demographic data are shown in Table 1. There were no significant differences in age
(p = 0.436), gender (p = 0.837), education level (p = 0.350), or handscore (p = 0.760) between
the BD group and the NC group.

3.2. Dynamic Laterality Analysis under All Windows
3.2.1. MLI and LF Analysis Based on Subnetworks

As shown in Figure 2, we analyzed changes in dynamic laterality in BD patients under
all windows. The subnetworks that showed significant differences between LF and MLI
features were found. Compared with NC, BD patients showed a higher MLI in bilateral
hemisphere networks (p < 0.05; Figure 2A). BD patients also had higher MLI in the AN
of the left and right hemispheres (p < 0.05; Figure 2A). At the same time, as shown in
Figure 2B, the attention network (AN) in the left hemisphere of BD patients also exhibited
more frequent LF (p < 0.05).
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Figure 2. Group differences in dynamic laterality characteristics of subnetworks under all windows.
(A) MLI for NC and BD. The bar chart and error bar represent the average values and standard devia-
tions of the MLI in each group. (B) LF for NC and BD. NC, normal controls; BD, bipolar disorder. MLI,
mean laterality index; LF, laterality fluctuation. HEM, Hemisphere; MAN, Somatosensory/Motor
and Auditory Network; VN, Visual Network; AN, Attention Network; DMN, Default Mode Network;
LSN, Limbic/Paralimbic and Subcortical Network. * represents significant differences between
different groups; the p value indicates the significance. Two-sample t-test, FDR-corrected, * p < 0.05.
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3.2.2. Node-Based LF Analysis

As shown in Figure 3A, BD patients showed higher LF (p < 0.05) at the operculum
part of the left inferior frontal gyrus (IFGoperc_L) than in NC. At the same time, we found
that the LF of BD patients in the IFGoperc_L region was significantly negatively correlated
with SANS (R = −0.320, p = 0.026; Figure 3B).
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Figure 3. LF analysis of lFGoperc_L. (A) LF of NC and BD at the IFGoperc_L node. * represents signif-
icant differences between different groups; two-sample t-test; FDR-corrected; * p < 0.05. (B) Spearman
correlation between LF and SANS in BD patients; the R value indicates the correlation coefficient
and the p value indicates the significance. NC, normal controls; BD, bipolar disorder. LF, laterality
fluctuation. IFGoperc_L, operculum part of the left inferior frontal gyrus. SANS, Scale for Assessment
of Negative Symptoms.

3.3. Dynamic Laterality Analysis under Temporal Clustering
3.3.1. The States Obtained by Clustering

We further explored the temporal organization of laterality dynamics by clustering
the whole brain laterality state of time windows. Three laterality states were identified,
each showing distinct laterality patterns (Figure 4). Among them, the more negative the
laterality correlation is, the more opposite the tendency in which different regions interact
with the two hemispheres. Depending on the main manifestations of the different states,
are referred to as the contralateral interaction state, the transition state, and the ipsilateral
interaction state, respectively.
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Figure 4. The laterality correlation matrix of states 1–3. At the top, the proportions of different states
are shown. On the right, the color bars show the extent of positive and negative correlations for
laterality. MAN, Somatosensory/Motor and Auditory Network; VN, Visual Network; AN, Attention
Network; DMN, Default Mode Network; LSN, Limbic/Paralimbic and Subcortical Network.

3.3.2. Analysis of Group Differences Based on Status

As shown in Figure 5A, compared with NC, the left hemisphere (p < 0.05) and the AN
of the right hemisphere (p < 0.05) in BD patients showed higher MLI in state 1. Furthermore,
the right hemisphere (p < 0.05) and the AN of the left hemisphere (p < 0.05) in BD patients
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also showed higher MLI in state 3 (Figure 5B). In addition, as shown in Figure 6, NC in state
1 also showed lower LF in the left hemisphere (p < 0.05) and the AN in the left hemisphere
(p < 0.05) than BD patients. Finally, in state 1 we found that the MLI of AN in the right
hemisphere in BD patients was significantly positively correlated with YMRS (R = 0.243,
p = 0.048) and BPRS (R = 0.241, p = 0.049) (Figure 7).
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Figure 5. Group differences in MLI of subnetworks under different states. The bar chart and error
bar represent the average values and standard deviations of the MLI in each group. (A) MLI for NC
and BD in state 1. (B) MLI for NC and BD in state 3. NC, normal controls; BD, bipolar disorder. MLI,
mean laterality index. HEM, Hemisphere; MAN, Somatosensory/Motor and Auditory Network; VN,
Visual Network; AN, Attention Network; DMN, Default Mode Network; LSN, Limbic/Paralimbic
and Subcortical Network. * Represents significant differences between different groups; the p value
indicates the significance. Two-sample t-test; FDR corrected; * p < 0.05; ** p < 0.01.
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4. Discussion

We explored time-resolved alterations in functional lateralization, which was not
only across all time windows but also across time clusters. We mainly reported dynamic
laterality changes characteristic in the presence of subnetworks in BD patients, and some
correlated with symptom scales. We found that these differences are mainly concentrated
in the AN of both hemispheres, indicating the potential role of AN in the genetic risk and
phenotypic expression of BD.

4.1. The Increased MLI of the AN in the Left Hemisphere Is Caused by Weakened Inter-Hemispheric
Connectivity

Across all windows, we found that the MLI of AN in the left hemisphere was enhanced
in BD patients. According to the calculation principle of MLI, we speculate that this was
caused by the decreased inter-hemispheric connectivity of the AN in the left hemisphere in
BD patients. Previous research [44–46] has reported that in patients with BD, the AN in
the left hemisphere showed weaker functional connectivity between hemispheres. Several
studies [47,48] have suggested that the AN in the left hemisphere plays an important role in
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motor attention and language-related functions, while studies [14,49] also point to impaired
motor attention and other functions in BD patients.

From the perspective of changes in brain state, this paper further found that AN in the
left hemisphere of BD patients in state 3 exhibited higher MLI. This result further supports
the results of all windows above, indicating that MLI abnormalities in the left hemisphere
AN are simultaneously caused mainly by state 3. State 3 represents ipsilateral interaction,
and according to the principle of ipsilateral interaction, the brain is likely to be engaged
in the processing of simple tasks [36,50]. These simple tasks involve the processing of
some motor attention functions and language functions [51–53], which also supports the
possible impairment of corresponding functions in BD patients mentioned in the appeal. In
summary, the above evidence suggests that the increased MLI of AN in the left hemisphere
in BD patients is caused by weakened inter-hemispheric connectivity and occurs mainly in
specific ipsilateral interaction states. The results suggest that the impairment of AN in the
left hemisphere may provide a new direction for the diagnosis of BD.

4.2. The Increased MLI of AN in the Right Hemisphere Is Caused by Enhanced Intra-Hemispheric
Connectivity

Across all windows, BD patients were found to exhibit greater MLI in the AN of
the right hemisphere. Also, according to the calculation principle of MLI, we suspect
that the AN in the right hemisphere is more likely to interact with its hemisphere, due
to its stronger connections within the hemisphere. There is evidence of enhanced intra-
hemispheric functional connectivity of AN in the right hemisphere in BD patients [12,54–56],
accompanied by similar findings in structural connectivity [57,58]. The AN in the right
hemisphere tends to play an important role in spatial attention and executive control, which
may reflect a compensatory mechanism for related functions [59–61]. We found that the
triggers of MLI changes were different in the AN of the bilateral hemispheres, and some
studies [62,63] have pointed out the asymmetry of the AN itself.

From the perspective of brain state changes, we further found that AN in the right
hemisphere of BD patients exhibited higher MLI in state 1. This result further supports
the above results under all windows, indicating that the MLI abnormalities of AN in
the right hemisphere are mainly caused in state 1. State 1 represents the contralateral
interaction, and according to the principle of contralateral interaction, the brain is in the
process of more complex tasks currently [36,64]. In the contralateral interaction state,
some studies [65] have also pointed out that BD patients have the performance of task-
related integration enhancement. These complex tasks involve processing related to spatial
attention and executive control [66,67]. Given the above discussion, we conclude that
the MLI abnormality of the AN in the right hemisphere of BD patients is caused by its
increased intra-hemispheric connectivity, and mainly occurs in the state of contralateral
interaction. This finding further complements the diagnostic value of AN impairment in
the right hemisphere in BD patients.

4.3. The Increased LF of AN in the Left Hemisphere Was Caused by Enhanced Connectivity
Variability

Across all windows, AN in the left hemisphere in BD patients showed LF more
frequently than NC. And according to the calculation principle of LF, we speculate that is
caused by more frequent changes in connectivity between the AN in the left hemisphere and
the rest of the brain. Previous work [68–70] has shown that in patients with BD, AN in the
left hemisphere showed increased variability in dynamic functional connections with the
motor cortex and the default mode network. Many studies [45,71,72] have pointed out that
the IFGoperc region in this network tends to be altered in response to brain injury, as well
as in BD patients. Similarly, we also found abnormally frequent LF changes in left IFGoperc.
We speculate that the strong laterality fluctuations in BD patients play a compensatory role,
to compensate for the lack of information exchange between the AN of the left hemisphere
and other regions [73]. This result ties well with previous studies [74–76], wherein BD
patients have compensatory mechanisms in the AN, which can enhance the processing
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ability of attention information. The left IFGoperc is an important region in the processing
of phonological-related working memory mechanisms [77,78]. The above phenomena
reflect the attention-related functional compensation that may arise from brain damage in
BD patients, especially in language-related working memory.

In addition, in state 1, namely the contralateral interaction state, BD patients also
showed frequent changes in LF in the AN of the left hemisphere. According to the previous
discussion, the brain in the state of contralateral interaction is in the process of highly
busy complex tasks [36,79]. At this time, the AN in the left hemisphere of BD patients also
showed more frequent information exchange. Obviously, in the state of contralateral interac-
tion, to make up for its shortcomings and meet the needs of many information exchanges, it
shows abnormal compensation behavior [80–83]. In summary, we conclude that the higher
LF in the AN of BD patients in the left hemisphere is a compensatory mechanism that occurs
mainly in the contralateral interaction state. This conclusion may provide consideration for
the clinical treatment of BD from the perspective of compensatio mechanisms.

4.4. Relationship with Clinical Features

This study investigated the relationship between abnormal dynamic laterality features
and symptom severity in BD patients. In state 1, namely the contralateral interaction state,
the MLI performance of AN in the right hemisphere of BD patients was positively corre-
lated with YMRS and BPRS. YMRS and BPRS reflect the severity of manic and psychotic
symptoms, respectively; higher YMRS and BPRS lead to more serious attacks. According to
the existing studies, we believe that this may lead to reduced flexibility of attention switch-
ing in BD patients during clinical manifestations, leading to more severe seizures [6,84–86].
This evidence suggests that higher MLI in the right AN during bilateral interaction states
could reflect more severe disease onset in BD patients. At the same time in all windows, the
MLI of the IFGoperc region in the left hemisphere showed a negative correlation trend with
the SANS. We suggest that this negative correlation may be due to enhanced connectivity
variability in the left IFGoperc. That is, a lower SANS score indicates a higher frequency of
connection communication. This is clearly a compensatory behavior for impaired atten-
tion; the abnormal manifestations in this region also reflect the severity of the disease in
BD patients [71]. Our correlation results may provide evidence for alterations related to
attentional function in BD patients.

5. Limitations

This study also has some limitations, mainly due to the small sample size of the data.
Although we obtained relatively stable and reliable results, the universality of the sample
still needs to be explored and improved by recruiting more sample sizes in future surveys.

6. Conclusions

In this study, we explored the abnormal brain dynamic laterality in BD patients
using fMRI. We found that the AN in the left hemisphere of BD patients exhibited higher
MLI across all Windows, resulting from its reduced inter-hemispheric connectivity, and
predominantly in state 3. The AN in the right hemisphere of BD patients showed higher
MLI across all Windows, which was caused by its enhanced connectivity in the right
hemisphere, and this change mainly occurred in state 1. The AN in the left hemisphere
in BD patients showed more frequent LF across all Windows, which we indicated was
caused by frequent dynamic connection changes with other regions, and mainly occurred
in state 1. Finally, we also found that in state 1, the abnormal MLI of the AN in the right
hemisphere was positively correlated with clinical features of BD patients. Overall, the
dynamic laterality of AN in both hemispheres was significantly altered in BD patients,
which was closely related to attention-related functional abnormalities in BD patients. Our
study provides novel fMRI markers of brain lesions in BD patients and is expected to
provide strong support for clinical decision making.
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