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Abstract: Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation (NIBS)
technique that applies a weak current to the scalp to modulate neuronal excitability by stimulating
the cerebral cortex. The technique can produce either somatic depolarization (anodal stimulation)
or somatic hyperpolarization (cathodal stimulation), based on the polarity of the current used by
noninvasively stimulating the cerebral cortex with a weak current from the scalp, making it a NIBS
technique that can modulate neuronal excitability. Thus, tDCS has emerged as a hopeful clinical neuro-
rehabilitation treatment strategy. This method has a broad range of potential uses in rehabilitation
medicine for neurodegenerative diseases, including Parkinson’s disease (PD). The present paper
reviews the efficacy of tDCS over the front-polar area (FPA) in healthy subjects, as well as patients
with PD, where tDCS is mainly applied to the primary motor cortex (M1 area). Multiple evidence
lines indicate that the FPA plays a part in motor learning. Furthermore, recent studies have reported
that tDCS applied over the FPA can improve motor functions in both healthy adults and PD patients.
We argue that the application of tDCS to the FPA promotes motor skill learning through its effects on
the M1 area and midbrain dopamine neurons. Additionally, we will review other unique outcomes
of tDCS over the FPA, such as effects on persistence and motivation, and discuss their underlying
neural mechanisms. These findings support the claim that the FPA could emerge as a new key brain
region for tDCS in neuro-rehabilitation.

Keywords: transcranial direct current stimulation; Parkinson’s disease; neural mechanisms; the
frontal pole area

1. Introduction

Techniques for noninvasive brain stimulation (NIBS) have been widely used in both
patients and healthy people. A more accurate description of NIBS is that it is a low-intensity
transcranial stimulation to modulate cortical excitability. There are two well-known neuro-
modulation therapies based on this strategy: repetitive transcranial magnetic stimulation

Brain Sci. 2023, 13, 1604. https:/ /doi.org/10.3390/brainsci13111604

https://www.mdpi.com/journal /brainsci


https://doi.org/10.3390/brainsci13111604
https://doi.org/10.3390/brainsci13111604
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0003-0114-5327
https://orcid.org/0000-0003-0288-0913
https://orcid.org/0000-0003-1820-8793
https://doi.org/10.3390/brainsci13111604
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci13111604?type=check_update&version=2

Brain Sci. 2023, 13, 1604

20f 15

(rTMS) and transcranial direct current stimulation (tDCS). rTMS applies magnetism to
modulate cortical excitability, while tDCS uses electrical stimulation instead. While rTMS
can stimulate the cortex with minimal reduction in stimulation intensity from the scalp,
it is essential for the patient’s head to be secured to a comfortable chair to ensure precise
stimulation of the region of interest (ROI). However, clinical situations can pose a challenge
for rTMS, as patients may often exhibit involuntary movements that hinder fixation of the
head position. Additionally, while it is infrequent, rTMS can cause harmful effects such as
seizures. Conversely, tDCS has advantages in hospital settings, such as ease of usage, fewer
adverse events, and high portability. Therefore, tDCS can be used in combination with
physical rehabilitation to enhance plastic changes in ongoing synapses activated during
physical rehabilitation [1,2]. Furthermore, recent research has consistently demonstrated
that the combination of tDCS and rehabilitation is more effective than utilizing tDCS alone
in the long-term improvement of neurological disease symptoms [1-6].

tDCS can safely modulate cortical activity in both acute (immediate) and after (chronic)
effects. In acute effects during stimulation, tDCS can modulate cortical neuronal activity.
For example, anodal stimulation can increase cortical excitability by depolarizing the soma
and basal dendrite of cortical pyramidal neurons (somatic hypothesis) [7]. On the other
hand, cathodal stimulation can produce opposite effects, i.e., hyperpolarization of the basal
dendrites and soma [8,9]. Consistent with the somatic hypothesis, firing rates of putative
pyramidal neurons were elevated by anodal stimulation and suppressed by cathodal stim-
ulation in monkeys [10]. However, firing rates of putative inhibitory neurons increased
with both anodal and cathodal stimulation (i.e., regardless of polarity). This is likely due
to network-mediated effects resulting from the modulation of other cell types [10]. In
after effects, tDCS may modulate cortical and subcortical synaptic connections (synaptic
plasticity) [2]. Previous studies have reported that tDCS can facilitate motor learning
through synaptic plasticity. This effect is mediated through the induction of nitric oxide
(NO), activation of neurotrophic tyrosine kinase receptor type 2 (TrkB), and expression
of brain-derived neurotrophic factor (BDNF) to promote synaptic plasticity [11,12]. These
molecular mechanisms might underlie the molecular backgrounds for long-term potentia-
tion (LTP) and long-term depression (LTD), and modulate synaptic connections in after
effects. Therefore, due to its safety, application of tDCS to modulate cortical activity has
been increasing in basic and clinical research since 2000 [13-15].

Thus, tDCS is increasingly being applied as a therapy for the motor symptoms of
diverse brain disorders such as Parkinson’s disease (PD). Recently, the front-polar area
(FPA) (Brodmann area 10) has garnered increased attention in motor learning, an important
factor in rehabilitation. This paper aims to review the role of the FPA in motor learning
and to review the current clinical efficacy of tDCS over various brain regions, including the
FPA in PD. Our recent findings in healthy adults show that tDCS over the FPA enhances
motor skill learning through its effects on the motor-related regions [16-20] (see below for
details). We discuss how tDCS over the FPA may facilitate motor skill learning by affecting
the motor-related regions. Consistent with these findings, we will show that tDCS over the
FPA is also effective in PD. Another significant issue in rehabilitation is that a substantial
proportion of patients discontinue rehabilitation programs due to a loss of persistence or
motivation [17-19]. This paper also discusses the neural mechanisms of another effect of
tDCS over the FPA, especially its effect on persistence and motivation. This motivational
aspect is unique to tDCS over the FPA compared to tDCS over the motor-related regions.
These findings suggest that the FPA could be a novel brain region of interest for tDCS in
neuro-rehabilitation.

2. tDCS Effects of the Front-Polar Area (FPA) in Rehabilitation
2.1. A Role of the FPA in Motor Learning and Rehabilitation
Multiple lines of evidence support the notion that the FPA may represent a new thera-

peutic target for tDCS-based rehabilitation, aimed at motor learning. The role played by the
most anterior portion of the prefrontal cortex (PFC) (i.e., FPA) in motor learning is unique
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in various regards. Some previous noninvasive imaging studies have demonstrated that
the FPA is mainly activated when subjects acquire novel motor task(s) [21-23]. Recently,
Kobayashi et al. (2021) examined FPA activity during the acquisition of a sequential motor
task with near-infrared spectroscopy (NIRS) [16]. The study required inexperienced partici-
pants to sequentially lay the right hands on a table at a steady pace of three movements per
sec, using three distinct hand postures: a fist held vertically, a palm held vertically, and a
palm held horizontally [sequential motor (SM) task]. In the control motor task, the subjects
repeatedly tapped the table with their right palm at the same speed. This control task
could be executed without any motor learning. For both tasks, the participants completed
three trials in 30 sec per trial, and performance errors were counted in each trial [16]. The
results indicated that hemodynamic cortical activity (Oxy-Hb) was prominent in the PFC,
including the FPA and dIPFC, in the first trial, but decreased in later trials in the SM task,
as shown in Figure 1(A1). No such prominent responses were observed in the control
motor task, as shown in Figure 1(A2). Cortical activity changes between the initial (first)
and subsequent (second) trials in the sequential motor task, reflected in Figure 1B, were
positively correlated with error reduction between the initial and subsequent trials, rep-
resenting performance improvement by learning. These findings support the notion that
the FPA contributes significantly to motor learning, as there is a positive relation between
larger hemodynamic cortical activity changes in the PFC, including the FPA, and a larger
performance improvement.

(A1) Sequential motor task
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Figure 1. Relations between the PFC hemodynamic activity in the hand movement tasks and task
performance. Reproduced from Kobayashi et al. (2021) [16] under a CC-BY license. Topographical
maps of the PFC cortical activity shown as effect sizes in the three consecutive trials in the sequential
motor (SM) (A1) and control motor (A2) tasks. NIRS recording channels on the head are shown as
yellow dots. (B) Positive relationships between changes in PFC cortical activity and SM-task error
reduction, which occurred on the first and second trials. The dotted line indicates a regression line.
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These results suggest that the FPA plays a role in motor rehabilitation, where motor
learning plays a crucial part. Ishikuro et al. (2014) examined the function of the FPA
in motor learning in rehabilitation using NIRS [17]. Healthy participants were asked to
perform a peg board task for upper-extremity functions in the simple test for evaluating
hand function (STEF): they picked up a peg using their right thumb and index finger and
inserted it into a hole in the STEFF board. The pegs are small pins used for this activity.
In each of the eight trials, the subjects had to repeat these actions as fast as possible for
20 seconds. It is noteworthy that the subjects were required to continuously improve
their performance over the eight trials, which contrasts with the study of Kobayashi et al.
(2021). The results again indicated that the FPA was highly active during this task in
which continuous performance improvement was required (Figure 2.1). Furthermore, both
behavioral performance (peg score, i.e., the number of pegs inserted into the peg holes per
trial) and cortical activity in the FPA during the peg board task increased incrementally
in subsequent trials. To measure the incremental speed of these two parameters across
the eight trials in each subject, both parameters were subjected to simple linear regression
analysis. “Incremental speed of hemodynamic activity (Oxy-Hb gain)” was assessed by the
slope of this fitted line. In the same way, “Incremental speed of behavioral performance
(performance gain)” was evaluated by its slope of the fitted line. Figure 3A illustrates that
performance gain is positively associated with Oxy-Hb gain in the FPA. This suggests that
the FPA helps to promote motor learning. To further test this possibility, Ishikuro et al.
(2014) applied anodal tDCS over the FPA before the peg board task. As a result, the findings
demonstrate that anodal tDCS increased peg scores, as shown in Figure 3B. Furthermore,
Oxy-Hb gain in the FPA was positively associated with those in the left premotor area (Lt-
PMA), left primary motor area (Lt-M1), and left primary somatosensory area (Lt-S1). This
suggests that the FPA promotes motor learning through its effects over the somatosensory
and motor-related areas.
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Figure 2. Averaged hemodynamic responses during a performance of a peg board task. Reproduced
from Ishikuro et al. (2014) [17] under a CC-BY license. Cortical activity (changes in Oxy-Hb) rapidly
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increased during the task at the FPA and seven somatosensory and motor-related areas (supplemen-
tary motor area (SMA), left premotor area (Lt-PMA), right premotor area (Rt-PMA), left primary
motor area (Lt-M1), right primary motor area (Rt-M1), left primary somatosensory area (Lt-S1),
and right primary somatosensory area (Rt-S1)). Changes in Oxy-Hb, total-Hb, and deoxy-Hb con-
centrations are shown by red, green, and blue lines, respectively. Arrows represent the onset of
the task.
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Figure 3. FPA role in motor learning in a peg board task. Reproduced from Ishikuro et al. (2014) [17]
under a CC-BY license. (A) Positive relations between task performance gain and FPA Oxy-Hb
gain. The dotted line indicates a regression line. Each filled symbol indicates data for each subject.
(B) Effects of tDCS over the FPA on task performance (peg scores) in the peg board task. *, p < 0.05.

2.2. Modulatory Effects of the FPA on the Motor-Related Regions

Previous studies suggest that the primary motor area (M1 area) is implicated in skilled
motor learning, where functional reorganization and synaptic plasticity occur [12,24].
Since the FPA projects to the M1 area indirectly by way of other cortical areas including
the dIPFC [25-27], the FPA might reorganize synaptic connections in the M1 areas to
improve motor skills. Previous tDCS studies reported that M1 tDCS reorganized not only
functional connectivity within the M1 area, but also functional connectivity between the
M1 and other cortical areas, and between the M1 and subcortical areas to improve motor
rehabilitation [28-30]. Therefore, tDCS over the FPA may facilitate the FPA role to improve
motor learning, partly through induction of reorganization and synaptic plasticity in the
M1 area. Ota et al. (2020) investigated this possibility by activating the FPA by means of
neurofeedback (NFB) training instead of tDCS [20]. In NFB training, half of the subjects were
shown hemodynamic cortical activity of their own FPA on a monitor (real NFB training),
while the remaining subjects were shown randomized false activity (sham NFB training).
All subjects received the NFB training for 6 days, in which they performed imagery of a
peg board task to increase FPA activity under the feedback of their own FPA or randomized
false activity. Before and after the NFB training, the subjects received NIRS studies to assess



Brain Sci. 2023, 13, 1604

6 of 15

brain hemodynamic activity during the performance of the peg board task. After the NFB
training, the subjects with the real NFB training exhibited hemodynamic cortical responses
in the left somatosensory and motor-related areas including the premotor area (PMA), M1
area, and primary somatosensory cortex (S1) (Figure 4(A1)), while the subjects with the
sham NFB training exhibited hemodynamic cortical responses in the supplementary motor
area (SMA) (Figure 4(A2)). Additional analyses indicated that cortical activity gain in the
hand area of the M1 (lateral part of the left M (lateral Lt-M1)), which was defined as activity
in the lateral Lt-M1 area before the NFB training divided by that after the NFB training,
was significantly linked to performance gain, defined as peg scores before the training
divided by those after the training (Figure 4(B1)). Furthermore, cortical activity in the
left somatosensory and motor-related areas during the performance of the peg board task
after the NFB training was significantly and positively linked to cortical activity in the FPA
during the performance of the imagery on the last day of the NFB training (Figure 4(B2)).
These results suggest that the FPA reorganizes synaptic connectivity patterns in the M1
area, so that reorganized activity patterns of M1 neurons in the M1 area are more suitable
for the peg board task [20]. Interestingly, in the subjects with the sham NFB training,
cortical activity in the SMA increased during the performance of the peg board task after
the training (see above). The SMA has been proposed to function as “an action monitoring
system” that provides warning signals for errors and incorrect responses [31]. In the sham
NFB training, the participants were shown randomly generated feedback signals that were
irrelevant to performing the peg board task, suggesting that the FPA could lead to erroneous
reorganization of the synaptic connectivity patterns in the M1 area during the sham NFB
training. These findings suggest the SMA activity after the sham NFB training is involved
in detection of erroneous synaptic activity in the somatosensory and motor-related areas,
which may promote reformation of correct (new) association between incoming sensory
inputs and motor responses.

(A) Hemodynamic activity after NFB training
1. After real NFB 2. After sham NFB
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Figure 4. FPA role in improving performance in neurofeedback (NFB) training for six days. Reproduced
from Ota et al. (2020) [20] under a CC-BY license. (A) Averaged task-related responses, shown as NIRS-SPM
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T-statistic maps, during a performance of a peg board task after the real (A1) and sham (A2) neuro-
feedback (NFB) training. The real NFB training induced cortical activation in the somatosensory and
motor-related areas (A1), while the sham NFB training induced SMA activation (A2). (B) Relation-
ships between Oxy-Hb gain in the hand area of the left primary motor cortex (lateral Lt-M1) and
performance gain in the peg board task (B1), and those between cortical activity in the FPA during
the performance of the real NFB training on the 6th day of the training, and cortical activity in the
somatosensory and motor-related areas during performance of the peg board task after the real NFB
training (B2). The dotted lines indicate regression lines. The data in each circle indicate data from
each subject.

3. Parkinson’s Disease (PD)
3.1. Effects of tDCS over the M1, Dorsolateral PFC (dIPFC), and Cerebellum

This section briefly describes the current status of tDCS in PD. The main symptoms
in PD include motor symptoms (tremors at rest, rigidity, bradykinesia, freezing of gait,
and impaired postural reflexes). PD also exhibits nonmotor symptoms (e.g., cognitive
deficits, depression, orthostatic hypotension, REM sleep abnormalities, etc.) that tend
to appear before the motor symptoms occur [32]. Anatomically, PD is characterized by
gradual depletion and degeneration of dopamine neurons, especially in the midbrain
substantia nigra pars compacta (SNc) and ventral tegmental area (VTA), resulting in
network dysfunction of cortico-basal ganglia circuits (dysfunction of the direct and indirect
pathway system) [33-35]. Furthermore, cortical network disruption may be involved in PD
symptoms. Tessitore et al. (2012) reported that severity of freezing of gait was associated
with a reduction of functional connectivity within the two cortical networks: executive-
attention (PFC) and visual (right occipito-temporal gyrus) networks [36]. In addition,
executive function, which is mainly supported by the dIPFC, is positively associated with
hand dexterity [37-39]. These findings suggest that the target brain areas for PD treatment
should include not only the cortico-basal ganglia motor circuits, but also cortical circuits
such as the dIPFC.

Deep brain stimulation (DBS) is a recognized surgical intervention for the treatment of
PD that can inhibit (ameliorate) overactivity of the subthalamic nucleus (STN) or internal
segment of globus pallidus (GPi), while regenerative therapy is attracting attention as a
state-of-the-art treatment aiming for a radical cure. Nevertheless, these therapies are not
readily accessible, and drug therapy remains the most common and essential treatment
for PD. Furthermore, long-term use of medication often results in side effects such as
wearing-off and dyskinesia. In light of the issues in drug therapy, neuro-rehabilitation
using NIBS has recently garnered attention in the context of PD [40-46].

In clinical studies of tDCS in PD patients, two stimulation sites are often used as
regions of interest (ROI): the M1 and dIPFC. The tDCS studies in PD reported that an-
odal stimulation of the M1 improved motor symptoms [43,44] (Supplementary Table S1),
while anodal stimulation of the dIPFC improved executive and cognitive functions [45,46]
(Supplementary Table S1). Although the sample size was small, many new reports on PD
suggest that tDCS treatment is effective. However, the neural mechanism of improvement
is not yet fully clarified, and further accelerated research is necessary. Moreover, it may not
be the best treatment to solely stimulate motor-related areas to improve motor function
in PD. To develop stimulation sites for tDCS, it is essential to actively use functional MRI
and other techniques to assess after-effects of tDCS to induce functional changes in the
stimulated areas.

The neural network connecting the cerebellum and the basal ganglia [47] is gaining
more clarity, as are the projections from the cerebellum (dentate nucleus) to the PFC and
other areas via the thalamus [48]. This has led to increased interest in the relationship
between PD and the cerebellum. Furthermore, research suggests that activities in the
cerebellum and PFC, including the FPA, are functionally linked in humans [49]. Based
on the findings, researchers suggest that applying tDCS to the cerebellum during motor
practice could enhance motor skills in PD. de Albuquerque et al. [50,51] investigated the
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impact of anodal cerebellar tDCS (c-tDCS) on the upper extremity function of PD patients
while they learned to perform a complex optokinetic isometric precision grip strength task
(PGT). They found that applying c-tDCS to the cerebellum did not result in a significant
improvement in motor skill acquisition for hand and arm tasks [50,51]. While there is
no current evidence to suggest an improvement in upper limb function, Workman et al.
conducted a study on cerebellar functions such as “balance and walking ability”. Their
findings showed significantly higher Berg Balance Scale scores with the application of
high-intensity cerebellum stimulation (4.0 mA x 20 min) [52]. These findings suggest that
c-tDCS may require a higher current intensity due to the cerebellum being covered by a
relatively thick occipital bone, or anatomical /physiological properties of the cerebellum
different from the cortex.

3.2. Effects of tDCS over the FPA in PD Patients

The previous sections suggest that tDCS over the M1 area or dIPFC improves motor or
nonmotor symptoms in PD, and that tDCS over the FPA promotes motor learning through
reorganization of M1 activity in healthy people, further suggesting that tDCS over the FPA
may ameliorate PD symptoms. Ishikuro et al. [18] investigated effects of tDCS (anodal,
cathodal, and sham tDCS) over the FPA on motor and nonmotor symptoms in a cross-over
design in PD patients [18] (Supplementary Table S1). They reported that anodal tDCS
significantly reduced normalized scores of motor disability in the Unified PD Rating Scale
(UPDRS (part III)) (Figure 5(A1l)), and significantly raised scores of motor functions in
the Fugl Meyer Assessment set (FMA), while it significantly reduced time to complete a
high dexterity task in STEF [18]. The same anodal tDCS also improved nonmotor function:
reduction of normalized time required to complete the Trail Making Test A (TMT-A) to
assess attention/executive functions (Figure 5(A2)). Thus, the tDCS of the FPA ameliorated
not only motor, but also nonmotor symptoms in PD.

Dopamine neurons in the SNc and VTA receive glutamate transmissions directly or
indirectly from the PFC [53-56]. Additionally, dopamine neuron activity is functionally
associated with PFC neuron activity [57,58], and tDCS of the PFC can substantially raise
dopamine and tyrosine levels in PD model mice [59]. Therefore, it is plausible to assume that
FPA stimulation, which likely sends excitatory projections to midbrain dopamine neurons
or activates the dIPFC projecting to dopamine neurons, could impact dopamine cells in
the SNc of individuals with PD. It is also possible that tDCS over the FPA could enhance
brain regions linked to neuromelanin (refer to below). Neuromelanin is a brown pigment
that accumulates in neurons containing catecholamines, and is abundant in dopaminergic
cells in the SNc and noradrenergic cells in the locus coeruleus (LC). Recently, fMRI studies
reported interesting findings that neuromelanin is closely associated with clinical symptoms
of PD assessed using UPDRS-III [60,61]. Neuromelanin can be relatively easily imaged
by T1-weighted 3T-MRI [62,63]. Ishikuro et al. (2021) examined effects of tDCS over the
FPA in one PD patient as a case report, using noninvasive imaging of neuromelanin to
reveal dopamine neurons [19]. They reported that the same tDCS protocol (i.e., 2 weeks of
rehabilitation with tDCS in the FPA) increased the neuromelanin-sensitive area in the SN,
where dopamine neurons are located, from 43.2 to 53.2 mm? (increases by 18.8%), and that
the patient exhibits clinically meaningful improvement of motor deficits (Figure 5B). The
PFC provides direct or indirect excitatory signals with dopamine neurons (as discussed
previously). The survival of dopamine neurons or expression of a dopaminergic phenotype
is activity-dependent [64,65]: a decline in electrical activity in dopamine neurons results in
cellular death or a reduction of tyrosine hydroxylase (which is the rate-limiting enzyme
for dopamine synthesis). Consequently, tDCS over the FPA might support the survival of
dopamine neurons and promote the expression of tyrosine hydroxylase, possibly resulting
in increases in the area sensitive to neuromelanin imaging. Furthermore, anodal tDCS
of the frontal cortex for 3 weeks raised dopamine content of the entire brain in a mouse
PD model [59]. Since dopamine is crucial for executive functions in the PFC [66,67], these
findings indicate that tDCS over the FPA, combined with physical rehabilitation, might
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cause plastic changes in the dopamine neurons of PD patients, resulting in an improvement
of both motor and nonmotor symptoms (e.g., deficits in executive functions).

(A) tDCS effects on PD symptoms

1. Motor disturbance 2. Attention/executive functions
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(B) Neuromelanin (NM) imaging
1. Before tDCS 2. After tDCS

Figure 5. Effects of tDCS over the FPA on PD symptoms (A) (reproduced from Ishikuro et al.,
2018 [15] under a CC-BY license) and neuromelanin (NM) imaging in the midbrain (B) (created
from the original NM-MRI data by Ishikuro et al., 2021 [19]). (A) Effects of the tDCS on motor
disturbance (A1) and nonmotor functions (attention/executive functions) (A2). Motor disability was
evaluated with the Unified PD Rating Scale (UPDRS (part III: motor examination)) after intervention
of each tDCS stimulation (anodal, cathodal, and sham tDCS). Nonmotor functions were assessed with
the Trail Making Test A (TMT-A). %, p < 0.05. (B) Imaging of dopamine neurons by neuromelanin
magnetic resonance imaging (NM-MRI) in the substantia nigra compacta (SNc) before (B1) and after
(B2) FPA tDCS in one PD patient. Red pixels indicate NM-sensitive areas in the SN¢, where dopamine
neurons are located.

4. Neural Mechanisms of Effects of FPA tDCS

The previous sections indicate that anodal tDCS of the FPA, which raises the ex-
citability of pyramidal neurons in the FPA, may facilitate or improve motor and nonmotor
functions in healthy subjects and PD patients. Multiple mechanisms may be responsible for
these effects (Figure 6). First, tDCS over the FPA may reorganize the functional connectivity
of the M1 area to improve motor learning, as shown in the study with NFB to activate the
FPA. The FPA projects to the dIPFC [26], which controls the excitability of the ipsilateral M1
area [25]. Furthermore, the FPA and M1 area are functionally connected [68]. These findings
suggest that tDCS over the FPA might reorganize the functional connectivity of the M1 area
through activity-dependent synaptic plasticity (e.g., LIP). Second, tDCS over the FPA might
facilitate nonmotor cognitive functions (e.g., executive function) through FPA projections
to the dIPFC. Consistently, a meta-analysis study reported that the FPA coactivates with the
dIPFC (areas 9/46) in various tasks including working memory tasks [69]. Furthermore,
the lateral FPA is believed to have a crucial role in executive function and stimulus-oriented
action [70,71]. Third, tDCS over the FPA might exert its effects by acting on dopamine
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neurons. Midbrain dopamine neurons receive direct and/or indirect glutamatergic ex-
citatory afferents from the PFC [53-56], and activity of dopamine neurons correlates to
that of PFC neurons [57,58], suggesting that elevated FPA activity by tDCS may promote
dopamine release in the somatosensory and motor-related areas, as well as the basal gan-
glia. Since dopamine facilitates LTP induction as well as motor skill learning [72-74],
increased dopamine release in the somatosensory and motor-related areas may facilitate
the first mechanism in synaptic plasticity. In the case of PD, increases in NM-sensitive areas,
where dopaminergic neurons are located, by tDCS may increase dopamine release in the
cortico-basal ganglia circuits as well as in the PFC, which contributes to the amelioration of
PD symptoms (see above section). Fourth, elevated FPA activity by tDCS could enhance
one’s motivational drive and facilitate the process of motor learning. Hosoda et al. [75]
showed the crucial role of the FPA in persistence during difficult motor learning, whereas
Soutschek et al. [76] found that tDCS over the FPA enhances motivation for cognitive
and physical efforts. These motivational changes associated with the FPA are critical in
physical rehabilitation, since a significant number of patients drop out of rehabilitation
programs [77-79], and patients with PD have difficulties with mental persistence [80]. The
role of the FPA in persistence may be attributed to its projection to the nucleus accumbens.
Previous neuropsychological studies reported that deficits in motivation are associated
with deficits in goal-directed behaviors in depression [81], reminiscent of dropping out
of physical rehabilitation, and functional connectivity between the FPA and nucleus ac-
cumbens is more decreased in patients with more severe symptoms in depression [82],
while dopamine depletion in nucleus accumbens decreased the preference for a high-effort
option with high reward [83,84]. Furthermore, manual dexterity was disturbed in patients
with depression [85], while activity of nucleus accumbens was increased during a manual
task in subjects with spinal lesions compared with intact subjects. Additionally, functional
connectivity between the nucleus accumbens and M1 area was increased during relearning
of a hand motor task after spinal lesions in monkeys [86]. The findings suggest that the
neural circuits comprising the FPA, nucleus accumbens, and dopaminergic neurons may
promote both effortful learning of manual motor tasks and preservation of meticulous
manual dexterity. In summary, the neural mechanisms impacted by tDCS over the FPA in
motor learning are complex and involve multiple processes that contribute to improvement
of fine manual dexterity, which may facilitate rehabilitation.

I Motor-related areas |

Figure 6. Hypothetical neural mechanisms of tDCS over the FPA in neuro-rehabilitation. Dopamine
neurons in the SNc and VTA receive excitatory glutamatergic transmission directly and/or indirectly
from the PFC. Thus, tDCS stimulation of FPA, which sends projections to midbrain dopamine neurons,
may affect dopamine cells in the SNc of PD patients. Furthermore, tDCS over the FPA might reorganize
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the functional connectivity of the M1 area through the dIPFC and nucleus accumbens (NAC).
Red arrows indicate direct and/or indirect projections from the FPA, while blue arrows indicate
dopamine projections.

5. Future Issues on tDCS over the FPA

We have reviewed the efficacy of tDCS over the FPA, which suggests that this tech-
nique might be useful in clinical applications, not only in healthy subjects, but also in PD.
However, upcoming challenges pertaining to tDCS over the FPA need to be addressed.
First, optimal conditions for tDCS over the FPA (current intensity, duration, location, etc.)
should be determined. Inconsistency of clinical efficacy of tDCS among studies may be
ascribed to different stimulation protocols [87]. Recently, high-definition tDCS (HD-tDCS)
has been introduced, which allows more focused current delivery [88]. HD-tDCS should be
applied to the FPA for more focused stimulation to better understand roles of the FPA in
rehabilitation. Second, only a small sample of patients with PD were tested with tDCS over
the FPA in the previous studies [15,16]. Further studies in larger populations are needed
to determine clinical efficacy of tDCS over the FPA. Third, although applying FPA tDCS
improved both motor and nonmotor functions of PD patients, further studies are needed
to clarify the time-lapse of improvements during repeated interventions, as well as the
time-lapse of changes in those improvements after repeated interventions. Fourth, there are
multiple forms of motor learning including use-dependent motor learning (repetitive motor
learning), instructive motor learning (strategy-based motor learning), reinforcement motor
learning, and sensorimotor adaptation-based motor learning [89]. Although repetitive
motor learning is supposed to play a major role in rehabilitation, these multiple forms of
motor learning could occur independently and simultaneously [89]. Furthermore, these
multiple forms of motor learning could interact with each other [90]. Further research
is needed to clarify how the tDCS over the FPA modulates each form of motor learn-
ing, and how it modulates the interactions between various learning mechanisms during
physical rehabilitation.

6. Conclusions

Emerging evidence suggests that tDCS can safely modulate neuronal excitability by
producing either somatic depolarization (anodal stimulation) or somatic hyperpolarization
(cathodal stimulation), based on the polarity of a weak current from the scalp. This
technology has become increasingly popular in the field of rehabilitation medicine for
treating neurodegenerative illnesses, such as PD.

Previous studies have primarily applied tDCS to the M1 region in PD patients, and
have reported the usefulness of tDCS in neuro-rehabilitation. Recent neuropsychological
and clinical studies have reported that tDCS of the FPA can improve motor learning and
motor functions in both healthy participants and patients with PD. tDCS over the FPA may
promote motor skill learning through its effects on the M1 area and/or midbrain dopamine
neurons. Furthermore, recent studies have revealed additional distinctive effects of tDCS
of the FPA, including impacts on persistence and motivation, which are important for
rehabilitation. These results suggest that the FPA could be a new target for the application
of tDCS in neuro-rehabilitation.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/brainsci1l3111604/s1, Table S1: Summary of tDCS studies in
patients with PD.
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