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Abstract: Neurocognitive impairment refers to a spectrum of disorders characterized by a decline
in cognitive functions such as memory, attention, and problem-solving, which are often linked to
structural or functional abnormalities in the brain. While its exact etiology remains elusive, genetic
factors play a pivotal role in disease onset and progression. This study aimed to identify highly
correlated gene clusters (modules) and key hub genes shared across neurocognition-impairing dis-
eases, including Alzheimer’s disease (AD), Parkinson’s disease with dementia (PDD), HIV-associated
neurocognitive disorders (HAND), and glioma. Herein, the microarray datasets AD (GSE5281),
HAND (GSE35864), glioma (GSE15824), and PD (GSE7621) were used to perform Weighted Gene
Co-expression Network Analysis (WGCNA) to identify highly preserved modules across the studied
brain diseases. Through gene set enrichment analysis, the shared modules were found to point
towards processes including neuronal transcriptional dysregulation, neuroinflammation, protein
aggregation, and mitochondrial dysfunction, hallmarks of many neurocognitive disorders. These
modules were used in constructing protein-protein interaction networks to identify hub genes shared
across the diseases of interest. These hub genes were found to play pivotal roles in processes including
protein homeostasis, cell cycle regulation, energy metabolism, and signaling, all associated with brain
and CNS diseases, and were explored for their drug repurposing experiments. Drug repurposing
based on gene signatures highlighted drugs including Dorzolamide and Oxybuprocaine, which were
found to modulate the expression of the hub genes in play and may have therapeutic implications in
neurocognitive disorders. While both drugs have traditionally been used for other medical purposes,
our study underscores the potential of a combined WGCNA and drug repurposing strategy for
searching for new avenues in the simultaneous treatment of different diseases that have similarities
in gene co-expression networks.

Keywords: hub genes; Alzheimer’s disease; drug repurposing; neurocognitive disorder; microarray;
WGCNA

1. Introduction

Brain disorders encompass a wide array of neurological and psychiatric conditions,
manifesting as neurodegenerative diseases, psychiatric disorders, or even as malignancies
like brain tumors [1,2]. While the underlying causes and clinical presentations may vary
widely, a recurring theme in many of these disorders is the onset of neurocognitive impair-
ment. Neurocognitive disorders encompass a range of conditions that adversely lead to
the impairment of cognitive abilities, including memory, executive function, and attention,
often due to underlying neurological disorders, damage, or even dementia, where the
decline in cognitive function is severe enough to interfere with daily life [1,2]. Among
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many others, these disorders include Alzheimer’s disease (AD), Parkinson’s disease with
Dementia (PDD), HIV-associated neurocognitive disorders (HAND), and glioma, each
of which presents with distinct causes and clinical manifestations [3,4]. Moreover, the
molecular changes resulting from these diseases occur in various brain regions, involving
various genes and proteins.

For example, AD is a leading cause of dementia, characterized by a progressive decline
in cognitive functions, including memory, language skills, and the ability to perform routine
tasks. Concurrently, AD is also a neurodegenerative disease, marked by the accumulation
of amyloid-beta plaques and tau tangles, leading to neuronal loss and brain atrophy, and
later on, worsening dementia. These pathological hallmarks contribute to the cognitive
decline observed in AD and are often used as targets for therapeutic interventions. The
dual characterization of AD as both a neurodegenerative disease and a form of dementia
underscores the complexity of its pathophysiology and the need for multi-faceted ap-
proaches in research. Genetic factors such as mutations in the APP, PSEN1, and PSEN2
genes have been implicated in the rapid accumulation of beta-amyloid protein [5]. PD is
initially a movement disorder, with symptoms including tremors, rigidity, and bradykine-
sia, and primarily involves the loss of dopaminergic neurons in the substantia nigra [6,7].
Alpha-synuclein aggregation is a hallmark, and several genes have been reported to be
involved in its pathogenesis, such as SNCA, LRRK2, VPS35, PARK2, PINK1, and DJ-1 [8].
Parkinson’s Disease Dementia (PDD) occurs in the later stages of PD and involves not
just motor but also cognitive dysfunction severe enough to interfere with daily life [6].
The cholinergic system is often compromised, adding another layer of complexity to its
molecular underpinning [9]. HAND represents a spectrum of neurocognitive impairments
associated with HIV infection, ranging from asymptomatic neurocognitive impairment to
HIV-associated dementia [10]. It is caused by the direct effects of HIV infection in the brain
or the result of infection from opportunistic organisms, which leads to synaptic damage
and neuronal loss. Different from other forms of dementia, it involves viral proteins like Tat
and gp120 affecting neuronal function [11]. Glioma, despite not being categorized under
neurodegenerative diseases like AD or PDD, is a type of brain tumor that causes a variety
of neurological symptoms [12]. In the case of glioma, the infiltrating nature of the tumor
along with edema may contribute to the cognitive impairment. Gliomas are known for their
highly infiltrative nature, invading surrounding healthy brain tissue and often creating a
pro-inflammatory microenvironment by secreting cytokines like IL-6 and TNF-alpha [12].
These cytokines can activate microglia, leading to a chronic state of inflammation that is
also a hallmark of neurodegenerative diseases. The activated microglia can release more
pro-inflammatory cytokines and reactive oxygen species, exacerbating both tumor growth
and neuronal damage [13].

Despite these diseases having fundamentally different etiologies and pathomecha-
nisms, both past and emerging evidence suggests that these diseases may share com-
mon molecular mechanisms [10]. For example, neuroinflammation, oxidative stress,
and mitochondrial dysfunction have been implicated in the pathogenesis of all four dis-
eases [12,14–16]. Additionally, protein misfolding and aggregation, a hallmark of AD and
PDD, have also been observed in HAND and glioma [7,15,17–19]. For example, misfolded
and aggregated proteins often share common pathways for clearance, such as autophagy
and the ubiquitin-proteasome system, suggesting a potential point of therapeutic inter-
vention for multiple neurocognitive disorders [20]. Neuroinflammation is mediated by
activated microglia and astrocytes. In both Alzheimer’s and Parkinson’s diseases, as well as
in HAND, neuroinflammatory processes brought about by microbial infections contribute
to neuronal damage contribute to neuronal damage [2,21]. Genes like APOE and HLA-DR
in both AD and PDD have been implicated in modulating immune responses in the brain,
providing another layer of genetic commonality [13].

Oxidative stress is another shared mechanism, often resulting from mitochondrial
dysfunction. Genes like PINK1 and PARK2 in PDD and APP in AD have roles in mitochon-
drial function. The imbalance in reactive oxygen species (ROS) production and clearance is
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a shared feature across these diseases, affecting similar cellular pathways, including the
MAPK and NF-κB pathways.

An advanced systems biology technique called weighted gene co-expression network
analysis (WGCNA) is used to collectively describe the correlation patterns of genes across
different samples and provide information on the overall gene expression landscape in
specific conditions. Using WGCNA, researchers can find potential biomarkers or thera-
peutic targets linked to specific biological processes or diseases by classifying genes into
clusters, called modules, based on their expression levels [22]. Due to its capacity to shed
light on the complicated interactions between genes, especially in the setting of complex
disorders, WGCNA has recently experienced tremendous growth in popularity. Its use
goes beyond conventional analyses of differential expression, providing a more compre-
hensive perspective of gene interactions and their collective impact on diseases [23]. The
need for robust statistical workflows like WGCNA capable of analyzing enormous and
complex genomic data are growing as DNA microarray and high-throughput sequencing
technologies become more widely available [24]. One interesting feature of WGCNA is
module preservation analysis, a preservation statistic used to quantitatively measure the
preservation of modules from a reference dataset to another dataset [24]. Drug repurposing,
the process of identifying new therapeutic uses for approved drugs, has emerged as a
promising approach in the field of drug discovery due to its potential to speed up drug
development and reduce costs [25]. A pivotal tool in this field of study is the Connec-
tivity Map (CMap), which provides an extensive database of gene expression profiles in
cells treated with many different small molecules, and the Molecular Signatures Database
(MSigDB), which enables the discovery of possible therapeutic candidates based on gene
signatures [26].

WGCNAs ability to cluster genes into modules based on their strong co-expression
patterns provides a nuanced understanding of the molecular underpinnings of diseases. By
identifying hub genes in these modules that are perturbed in each disease state, one can gain
insight into the key pathways and processes disrupted in that condition [27]. Once these
disease-associated gene modules are identified through WGCNA, they can be pipelined
to drug-repurposing methods, allowing the screening of compounds based on molecular
and gene signatures that modulate gene expression changes of the disease-associated
patterns [27].

Herein, microarray datasets corresponding to AD (GSE4281), PD (GSE7621), HAND
(GSE35864), and glioma (GSE15824) acquired from the Gene Expression Omnibus (GEO)
database, a repository for high-throughput gene expression and genomics studies sup-
ported by the National Center for Biotechnology Information (NCBI) [28], were used to
perform a cross-study WGCNA to identify clusters (modules) of highly correlated genes
that have high preservation across the gene expression datasets. This study highlights
four gene co-expression modules that were highly preserved across all datasets. Modules
were found to have common and distinct features based on characterization via functional
annotation clustering and the construction of protein-protein interaction (PPI) networks.
Over-represented biological processes, cellular components, molecular functions, and the
Kyoto Encyclopedia for Genes and Genomes (KEGG) pathways database all point toward
critical terms being investigated for their significant implications in neurocognitive dis-
orders like mitochondrial dysfunction, transcriptional deregulation, chromatin structure
formation, protein phosphorylation, and growth signaling pathways. Identifying key gene
networks associated with these mechanisms may help further evolve our understanding
of their involvement in various brain diseases. Moreover, the identified hub genes within
each module were used as gene signatures for drug repurposing studies on the Drug
Repurposing Encyclopedia (DRE) webserver. Drug repurposing through comparison of
gene signatures with the DRE database was used to generate a set of drugs that are highly
associated with the hub genes. Candidate drugs that modulate the expression of the hub
genes were identified. The approach and findings could provide interesting insights into
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the mechanisms of neurocognitive impairment across different disorders and open new
avenues for how new drugs will be developed.

2. Materials and Methods
2.1. Dataset Gathering and Pre-Processing

The following microarray data were acquired from the National Center for Biotechnol-
ogy Information-Gene Expression Omnibus (NCBI GEO) online database (https://www.
ncbi.nlm.nih.gov/geo/ (accessed on 23 April 2023)) for WGCNA analysis: HIV-associated
neurodegenerative disease (GSE35864) [29], Alzheimer’s disease (GSE5281) [30], Parkin-
son’s disease (GSE7621) [31], and glioma (GSE15824) [32] (Table 1). Datasets were selected
carefully based on tissue source, microarray platform used (GPL570—HG-U133 Plus 2
Affymetrix Human Genome U133 Plus 2.0 Array), and number of samples (n > 15). The
HAND dataset contains 72 samples composed of post-mortem brain tissue from normal,
HIV-infected, HIV-dementia, and HIV-w/substantial neurocognitive impairment and en-
cephalitis subjects. The PD dataset contains 25 samples from post-mortem brain tissue from
normal and Parkinson’s disease subjects. The AD dataset contains 161 samples from normal
and Alzheimer’s disease patients. The GM dataset contains 35 samples from frozen brain
tissue from control patients and those with primary glioblastoma, secondary glioblastoma,
astrocytoma, and oligodendroglioma.

Table 1. Summary of GEO Datasets.

HAND (GSE35864) AD (GSE5281) PD (GSE7621) GM (GSE15824)

Conditions

Control (18), HIV w/o
NCI (18), HIV

w/dementia w/o HIVE
(21), HIV w/NCI and

HIVE (15)

Control (74),
Alzheimer’s disease

(87)

Control (9), Parkinson’s
disease (16)

GBM (12), GBM-2 (3),
Astro (8), and Oligo (7)

Type Expression profiling by array

Platform GPL570—HG-U133 Plus 2 Affymetrix Human Genome U133 Plus 2.0 Array

Sample Type Post-mortem brain tissue Frozen gliomas
tissue samples

RNA Source
basal ganglia, white

matter, and
frontal cortex

EC, HC, PC, VC,
medial temporal gyrus,

and superior
frontal gyrus

Substantia nigra
(basal ganglia) Glioma tissue

No. of Samples 72 161 25 35

Human Immunodeficiency Virus (HIV), HIV-associated Neurodegenerative Disorder (HAND), Neurocognitive
Impairment (NCI), HIV-associated Encephalitis (HIVE), Alzheimer’s Disease (AD), Parkinson’s Disease (PD),
Glioma (GM), Primary Glioblastoma (GBM), Secondary Glioblastoma (GBM-2), Astrocytoma (Astro), Oligoden-
droglioma (Oligo), Entorhinal Cortex (EC), Hippocampus (HC), Posterior Cingulate (PC), and Primary Visual
Cortex (VC).

Raw data were normalized using the Robust Multi-array Average (RMA) method
from the “affy” package in Bioconductor using R version 4.3.1 for Windows (http://www.
bioconductor.org (accessed 23 April 2023)). The expression data were filtered to retain
only the genes that had a mean and variance higher than the 20% percentile cut-off across
all samples in each dataset. Additionally, only probes present across all datasets were
used, excluding control probes. Log-2 transformation of each dataset was applied, and
genes and samples with significant numbers of missing values were filtered out using
the “goodSamplesGenesMs” function of the WGCNA R package. Genes that remained
present across all datasets were used for the remainder of the experiments. Furthermore,
preliminary sample clustering based on Euclidean distance was performed to construct a
sample dendrogram for each dataset to exclude noticeable outliers.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.bioconductor.org
http://www.bioconductor.org
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2.2. Weighted Gene Co-Expression Network Analysis (WGCNA)
2.2.1. Approximating the Scale-Free Network

The appropriate soft-thresholding power, β, was determined by plotting the scale-free
topology fit against power indices of 1–20 using the “pickSoftThreshold” function of the
WGCNA R package and choosing the lowest power where the scale-free topology criterion
is met. Finally, the chosen β was evaluated by plotting the approximate straight-line
relationship using the values for soft connectivity, k, for each dataset. To briefly assess the
comparability of datasets prior to network construction, the ranked expression plots and
ranked soft connectivity plots between each dataset were constructed.

2.2.2. Network Construction and Module Identification

The chosen soft-thresholding power was used to calculate the adjacency matrices of
each dataset through Pearson’s correlation with the network type set to “signed”. After-
ward, the adjacency matrices were used to calculate the topological overlap measure (TOM)
dissimilarities for performing hierarchical clustering of the genes. The tips of the branches
within the constructed gene dendrograms correspond to highly correlated genes that can
be clustered into modules.

The “hybrid tree cut” function within the dynamic tree-cutting algorithms was used
to cluster and identify the modules [33]. The “deep split” parameter was varied from 0 to 3
to control the sensitivity of the branch splitting.

2.2.3. Module Preservation and Module Membership

Weighted gene co-expression network preservation of PD in GM, HAND, and AD at
the module level was qualitatively and quantitatively measured using the “modulepreserva-
tion” function within the WGCNA R package. The network type was set to “signed”, with
the number of permutations set to 100 and the minimum module size set to 30 genes. Mod-
ules found to be highly preserved across all datasets were chosen as modules of interest.

Genes within each module of interest were identified by calculating their eigengene-
based connectivity, or kME, using the “moduleEigengenes” function from the WGCNA R
package. The correlations between each gene’s expression profile and the module eigengene
were then used as a measure of module membership. Genes were considered hubs if they
had high kME ranks in multiple networks and were extracted for functional enrichment.

2.3. Functional Annotation and Pathway Enrichment of Highly Preserved Modules

The Database for Annotation, Visualization, and Integrated Discovery (DAVID) web-
server (https://david.ncifcrf.gov (accessed 12 May 2023)), containing a set of annotation
tools for deciphering and correlating functions of genes based on existing literature, was
used to perform functional annotation clustering [34]. The Gene Ontology (GO) database
for biological processes (BP), molecular functions (MF), and cellular components (CC)
were selected as categories for functional annotation clustering. The GO database is a
repository for the fundamental properties and functions of genes and the proteins they
encode [35]. The classification stringency was set to “medium”, and only statistically signif-
icant GO terms (P adj. < 0.05) with clustering enrichment scores above 1.3 were considered
for analysis.

Pathway enrichment using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database was used to further deduce details about the biological, genomic, chemical, and
systemic functions of the modules of interest [36]. Top-scoring KEGG terms and those that
clustered with significant GO terms were prioritized.

2.4. Protein-Protein Interaction (PPI) Networks and PPI-Based Hub Genes

Genes within each highly preserved module were accounted for their correspond-
ing protein-protein interactions using the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) database to create PPI networks [37]. PPI networks for each
module of interest were constructed with a minimum interaction score of 0.7 (high confi-

https://david.ncifcrf.gov
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dence). The constructed networks were imported to Cytoscape for the identification of hub
genes using the Cytohubba feature in terms of degree, maximum neighborhood component
(MNC), and edge percolated component (EPC) [38].

2.5. Signature-Based Approach for Drug Repurposing

Screening for repurposeable drugs was performed using the recently launched Drug
Repurposing Encyclopedia (DRE) (https://www.drugrep.org (accessed 18 May 2023)),
an interactive web server that makes use of over 198 million significant drug-signature
associations from the Molecular Signatures Database (MSigDB) and over 30,000 drug-
associated transcription profiles from Connectivity Map (CMap) [39]. The top ten (10)
hub genes in each module were used as gene signatures and grouped into upregulated
and downregulated based on differential expression analysis (DEA) using GEO2R (https:
//www.ncbi.nlm.nih.gov/geo/geo2r (accessed 18 May 2023)) before being submitted to
the DRE webserver for drug repurposing analysis. Drugs that were either in experimental
stages or withdrawn were excluded from the results. Only results with known mechanisms
and those with Benjamini and Hochberg’s false discovery rates (FDR) less than 0.05 were
considered. In each group, the top five (5) highest-ranking drugs based on Tau scores
were recorded.

3. Results
3.1. Weighted Gene Co-Expression Network Analysis (WGCNA)
3.1.1. Data Pre-Processing

A total of 26,545 genes remained after data filtering. Preliminary clustering of sam-
ples was used to remove outliers in each dataset. The red line indicates the cut line for
removing outliers. The smaller clusters cut by these lines were treated as outliers. Samples
that were observed to fall under well-defined clusters were retained for further analyses
(Figures A2–A5). The remaining genes and samples were used to construct the weighted
gene co-expression networks. The results for checking the comparability between each
dataset are displayed in Figure A6. A positive correlation was observed for all comparisons,
suggesting the comparability of datasets. The plot and statistics were better for ranked
expression than ranked connectivity, a pattern that is recurrent in WGCNA studies [7].

3.1.2. Approximating Scale-Free Networks

For each dataset, the scale-free topology fit index was plotted for values of β from
1 to 20 and selected as the power at which the curve flattens out and reaches close to 1
(Figure 1a). This measures how well the network conforms to a scale-free topology, a
property of many biological networks [40]. Higher fit indices lead to better fits toward a
scale-free topology at the expense of over-penalizing relatively weaker correlations, leading
to an inaccurate network that may not reflect underlying biology [41]. The scale-free
topology fit index of AD and GB had a value of 0.7 even at low power values. The almost
flat curve implies that their scale-free topology does not change significantly with increasing
power, suggesting a robust scale-free structure not sensitive to the choice of β. For PD, a
high index was achieved at a power of 10, where the curve begins to significantly flatten
out. However, HAND attained low scale-free topology fit indices even at relatively high β.
The chosen β must balance emphasizing strong correlations while preserving scale-free
topology to detect meaningful modules. Hence, scale-free topologies for all datasets were
approximated at β = 10.

https://www.drugrep.org
https://www.ncbi.nlm.nih.gov/geo/geo2r
https://www.ncbi.nlm.nih.gov/geo/geo2r
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and indicate the overall interconnectedness. 

The mean connectivity of the networks is also shown in Figure 1b. At the chosen soft-
thresholding power of 10, the networks for all datasets still exhibited relatively high mean 
connectivity, indicating the networks were well-connected and not overly fragmented, sug-
gesting that the resulting networks balance the need to emphasize strong correlations while 
maintaining levels of interconnectedness [41]. 

To further validate the choice of β, the histogram of connectivity, k, was examined (Fig-
ure 2a), and its values were used to plot the approximate straight-line relationship of a da-
taset using 10 as the soft-thresholding power (Figure 2b). The scale-free network was best 
represented using the PD dataset, having the highest R2 value of 0.92. 
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Figure 2. (a) histogram of network connectivity, k, is used to calculate (b) the approximate straight-
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3.1.3. Network Construction and Module Identification 
In WGCNA, a meta-analysis approach can be conducted in multiple ways [27,42–44]. 

One is by setting one dataset as a reference and projecting the module eigenvalues of the 
other datasets against the reference [17,27]. The criteria for choosing the reference affect 
the robustness of the network and can be based on many factors, such as the number of 

Figure 1. A summary of the network indices to approximate scale-free topology (a) and a plot of the
mean connectivity (b) are measures of the average number of connections per gene in the networks
and indicate the overall interconnectedness.

The mean connectivity of the networks is also shown in Figure 1b. At the chosen soft-
thresholding power of 10, the networks for all datasets still exhibited relatively high mean
connectivity, indicating the networks were well-connected and not overly fragmented,
suggesting that the resulting networks balance the need to emphasize strong correlations
while maintaining levels of interconnectedness [41].

To further validate the choice of β, the histogram of connectivity, k, was examined
(Figure 2a), and its values were used to plot the approximate straight-line relationship of a
dataset using 10 as the soft-thresholding power (Figure 2b). The scale-free network was
best represented using the PD dataset, having the highest R2 value of 0.92.
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Figure 2. (a) histogram of network connectivity, k, is used to calculate (b) the approximate straight-
line relationship for the PD dataset with beta = 10 as the soft-thresholding power.

3.1.3. Network Construction and Module Identification

In WGCNA, a meta-analysis approach can be conducted in multiple ways [27,42–44].
One is by setting one dataset as a reference and projecting the module eigenvalues of the
other datasets against the reference [17,27]. The criteria for choosing the reference affect the
robustness of the network and can be based on many factors, such as the number of samples
within a dataset, how well the scale-free network was approximated, and how defined the
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clustering is in the TOM-based gene dendrograms [41]. PD is one of the most prevalent neu-
rodegenerative disorders, second only to AD. In North America, approximately 1 million
people were living with Parkinson’s in 2018 [45]. Parkinson’s well-studied involvement
of key pathways such as mitochondrial dysfunction, alpha-synuclein aggregation, and
neuroinflammation, which are also implicated in other neurodegenerative diseases, makes
it a suitable reference for a cross-disease WGCNA approach [46,47]. Additionally, the
network constructed using the PD dataset was the most satisfactory in terms of scale-free
topology model fit and TOM-based gene clustering and was therefore used as a reference
for module preservation analysis.

The modules in the PD gene clustering dendrogram were identified using the “hybrid
tree cutting” function, which is part of the dynamic tree cutting family of algorithms
but includes additional functionality to handle large datasets more efficiently [33]. Deep
split arguments from 0 to 3 were used to control the sensitivity of the dynamic tree-
cutting algorithm, as shown in Figure 3. Using a deep split argument of 1, to obtain a
smaller number of larger modules, WGCNA was able to identify 18 gene co-expression
modules designated by unique colors (Figure 4). The black module contained 911 genes;
the blue module had a total of 1814 genes; the brown module had 1646 genes; cyan module
contained 465 genes; the green module contained 1357 genes; the green-yellow module had
573 genes; the grey module, which contains genes that do not exhibit strong co-expression
relationships in any other module, had a total of 2500 genes; grey60 contained 112 genes; the
light-cyan module had 212 genes; the magenta module contained 786 genes; midnight-blue
contained 429 genes; the pink module had 980 genes; the purple module had 786 genes;
the red module had a total of 1350 genes; the salmon module contained 540 genes; the
tan module had 570 genes; the turquoise module had a total of 2491 genes; and lastly, the
yellow module contained 1452 genes.
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3.1.4. Module Preservation and Module Membership

The preservation of the identified modules in the PD gene co-expression network
was quantified in GM, AD, and HAND using the Z-summary score, a measure of the
density and connectivity of the modules [40]. As shown in Figure 5, module preservation
varied greatly, with some being highly preserved across all datasets while others showed
moderate and poor preservation. This suggests some aspects of the co-expression network
were conserved across different diseases and others were unique, likely due to specific
disease states and unique traits within each dataset. This study, however, focused only on
the shared networks across the diseases, considering only the whole gene co-expression
landscape without delving deeper into specific disease states or phenotypes of each disease.

Therefore, only modules with high preservation (z > 10) across all datasets, given by
black, blue, midnight-blue, and yellow modules, were considered modules of interest and
taken for further analysis. A summary of the z-score values for highly preserved modules
across all datasets, including those that were only highly preserved in PD, AD, and HAND,
is summarized in Table A1.

Moreover, module membership using in-module connectivity, kME (eigengene-based
connectivity), was used to quantify each gene’s connectivity within a specific module. It is
calculated as the correlation of the gene’s expression profile with the module eigengene,
which is the first principal component of the module and can be considered a representative
expression profile for each module [40,44]. The top genes within each module were ranked
based on their kME values in each dataset. By considering genes with the highest maximum
rank across all datasets, we ensure the presence of genes that are consistently highly
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connected within their respective modules across multiple datasets, suggesting key roles
in biological mechanisms represented by these modules. A visual summary of the in-
module connectivities of genes in the PD dataset against other diseases was presented
using a scatterplot in Figure S1. All plots were presented with a positive correlation with
p-values < 0.05 (Table S1).
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neurocognitive Disorders dataset. The dashed line at Z = 10 indicates the threshold for high module
preservation. The PD modules midnight-blue, black, yellow, and blue all exhibit high preservation in
GM, AD, and HAND.

3.2. Functional Annotation and Pathway Enrichment

To characterize the modules of interest, the top genes within each module were sent to
the DAVID web server for functional annotation clustering. This allowed the grouping of
terms that share biological attributes, such as involvement in the same biological processes,
molecular functions, cellular components, and KEGG pathways, into clusters. The top-
enriched GO terms for each module are presented in Figure 6a–c. KEGG pathways enriched
only in the same cluster with top GO terms were prioritized (Figure 6d). Interestingly,
several annotation clusters with significant enrichment scores that contain associations
with neurodegeneration were identified. These clusters provide additional insights into the
associations of the gene co-expression modules in the pathogenesis of HAND, AD, PD, and
GM. The complete list of the significantly enriched clusters can be found in Supplementary
Tables S2–S5.
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3.3. Protein-Protein Interaction Networks and Identification of Hub Genes

To further explore the potential interactions among the genes and their corresponding
proteins within the identified modules, PPI networks were constructed for each module
of interest using the STRING database. A high confidence score (0.7) was set to ensure
the reliability of the predicted interactions [37]. To pinpoint central genes in each PPI
network, each network was imported to Cytoscape for the calculation of network and
node scores, and CytoHubba was employed to rank nodes within a network using three
(3) topological algorithms: degree, EPC, and MNC, thereby identifying potential hub genes.
The 10 hub genes with the highest ranks for each network were extracted, providing a
focused list of genes that potentially play pivotal roles in the network’s functionality and
stability (Figure 7). The colors of each node correspond to the ranking of the hub genes,
with the most intense red being the highest.

UBC, UBB, HSP90AA1, ATP5A1, NEDD8, PSMA3, SNRPE, SNRPD2, SNRPD3, and
CYC1 were considered hub genes associated with the yellow module. The midnight-blue
module contains the hub genes EP300, JUN, EGFR, MED1, FOXO1, KAT2A, SMAD4, RXRA,
BCL2L11, and PTK2. The hub genes in the blue module are CREBBP, EGFR, CDK1, ESR1,
SMAD3, PTPN11, H2AFX, PLK1, RXRA, and PRKCA. Lastly, the black module has PSMA3,
PSMA5, PSMA4, CCT4, CCT2, RPL9, PMSD1, PMSD2, RPL27, and SNRPG as hub genes.
The function of each individual hub gene is summarized in Tables A7–A10. These hub
genes, given their central positions within the PPI network of each module of interest,
warrant further investigation for their potential roles in the pathophysiology of the diseases
under study.
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3.4. Signature-Based Approach for Drug Repurposing

The top 10 hub genes of each module of interest were used as gene signatures and
sent to the DRE web server for drug repurposing analysis. Drugs with negative Tau score
values, down to −100, indicate the most significant associations with the submitted gene
signature. The five (5) identified drug candidates with the lowest Tau scores were given
emphasis, and their corresponding mechanisms of action are summarized in Table A6. The
top-ranking drug candidate for modulating the upregulated hub genes was Dorzolamide,
while Oxybuprocaine was the top-ranking drug candidate for the downregulated hub
genes (Table 2).
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Table 2. Top drug candidates for upregulated and downregulated hub genes.

Expression Genes Drug Known
Mechanism Tau FDR

Upregulated

PSMA3, PSMA5, CCT4,
CCT2, PSMD1, CDK1, ESR1,

SMAD3, PTK2, UBC,
HSP90AA1, ATP5A1,

NEDD8, PSMA3, SNRPE,
SNRPD2, SNRPD3, CYC1

Dorzolamide
Carbonic

anhydrase
inhibitor

−99.75 2.78 × 10−3

Downregulated

CREBBP, EGFR, PTPN11,
H2AFX, RXRA, EP300, JUN,

EGFR, MED1, FOXO1,
SMAD4, RXRA

Oxybuprocaine Local anesthetic −99.76 3.64 × 10−3

4. Discussion
4.1. Shared Gene Co-Expression Modules in PD, GM, HAND, and AD

The construction of gene co-expression networks to identify clusters of highly corre-
lated genes is a powerful systems biology method that has been recently used in various
biological contexts to identify disease-related genes, pathways, and networks [48]. One of
the strengths of WGCNA is its ability to capture the complex interplay among genes, which
is often missed by traditional differential expression analyses that consider each gene inde-
pendently [49]. This makes WGCNA particularly suitable for the study of complex brain
diseases that cause neurocognitive impairment, which is likely to involve the dysregulation
of interconnected networks of genes rather than individual genes [21,50–52]. In the context
of neurocognitive impairment, which refers to deficits in cognitive functions like language,
memory, attention, and problem-solving due to underlying neurological abnormalities or
dysfunction [53], Neurocognitive impairment is a hallmark of many brain disorders [53,54].
These conditions are characterized by intricate molecular and cellular dysregulations that
manifest as cognitive decline. Traditional gene expression analyses may not fully capture
the complexity of these dysregulations, as they often focus on individual genes rather than
the networks they form [40].

WGCNA has gained popularity due to its robustness, the ability to capture soft thresh-
olding for the approximation of scale-free networks, and the comprehensive framework
it provides for network analysis, capturing the overall gene expression landscape [40].
The weighted gene co-expression modules black, blue, midnight-blue, and yellow were
identified through the WGCNA and module preservation analysis of microarray disease
datasets associated with neurocognitive impairments: HIV-associated neurocognitive dis-
order (GSE35864), Alzheimer’s disease (GSE5281), Parkinson’s disease (GSE7621), and
glioma (GSE15824). These modules were identified to be highly preserved across all the
disease datasets, suggesting strong associations with disease mechanisms shared across
the four diseases. Particularly, the black and yellow modules are strongly associated with
mitochondrial dysfunction and protein aggregation. The blue and midnight-blue modules
display strong associations with transcriptional dysregulations related to neurodegener-
ative diseases. Moreover, it is crucial to differentiate between the pathomechanisms that
underlie neurodegenerative disorders and gliomas. In the context of CNS tumors, includ-
ing gliomas, protein misfolding often leads to aberrant signaling pathways that promote
cell proliferation and survival, thereby contributing to tumorigenesis [12]. The balance
between apoptosis and cell proliferation is indeed a key difference between these two
disease categories. In neurodegenerative diseases, the emphasis is on the loss of neurons
and the failure of cellular repair mechanisms, leading to a decline in cognitive and motor
functions. In contrast, CNS tumors are characterized by uncontrolled cell growth and a
failure of apoptosis, leading to mass formation and subsequent neurological symptoms [32].
It is worth noting that the intersection of these two seemingly disparate biological processes
is not without precedent. Recent research has indicated that certain molecular pathways,
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such as the p53 and Wnt signaling pathways, are implicated in both neurodegeneration
and CNS tumors [32,55].

4.2. Implications of Mitochondrial Dysfunction and Protein Aggregation on the Neurocognitive
Impairment Network

Mitochondrial dysfunction is a key factor in the pathogenesis of various neurode-
generative diseases. Mitochondria are responsible for producing most of the cell’s energy
through the process of oxidative phosphorylation, and their dysfunctionality has been
studied to contribute to the progression of dementia in many neurodegenerative diseases
such as Alzheimer’s, Parkinson’s, and Huntington’s disease [16,17]. Mitochondrial dys-
function can lead to increased production of reactive oxygen species (ROS), decreased ATP
production, and the release of pro-apoptotic factors, all of which can contribute to neuronal
cell death [14]. Impairment of the electron transport chain leads to cellular energy failure,
which is especially detrimental to neurons as these cells have high energy demands [6].
Mitochondrial dysfunction is a prominent feature in the black and yellow modules, as
evident in functional annotation clustering. The enrichment of terms in the top-scoring
clusters “ubiquinone activity”, “mitochondrial ATP synthesis”, mitochondrial electron
transport”, “mitochondrial inner membrane”, and “mitochondrial respiratory chain com-
plex I” underscores the importance of mitochondrial health in neuronal function, playing a
crucial role in maintaining synaptic activity and neuronal survival [56]. Moreover, impaired
mitochondrial function can exacerbate protein misfolding, promote inflammation, and
contribute to neuronal loss [6]. For instance, in Parkinson’s disease, mutations in PINK1
and Parkin protein, which are crucial for maintaining mitochondrial health, are known to
contribute to disease pathogenesis [6,15].

Other than top-scoring clusters, significantly enriched clusters within the black mod-
ule also highlight the overrepresentation of terms associated with protein misfolding and
aggregation. Aberrant protein folding and aggregation are hallmark features of neurocog-
nitive impairment and neurodegeneration, contributing to cellular toxicity and neuronal
death [57,58]. Proteins with complex structures, such as those involved in mRNA splicing,
are particularly susceptible to misfolding. Once misfolded, these proteins can aggregate and
form insoluble deposits, which can disrupt cellular function and trigger neuronal death [59].
The spliceosome, a dynamic complex of small nuclear ribonucleoproteins (snRNPs) and
numerous proteins, orchestrates the precise removal of introns from pre-mRNA, a critical
step in the maturation of mRNA and subsequent protein synthesis. The enrichment terms,
such as mRNA splicing via the spliceosome and spliceosomal complex assembly, hint at a
profound connection between the splicing machinery and the progression of neurodegener-
ation [60]. The meticulous assembly and function of the spliceosome involve a series of
catalytic steps and the formation of complexes like the U2-type precatalytic spliceosome
and the catalytic step 2 spliceosome. Any aberration in these processes can potentially
lead to the generation of aberrant mRNA transcripts, which can translate into misfolded
proteins, setting the stage for protein aggregation [61].

Several significantly enriched clusters of the yellow module also emphasize strong
associations with protein misfolding and aggregation. The overrepresentation of the
term proteasome core complex holds significant relevance. The proteasome is a crucial
piece of cellular machinery responsible for the degradation of misfolded proteins and
maintaining protein homeostasis within the cell. In the context of neurodegeneration, the
impairment of the proteasomal system can lead to the accumulation of protein aggregates,
a hallmark of several neurodegenerative conditions such as Alzheimer’s and Parkinson’s
disease [58]. The intricate balance of protein synthesis and degradation, as indicated by
terms like post-translational protein modification regulation of the cellular amino acid
metabolic process, further underscores the critical role of protein homeostasis in preventing
neurodegeneration [56,60,62]. The Wnt signaling pathway was also highlighted in the
yellow module. Some components of the Wnt pathway, such as GSK-3β, are involved in
both cancer and neurodegeneration but serve different roles. In cancer, GSK-3β is often
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inactivated to allow for Wnt pathway activation, while in Alzheimer’s disease, GSK-3β is
overly active, leading to increased tau phosphorylation and aggregation [12,32,37].

Cell cycle regulation is another critical aspect emphasized in the yellow module.
While neurons are typically considered post-mitotic, emerging evidence suggests that cell
cycle re-entry can occur in neurodegenerative diseases, leading to neuronal death [63–65].
Lastly, the yellow module brings attention to the role of “retrograde endocannabinoid
signaling,” a critical modulator of synaptic activity. Endocannabinoids are lipid signaling
molecules that can travel in a retrograde manner from post-synaptic neurons to pre-synaptic
neurons to bind to presynaptic cannabinoid receptors [66]. Binding inhibits the release
of neurotransmitters, thereby modulating neuronal excitability and synaptic plasticity.
Dysregulation of endocannabinoid signaling has been implicated in various neurological
conditions. The enrichment of this pathway in the yellow module suggests a potential role
in neurodegeneration, possibly through the modulation of synaptic activity and neuronal
survival. In the context of neurodegeneration, alterations in endocannabinoid signaling
could impact neuronal excitability, synaptic plasticity, and neuroinflammation, all of which
are critical factors in disease progression [66].

4.3. Transcriptional Dysregulation in the Neurocognitive Impairment Network

The blue and midnight-blue modules, both enriched for the biological process “reg-
ulation of transcription from RNA polymerase II promoter," highlight the significance of
transcriptional regulation in neurodegeneration. This is consistent with the growing body
of literature that highlights the role of transcriptional dysregulation in the progression
of neurocognitive impairment in brain diseases [50,67–69]. For instance, in Alzheimer’s
disease, aberrant gene expression patterns have been linked to disease progression, with a
notable shift in transcriptional priorities from synaptic function to immune response [51].

The enrichment of the cellular component “chromatin” in both modules further em-
phasizes the importance of chromatin remodeling in transcriptional regulation [70]. Dis-
ruptions in chromatin structure, which can lead to aberrant gene expression, have been
implicated in neurodegenerative diseases [71]. This suggests that the integrity of chromatin
structure and its role in facilitating or hindering transcription are crucial aspects of neuronal
health and function. The blue module’s enrichment for the KEGG pathway, growth hor-
mone synthesis, secretion, and action suggests a potential role of growth hormone-related
processes in neurodegeneration. This aligns with studies showing that growth hormone
therapy can improve cognitive function in growth hormone-deficient adults, indicating a
potential neuroprotective role for growth hormone [72].

The midnight-blue module, while sharing similarities with the blue module, presents
unique features. The enrichment of the molecular function, RNA polymerase II core
promoter proximal region sequence-specific DNA binding, suggests a specific role in the
initiation stages of transcription regulation. This could indicate a potential mechanism by
which transcriptional dysregulation occurs in neurodegenerative diseases, possibly through
alterations in the recruitment or activity of transcription factors in the core promoter region.
Mutations or dysregulations in the genes encoding for transcription factors that bind to
the core promoter proximal region can potentially lead to aberrant gene expression [73].
Recent studies have highlighted that mutations and aggregation of transcription factors
such as TATA-binding protein (TBP), a component of the RNA polymerase II pre-initiation
complex, are associated with Huntington’s disease [74,75]. These mutations can affect the
binding affinity of TBP to the core promoter region, thereby altering the transcriptional
landscape of neuronal cells.

Furthermore, the enrichment of the KEGG pathway “Th1 and Th2 cell differentiation”
in the midnight-blue module suggests the involvement of immune processes, specifically
T cell differentiation. This aligns with the recognition of neuroinflammation in the black
and yellow modules. The shift towards a pro-inflammatory state observed in diseases
like Alzheimer’s, characterized by increased activation of microglia and astrocytes and
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increased production of pro-inflammatory cytokines, is thought to contribute to neuronal
damage and disease progression.

These identified key molecular mechanisms shared across the brain disorders focused
on in this study corroborate well with numerous studies surrounding neurocognitive
impairment. The focus herein now shifts the outlook toward the proteins encoded by the
key hub genes based on PPI networks in each module of interest.

4.4. Hub Genes in the Neurocognitive Impairment Network

Hub genes from PPI networks generated from robust WGCNA data can act as potential
targets for repositioned drugs. In the yellow module, the ubiquitin proteins represented by
UBC and UBB play a pivotal role in the ubiquitin-proteasome system (UPS), responsible
for protein degradation within cells. Accumulation of ubiquitinated proteins is a hallmark
of neurodegenerative pathologies, suggesting a failure in the proteasomal degradation
pathway [76]. Moreover, mutations in UBB have been associated with the formation of
neurofibrillary tangles in Alzheimer’s disease [77]. Given the accumulation of ubiquitinated
proteins in these diseases, strategies to enhance UPS function or modulate ubiquitination
processes are being explored as therapeutic avenues. For instance, small molecules that
can modulate ubiquitin ligase activity are under investigation [55]. The heat shock protein
90 alpha family, class A member 1 (HSP90AA1), another highly ranked gene in the yellow
module, acts as molecular chaperones, assisting in protein folding and preventing protein
aggregation [78]. The overexpression of HSP90AA1 has been observed in Alzheimer’s
disease, and the use of inhibitors, geldanamycin and its analogs, has been proposed
as a potential therapeutic strategy due to its role in tau stabilization and amyloid-beta
aggregation, a hallmark feature of this disease [79].

The Proteasome 20S Alpha subunits, including PSMA3, PSMA5, and PSMA4, are
the top hub genes in the black module. The proteasome complex, a part of the ubiquitin-
proteasome system, is crucial for maintaining cellular homeostasis. For instance, PSMA3
has been associated with altered proteasomal activity in Alzheimer’s disease. Given
the central role of the ubiquitin-proteasome system in protein degradation, targeting
its components has been a strategy in neurodegenerative diseases [80]. Bortezomib, a
proteasome inhibitor, has been explored for its potential neuroprotective effects in models
of Parkinson’s disease. While primarily used in oncology, the rationale for its use in
neurodegenerative conditions stems from its ability to modulate proteasomal activity,
which might aid in clearing protein aggregates [81]. Interconnections among these genes
hint at a complex interplay between protein synthesis (ribosomal proteins), protein folding
(chaperonins), and protein degradation (proteasome subunits and assembly proteins).

The top-ranking hub gene in the midnight-blue module is the E1A Binding Protein
(EP300), which encodes the p300 protein and plays a pivotal role in transcriptional regu-
lation through histone acetylation [82]. Dysregulated EP300 activity has been linked to
neurodegenerative diseases, particularly Alzheimer’s disease, where its hyperacetylation
of tau, a microtubule-associated protein, has been observed, suggesting a potential mecha-
nism for tauopathy, the aggregation of aberrant tau proteins in the brain [83]. Inhibitors
have been explored as potential therapeutic agents; for example, a past study has shown
that specific EP300 inhibitors can mitigate tauopathy and associated cognitive deficits
in cellular models of Alzheimer’s disease [84]. Additionally, elevated levels of the Jun
Proto-Oncogene (JUN), the second-ranked hub gene in this module, have been observed in
neurodegenerative conditions like Parkinson’s and Alzheimer’s disease. Primarily recog-
nized as a proto-oncogene, JUN encodes for the c-Jun protein, a component of the AP-1
transcription factor complex that plays a significant role in cell proliferation, differentiation,
and apoptosis [85]. Its aberrant expression and mutations have been associated with the
promotion of tumorigenic processes, contributing to the progression of glioblastoma [86].
In the context of neurocognitive impairment, the c-Jun protein is known to be involved in
neuronal plasticity and regeneration, indicating a possible role in maintaining neuronal
health [87]. Moreover, recent studies have suggested that the JUN gene might be impli-
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cated in the inflammatory responses observed in neurodegenerative conditions, potentially
through its involvement in regulating cytokine production and immune responses [87].

The cAMP-response element binding protein (CREBBP), a transcriptional coactivator
with histone acetyltransferase activity, is the top-ranking hub gene in the blue module.
In Alzheimer’s disease, dysregulation of CREBBP has been linked to synaptic plasticity
alterations [88]. Moreover, mutations in CREBBP have been associated with cognitive
impairment, suggesting its pivotal role in maintaining neuronal health. Histone deacetylase
inhibitors, which can indirectly modulate CREBBP activity, have been explored for their
neuroprotective effects, as observed in models of Huntington’s disease [89]. Interestingly,
due to the presence of glioma in the datasets studied herein, shared networks between
neurodegeneration and cancer were also inferred. For instance, these hub genes are not
only implicated in the pathogenesis of neurocognitive impairment but may also provide
insights into other cancer diseases. The persistent activation of STAT3, a downstream
target of HSP90, is known to promote cell proliferation and survival in cancer, making
it a promising target for cancer therapy [90]. Similarly, EP300 and CREBBP have been
implicated in prostate cancer, with the former identified as an oncogene in a significant
proportion of tumors.

More importantly, the findings herein show that the identified modules and hub genes
are mostly well-associated with certain brain disorders like Alzheimer’s and Parkinson’s
disease, at least to the extent of our literature search. It is worth noting that the constructed
weighted gene co-expression modules and hub genes emphasize that these are shared
across many brain disorders that lead to neurocognitive impairment, even with differing
causes or pathophysiology, as evident in the inclusion of HIV-associated Neurocognitive
Disorder and glioma datasets and their high module preservation scores.

4.5. Potential Drugs for Neurocognitive Impairment

Once the disease-associated gene co-expression modules are identified through WGCNA,
they can be pipelined to drug-repurposing techniques, for instance, the virtual screening
of compounds based on their molecular and gene signatures. In the context of utilizing
gene signatures, the process begins with the identification of a specific set of genes (gene
signatures) that are significantly altered in a particular disease state, in this case, the
identified hub genes shared across HAND, AD, PDD, and glioma (Tables A7–A10). Once
these gene signatures are identified, they can be used to search for known drugs that
match the gene signatures of drugs in databases [50]. This is often achieved through
computational approaches, where the gene signatures are compared with gene expression
profiles induced by various drugs in large databases, such as the Connectivity Map (CMap)
and the molecular signatures database (MsigDB) [91,92]. The underlying principle is that
drugs modulating the disease-associated gene expression patterns might have therapeutic
potential [27].

The top-ranking drug for the upregulated hub genes, Dorzolamide, is an inhibitor
of carbonic anhydrase and is primarily used to treat glaucoma. Its main mechanism of
action is the inhibition of carbonic anhydrase, an enzyme responsible for the reversible
hydration of carbon dioxide [93]. By inhibiting this enzyme, Dorzolamide reduces the
production of bicarbonate ions and protons, influencing intracellular pH. Dysregulated
cellular pH has been implicated in Alzheimer’s disease. For instance, amyloid-beta pep-
tides, which aggregate and form plaques in the brain, have been shown to disrupt cellular
pH homeostasis, leading to neuronal dysfunction [94]. By modulating pH, Dorzolamide
could potentially counteract this disruption, restoring neuronal function and reducing neu-
rotoxicity. Although direct studies on its repurposing for neurodegeneration are limited,
carbonic anhydrase inhibitors have shown potential for reducing oxidative stress, a key
player in neurodegenerative processes. Beyond its primary mechanism, Dorzolamide has
been shown to exert neuroprotective effects [95]. In models of retinal ganglion cell death, a
process that shares similarities with neurodegenerative mechanisms, Dorzolamide demon-
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strated protective effects, potentially through the reduction of oxidative stress [96,97]. By
reducing oxidative stress, Dorzolamide could mitigate neuronal damage and cell death.

The top-ranking drug for modulating the downregulated hub genes is Oxybuprocaine,
primarily used as a local anesthetic agent. It acts by blocking sodium channels, preventing
the initiation and transmission of nerve impulses. Sodium channel dysregulation has been
implicated in various neurodegenerative conditions, contributing to neuronal excitotoxicity.
By modulating sodium channel activity, Oxybuprocaine might offer neuroprotective effects,
reducing excitotoxic damage to neurons. Neuronal excitotoxicity, resulting from excessive
glutamate release and subsequent overactivation of its receptors, is a well-established mech-
anism contributing to neuronal death in Alzheimer’s and Huntington’s disease [18,89].
Oxybuprocaine, as a sodium channel blocker, can potentially mitigate this excitotoxicity.
Inhibiting the sodium channels can prevent excessive neuronal firing and the subsequent
calcium influx that would otherwise lead to excitotoxic damage [98,99]. Moreover, mi-
croglial activation and the release of pro-inflammatory cytokines can exacerbate neuronal
damage, leading to neuroinflammation. Some local anesthetics have demonstrated anti-
inflammatory properties, and it is plausible that Oxybuprocaine might exert similar benefits,
potentially contributing to its neuroprotective effects [100]. However, it is still crucial to ap-
proach these potential benefits with caution. While drug repurposing offers the advantage
of utilizing agents with known safety profiles, the transition from one therapeutic context
to another requires rigorous investigation. Further validation steps and in-depth clinical
studies are essential to validate Dorzolamide’s and Oxybuprocaine’s efficacy and safety
in the context of neurocognitive disorders. In future studies, further cross-study WGCNA
can be conducted to construct gene co-expression networks that can discriminate between
various traits or sample groups within each dataset. This allows the generation of modules
and hub genes that depict a more detailed underlying biology of disorders and can be
correlated to specific traits or conditions.

5. Conclusions

This study identified highly preserved gene co-expression modules across Alzheimer’s
disease (AD), Parkinson’s disease with Dementia (PDD), HIV-associated neurocognitive
disorders (HAND), and glioma, diseases that cause neurocognitive impairment. This
highlights the potential of the Weighted Gene Co-expression Network Analysis (WGCNA)
approach in elucidating the complex molecular underpinnings of neurocognitive impair-
ment, especially in the context of mitochondrial dysfunction and protein aggregation,
which were supported by the characterization of correlated gene clusters and modules
that were found to be highly preserved across the HAND, AD, PD, and glioma gene
co-expression networks. By employing WGCNA and module preservation analysis to
construct protein-protein interaction (PPI) networks, the findings in this study suggest
that molecular mechanisms only evident in PDD and AD were shared across diseases
like glioma and HAND, which hints that the identified disease mechanisms are hallmarks
that could be shared across many disorders that lead to neurocognitive impairment, as
substantially corroborated in both past and recent findings.

More importantly, critical hub genes that play central roles across these shared modules
were determined, suggesting their potential as therapeutic targets. These hub genes
underscore their possible intricate balance of cellular processes for neurocognitive function,
and their dysregulation may have profound implications for disease mechanisms that
cause its impairment, given their critical roles in protein homeostasis, energy metabolism,
cell signaling, and gene expression. This approach offers insights into the exploration of
potential repurposable drugs that are significantly associated with the hub genes shared
across different brain disorders. Although the availability of comparable gene expression
datasets for brain diseases is a critical factor in gene co-expression analysis studies, setting a
direction for meta-analytical WGCNA studies contributes to improving our understanding
of the shared gene co-expression landscape in neurocognitive impairment and paving the
way for the development of more effective and targeted drugs.
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Table A1. Highly preserved modules (Z > 10 in all datasets) and their corresponding top-ranking
hub genes based on intramodular connectivity (kME).

Module No. Module Size Preservation
(Z-Score) Top Hub Gene

Highly preserved modules
in all datasets

1 Black 911 10.97084 CENPBD1P
2 Blue 1814 11.78024 PRR22
12 Midnight blue 429 12.77744 DDR1
19 Yellow 1452 18.77502 MSANTD3

Highly preserved modules
in HIV-associated

Neurocognitive Disorder,
Alzheimer’s Disease, and

Parkinson’s Disease datasets

3 Brown 1646 19.02149 DDR1
4 Cyan 465 28.54539 AFG3L1P
10 Light cyan 212 13.505348 CENPBD1P
11 Magenta 786 38.505348 PRR22
13 Pink 870 10.799127 DDR1
15 Red 1350 32.136386 SCARB1
16 Salmon 540 18.517416 MSANTD3
17 Tan 570 20.749038 DDR1
18 Turquoise 2491 84.408500 CORO6

Table A2. GO enrichment of highly preserved modules across all datasets in terms of biological
processes. GO terms and their corresponding processes were obtained from the Gene Ontology
Consortium (http://www.geneontology.org (accessed 23 August 2023)) [101].

Module Top Enriched Biological Processes Count Adj. p-Value

Black GO:0042776 mitochondrial ATP
synthesis-coupled proton transport 28 2.24 × 10−22

Blue GO:0006357 regulation of transcription
from the RNA polymerase II promoter 183 3.03 × 10−11

Midnight blue GO:0006357 regulation of transcription
from the RNA polymerase II promoter 214 4.99 × 10−05

Yellow GO:0006120 mitochondrial electron
transport, NADH to ubiquinone 24 1.66 × 10−13

Table A3. GO enrichment is based on highly preserved modules across all datasets in terms of cellular
components. GO terms and their corresponding components were obtained from the Gene Ontology
Consortium (http://www.geneontology.org (accessed 23 August 2023)) [101].

Module Top Enriched Cellular Components Size Adj. p-Value

Black GO:0005743 mitochondrial inner membrane 73 6.37 × 10−32

Blue GO:0000785 chromatin 149 1.88 × 10−13

Midnight blue GO:0000785 chromatin 137 4.94 × 10−05

Yellow GO:0005747 mitochondrial respiratory chain complex I 22 1.11 × 10−11

Table A4. GO enrichment is based on highly preserved modules across all datasets in terms of
molecular function. GO terms and their corresponding functions were obtained from the Gene
Ontology Consortium (http://www.geneontology.org (accessed 23 August 2023)) [101].

Module Top Enriched Molecular Functions Size Adj. p-Value

Black GO:0008137 NADH dehydrogenase (ubiquinone) activity 17 6.32 × 10−11

Blue GO:0003700 transcription factor activity, sequence-specific
DNA binding 99 2.33 × 10−12

Midnight blue GO:0000978 RNA pol-II core promoter sequence-specific
DNA binding 157 6.92 × 10−04

Yellow GO:0008137~NADH dehydrogenase (ubiquinone) activity 21 6.32 × 10−11

http://www.geneontology.org
http://www.geneontology.org
http://www.geneontology.org
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Table A5. Pathway analysis on highly preserved modules across all datasets based on the KEGG
pathway database. KEGG pathways were obtained from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (https://www.genome.jp/kegg (accessed 23 August 2023)) [102].

Module Top Enriched KEGG Pathways Size Adj. p-Value

Black hsa05016: Huntington’s disease 92 9.34 × 10−37

Blue hsa04935: Growth hormone synthesis, secretion, and action 25 1.80 × 10−03

Midnight blue hsa01521: EGFR tyrosine kinase inhibitor resistance 20 8.60 × 10−03

Yellow hsa04723: Retrograde endocannabinoid signaling 27 3.78 × 10−03

Table A6. Summary of top drug candidates for modulating hub gene perturbations.

Expression Genes Drug Mechanism Tau FDR

Upregulated

PSMA3, PSMA5, CCT4, CCT2,
PSMD1, CDK1, ESR1, SMAD3, PTK2,
UBC, HSP90AA1, ATP5A1, NEDD8,

PSMA3, SNRPE, SNRPD2,
SNRPD3, CYC1

Dorzolamide Carbonic anhydrase inhibitor −99.75 2.78 × 10−03

Deracoxib Cyclooxygenase inhibitor −99.59 5.28 × 10−06

Lofexidine Adrenergic receptor agonist −99.38 4.30 × 10−03

Ranolazine Sodium channel blocker −99.22 2.01 × 10−03

Methysergide Serotonin receptor antagonist −99.18 3.14 × 10−03

Downregulated
CREBBP, EGFR, PTPN11, H2AFX,
RXRA, EP300, JUN, EGFR, MED1,

FOXO1, SMAD4, RXRA

Oxybuprocaine Local anesthetic −99.76 3.64 × 10−03

Methocarbamol Muscle relaxant −99.46 6.44 × 10−03

Hydrocortisone Glucocorticoid receptor agonist −99.22 2.67 × 10−04

Pentolinium Cholinergic receptor antagonist −98.91 9.46 × 10−03

Ornidazole Antiprotozoal agent −98.86 9.92 × 10−04

Table A7. The top 10 hub genes in the yellow module were identified through PPI networks and their
functions obtained from the GeneCards database (www.genecards.org (accessed 23 August 2023)) [103].

Gene Function

UBC, UBB Protein modification through covalent attachment to target proteins

HSP90AA1 Molecular chaperone for protein maturation/regulation

ATP5A1 Component of the mitochondrial ATP synthase Complex V

NEDD8 Cell cycle control, enhances ubiquitin ligase activity

PSMA3 Proteolytic degradation of intracellular proteins, protein homeostasis

SNRPE, SNRPD2, SNRPD3 Splicing of cellular pre-mRNAs, involved in the assembly of the heptameric
protein ring on the small nuclear RNA

CYC1 Transfers electrons from the Rieske protein to Cytc, aiding in energy production.

Table A8. The top 10 hub genes in the midnight-blue module were identified through PPI net-
works and their functions obtained from the GeneCards database (www.genecards.org (accessed
23 August 2023)) [103].

Symbol Function

EP300 Transcription regulation, non-histone protein acetylation

JUN Transcriptional activation in certain cancer pathways

EGFR G protein-coupled receptor signaling is involved in learning and memory functions

MED1 Transcription of RNA polymerase II-dependent genes

FOXO1 Metabolic homeostasis, oxidative stress response, redox balance, DNA repair in beta-cells,
autophagic cell death

https://www.genome.jp/kegg
www.genecards.org
www.genecards.org
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Table A8. Cont.

Symbol Function

KAT2A Promotes transcriptional activation and plays a role in chromatin remodeling

SMAD4 TGF-beta signal transduction, transcription regulation, tumor suppression,

RXRA Regulates gene expression by binding to retinoic acid response elements

BCL2L11 Cell death regulation

PTK2 Cell migration/adhesion, cytoskeleton reorganization, nervous system development, apoptosis,
signal transduction, and P53/TP53 activity regulation

Table A9. The top 10 hub genes in the blue module were identified through PPI networks and their
functions obtained from the GeneCards database (www.genecards.org (accessed 23 August 2023)) [103].

Symbol Function

CREBBP Transcription, circadian transcriptional activation, nucleotide excision repair

EGFR Activates RAS-RAF-MEK-ERK and PI3 kinase-AKT, influencing cellular responses and being
involved in GPCR signaling for learning and memory functions

CDK1 Genome replication and cell death in postmitotic neurons

ESR1 Transcription regulations

SMAD3 Mediator in signal transduction, regulate transcription, tumor suppression

PTPN11 Signal transduction, MAPK signaling pathway, protein dephosphorylation

H2AFX Cell cycle arrest, DNA double-strand break repairs

PLK1 Regulates centrosome maturation, spindle assembly, cohesin removal from chromosomes, mitotic
exit, transcriptional regulation, and apoptosis

RXRA Gene expression regulation by binding to retinoic acid response elements

PRKCA Cell cycle progression, modulating cell motility, and tumor progression

Table A10. The top 10 hub genes in the black module were identified through PPI networks and their
functions obtained from the GeneCards database (www.genecards.org (accessed 23 August 2023)) [103].

Symbol Function

PSMA3, PSMA5, PSMA4 Proteolytic degradation of intracellular proteins and protein homeostasis mediate both
ubiquitin-dependent and independent protein degradation

CCT4, CCT2 Molecular chaperones regulate protein folding and transport vesicles to the cilia.

RPL9 Large ribosomal subunit protein ul6; L ribosomal proteins

PMSD1, PMSD2 Protein degradation and homeostasis, cell progression/apoptosis, and DNA repair.

RPL27 Proper rRNA processing and maturation of 28S and 5.8S rRNAs.

SNRPG Pre-mRNA splicing, assembly of a heptameric protein ring on small nuclear RNA
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