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Abstract: Periadolescence is a neurodevelopmental period characterized by structural and functional
brain changes that are associated with cognitive maturation. The development of the functional
connectivity of the hippocampus contributes to cognitive maturation, especially memory processes.
Notably, hippocampal development is influenced by lifestyle factors, including physical activity.
Physical activity has been associated with individual variability in hippocampal functional connectiv-
ity. However, this relationship has not been characterized in a developmental cohort. In this study,
we aimed to fill this gap by investigating the relationship between physical activity and the functional
connectivity of the hippocampus in a cohort of periadolescents aged 8–13 years (N = 117). The
participants completed a physical activity questionnaire, reporting the number of days per week they
performed 60 min of physical activity; then, they completed a resting-state functional MRI scan. We
observed that greater physical activity was significantly associated with differences in hippocampal
functional connectivity in frontal and temporal regions. Greater physical activity was associated
with decreased connectivity between the hippocampus and the right superior frontal gyrus and
increased connectivity between the hippocampus and the left superior temporal sulcus. Capturing
changes in hippocampal functional connectivity during key developmental periods may elucidate
how lifestyle factors including physical activity influence brain network connectivity trajectories,
cognitive development, and future disease risk.

Keywords: hippocampus; functional connectivity; development; physical activity; magnetic
resonance imaging

1. Introduction

Throughout childhood and into early adulthood, the brain undergoes significant
structural and functional changes, including altered connectivity within and between brain
networks. Resting-state functional connectivity (rs-FC), generally characterized using
functional magnetic resonance imaging (fMRI), provides valuable insights regarding brain
function, organization, and associated cognitive processes and behaviors [1–7]. Maturation
of functional brain networks is important for the development of more complex cognitive
abilities that improve between childhood and adolescence, or the periadolescent epoch [8].
For example, the development of cognitive abilities, including memory and attention, is
related to changes in rs-FC throughout periadolescence. Brain regions such as the hip-
pocampus and extended brain networks important for memory and attention demonstrate
increased within-network connectivity and decreased between-network connectivity that
support better memory and improved attentional abilities in periadolescence [9,10]. It is
well established that the brain undergoes significant alterations in rs-FC with development
and aging, and an emerging research theme involves studying how the trajectory of these
changes in healthy development and disease is influenced by modifiable lifestyle factors,
such as physical activity and fitness.
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The structure and function of the hippocampus, a brain region necessary for nor-
mal memory, is particularly influenced by physical activity and fitness levels during
periadolescence [11–15]. Fitness, the cardiorespiratory conditioning that occurs as a
result of exercise, is associated with hippocampal volume [16–20] in addition to func-
tional connectivity between the hippocampus and other brain networks in periadolescent
children [21,22]. Daily physical activity, a key contributor to fitness, is also associated with
changes in interhemispheric functional connectivity in periadolescent children [23–25].
However, less is understood about how physical activity is associated with the functional
connectivity of the hippocampus and the rest of the brain throughout periadolescence, as
these relationships have not previously been tested in a healthy, typically developing cohort.

In order to fill this gap in the literature, we measured the rs-FC of the hippocampus,
then tested its association with self-reported daily physical activity levels in a cohort of
periadolescent children. Other techniques, including volumetric MRI and task-based fMRI
as well as EEG, have been utilized to investigate similar questions. However, rs-FC of-
fers unique insight into the brain’s intrinsic functional organization [16,24,26–29]. While
a previous study investigated the relationship between hippocampal rs-FC and fitness
levels, physical activity is a distinct construct that has not been investigated in relation
to hippocampal rs-FC [21]. In the current study, rs-FC and self-reported physical activity
data were measured in a new sample of periadolescent children (aged 8–13 years) with the
aim of investigating how hippocampal rs-FC varies as a function of physical activity. We
hypothesized that greater levels of physical activity would be associated with hippocampal
rs-FC patterns that reflect increased within-network and decreased between-network con-
nectivity, that is, patterns typically associated with more efficient brain networks [1–3,6–8].
Investigating this relationship may lead to insights into how physical activity influences
functional brain networks throughout development. Advances in this area could have
widespread effects spanning from public policy changes to disease prevention recommen-
dations that could influence brain health not only during development but throughout the
entire lifespan.

2. Materials and Methods
2.1. Participants

The participants in the current study came from a cohort of periadolescent children
enrolled in the Polygenic Risk for Alzheimer’s disease in Nebraska Kids (PRANK) protocol,
which is an observational study on brain and cognitive development. Healthy, typically
developing periadolescent children aged 8–13 years (M = 10.92, SD = 1.61) from the Omaha,
Nebraska, area assented to participate in the study after the research team obtained par-
ent/guardian informed consent according to the University of Nebraska Medical Center’s
Institutional Review Board guidelines. Participants were included if they had normal or
corrected-to-normal vision and the ability to assent to and complete assessments in English.
Participants were excluded if they had a history of drug or alcohol abuse, psychiatric
disease, or neurological or developmental disease or had contraindications for neuroimag-
ing (presence of an implant, orthodonture, etc.). The sample included 117 periadolescent
children with sufficient low-motion MRI data that allowed for data processing and analysis
(details below) [30]. The cross-sectional sample analyzed here contained 117 children (57F,
60M). The average age for girls (M = 11.37 years) was significantly greater than the average
age for boys (M = 10.49 years) in this sample (t(115) = 3.09; p = 0.002). Age was calculated
with respect to the day the MRI scan was completed. Demographic information is included
in Table 1.
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Table 1. Participant demographics.

Characteristic M (SD) Range

Age (at time of MRI scan, years) 10.92 (1.61) 8.24–14.0
Pubertal stage 1.48 (0.69) 0.0–3.4
Average number of days reporting PA 4.61(1.91) 0–7
BMI (kg/m2) 19.09 (4.25) 12.75–32.81
Household income 8.74 (1.13) 5.00–10.00

Note. N = 117, consisting of 57 F and 60 M. Pubertal stage was coded on a 4-point scale, where 1 = no development,
2 = beginning development, 3 = additional development, and 4 = post development. Household income was
coded on an ordinal scale representing USD, where 1 ≤ USD 5000, 2 = USD 5000–USD 11,999, 3 = USD 12,000–USD
15,999, 4 = USD 16,000–USD 24,999, 5 = USD 25,000–USD 34,000, 6 = USD 35,000–USD 49,999, 7 = USD 50,000–USD
74,999, 8 = USD 75,000–USD 99,999, 9 = USD 100,000–USD 199,999, and 10 ≥ USD 200,000.

2.2. Physical Activity

Physical activity was assessed with a self-report measure adapted from the Adolescent
Brain and Cognitive Development (ABCD) Study’s Youth Risk Behavior survey (modeled
after the Center for Disease Control’s survey) [31,32]. Specifically, questions related to
physical activity behavior were included in the questionnaire. The first item on this
questionnaire asked child participants “During the past 7 days, on how many days were
you physically active for a total of at least 60 min per day? (time you spent in any kind
of physical activity that increased your heart rate and made you breathe hard part of the
time)”. Each child’s response to this question was utilized as the variable of interest in the
current analysis. Responses ranged from “0 days” up to “7 days” per week. Scalar values
based this response were mean-centered and entered as the primary covariate of interest in
the neuroimaging analysis.

2.3. MRI
2.3.1. Procedures

All data were collected from participants in Omaha, Nebraska, at the University
of Nebraska Medical Center Core for Advanced Magnetic Resonance Imaging (CAMRI,
RRID: SCR_022468). After receiving consent from parents and children, parents provided
screening information for MRI compatibility. Data were collected with a Siemens 3T Prisma
MRI scanner using a 32-channel head coil. The protocol for this scan was adapted from the
Lifespan Human Connectome Project in Development protocol [33]. All participants were
comfortably positioned in a supine position in the scanner and instructed to hold as still
as possible.

2.3.2. Scanning Parameters

Structural and functional MRI data were collected using the following parameters:
T1 MPRAGE [TE = 2.2 ms, TR = 2400 ms, 0.8 mm isotropic voxel, FOV = 256 mm,
slice thickness = 0.8 mm, slices = 208, flip angle = 8◦, acquisition time = 6 min 38 s],
T2w SPACE [TE = 563 ms, TR = 3200, 0.8 mm isotropic voxel, FOV = 256 mm, slice
thickness = 0.8 mm, slices = 208, acquisition time = 5 min 57 s] and T2* BOLD Resting
State [2D multiband gradient-recalled echo (GRE) echo-planar image (EPI) sequence,
TR = 800 ms, TE = 37 ms, flip angle = 52◦, 2.0 mm isotropic voxel, acquisition time = 15 min 20 s,
multiband acceleration factor = 8]. During the resting state scan, participants were instructed to
stay awake, remain still, keep their eyes on a fixation cross, and keep their minds clear.

2.3.3. Data Processing and Analysis

MRI data were preprocessed using a minimal preprocessing pipeline developed by
the Human Connectome Project (HCP) [34]. Briefly, the original T1 and T2 structural im-
ages were processed via the following steps: (1) distortion was corrected; (2) images were
aligned and averaged between repeated runs; (3) images were aligned with the MNI space
template using a rigid body, 6-degree-of-freedom transform; (4) readout distortion was
removed; (5) images were corrected for inhomogeneity; (6) the bias field was estimated and
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corrected; and (7) FreeSurfer’s recon-all pipeline was applied to the data (RRID:SCR_001847;
Version 6.0.0). Then, an internally developed pipeline automatically generated a bilateral
hippocampal region of interest seed composed of left and right hippocampal masks. The
output from this processing was then utilized in the fMRISurface pipeline to process the
volume timeseries in MNI space in order to generate a CIFTI dense timeseries. The resulting
resting state MRI data were processed to address well-characterized confounds related
to motion. Realignment parameters from co-registration of rs-fMRI volumes were first
low-pass-filtered to exclude motion artifacts related to respiration [30], and a threshold
of 0.2 mm was used to identify rs-fMRI volumes with a relatively high level of motion
for censoring during subsequent processing. Then, a single-step regression procedure
implemented in AFNI software (RRID:SCR_005927; version 21.1.07) was used to simultane-
ously censor high-motion volumes identified as described above, apply a band pass filter
(0.01–0.2 Hz), and remove effects related to timeseries covariates of no interest, including
motion regressors and derivatives, core white matter, CSF, and global signal. Volumetric
timeseries data and surface timeseries data were smoothed using a 4 mm FWHM kernel
(3D- and 2D surface-constrained, respectively). This CIFTI timeseries was then statistically
analyzed with the covariate of interest, physical activity.

2.3.4. Statistical Analysis

Statistical tests of voxelwise resting-state functional connectivity and covariate values
were conducted. Voxelwise tests using one-sample, two-sided t-tests with linear modeling
for covariates were implemented using AFNI’s 3dttest++ utility [35]. The primary covariate
of interest was the number of reported days of physical activity. Additional covariates
included age, sex, an age × sex interaction term, and median framewise displacement for
resting state EPI (estimated from realignment parameters generated during preprocess-
ing). Field-standard, two-step thresholding procedures were followed to ensure the rigor
and reproducibility of our analysis [36]. Specifically, a voxelwise threshold was applied
(p < 0.001) in order to identify significant clusters that covaried with the bilateral hippocam-
pus seed as a function of physical activity, and then a spatial clusterwise threshold was
utilized to identify statistically significant results, with alpha = 0.05. The analysis was
restricted to surface targets, as this has been shown to increase the specificity of cortical
activation patterns and connectivity results [37]. The covariate maps and significant clusters
generated by this analysis were visualized using Connectome Workbench. An overlay
of Gordon’s 333 cortical network parcellation map allowed for localization of significant
clusters within networks [38,39].

3. Results
3.1. Behavioral Data

The participants, on average, reported having 4.61 days per week with 60 or more
minutes of physical activity (SD = 1.91). The amount of reported physical activity was not
significantly associated with age (r = −0.09, p = 0.36), and no differences in physical activity
were found between males and females (t(114) = 1.03, p = 0.31). Distribution of age by sex
and frequency of days of physical activity reported can be seen in Figure 1A,B.
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ence the outcome of interest. 

  

Figure 1. Participant demographics, physical activity, and hippocampal functional connectivity.
(A) Age and sex distribution across the sample. Children ranged in age from 8–13 years old.
(B) Frequency of days of physical activity reported. (C) (Top) rs-FC covariation with self-reported
physical activity, with significant clusters outlined in white, and (bottom) overlayed with Gordon’s
333 parcellation. (Left) lateral perspective on the left hemisphere; (right) top-down perspective on
both hemispheres; inflated cortical surfaces were selected to ensure visibility of sulcal values.

3.2. Neuroimaging Data

Our analysis of covariance between physical activity and hippocampal rs-FC indicated
that increased physical activity was associated with regional differences in hippocampal
rs-FC. Specifically, statistically significant clusters were identified in two brain regions. The
right superior frontal gyrus (MNI X = +30.7, Y = −3.8, Z = +50.1; area = 48.79 mm2) covaried
negatively with physical activity; that is, a greater number of days of reported physical
activity was associated with decreased functional connectivity between the hippocampus
and the right superior frontal gyrus (rSFG). Meanwhile, the left superior temporal sulcus
(MNI X = −57.3. Y = −35.4, Z = −3.2; area = 52.04 mm2) covaried positively with physical
activity; that is, a greater number of days of reported physical activity was associated with
increased functional connectivity between the hippocampus and the left superior temporal
sulcus (lSTS). The locations of significant clusters are detailed in Table 2 and Figure 1C.
The age–sex interaction term did not show any statistically significant covariance with
hippocampal rs-FC, indicating that any age-sex differences did not influence the outcome
of interest.

Table 2. Locations of significant clusters covarying with physical activity.

Seed Nature of Correlation Cluster Location Peak MNI
Coordinate (X, Y, Z)

Cluster Area
(mm2) t Value

Bilateral Hippocampus Negative R. Superior Frontal Gyrus +30.7, −3.8, +50.1 48.79 4.724
Bilateral Hippocampus Positive L. Superior Temporal Sulcus −57.3, −35.4, −3.2 52.04 4.231

Note. All clusters in table withstood voxel-wise threshold of p < 0.001 and cluster threshold of p < 0.05.
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To provide additional context for these findings, the focal clusters of covariance were
interpreted using a well-established functional parcellation of the human brain. An overlay
of Gordon’s 333 network parcellation map revealed that the negatively covarying rSFG
cluster fell within the territory of the dorsal attention network (DAN), and the positively
covarying lSTS cluster fell in the territory of the ventral attention network (VAN). Bilateral,
whole-brain maps of hippocampal rs-FC are displayed in Supplemental Figures S1 and S2.

4. Discussion

This study aimed to investigate the association between physical activity and resting
state functional connectivity of the hippocampus in a developmental cohort of periado-
lescent children. The rationale for studying this relationship is based on the significant
age-related change in hippocampal functional connectivity during development, a period
that is especially sensitive to the influence of modifiable factors including physical activity
and fitness [9–11]. In the current study, hippocampal rs-FC was significantly negatively
associated with regions of the frontal lobe as a function of greater self-reported physical
activity and positively associated with regions within the temporal lobe. Our hypothesis,
that greater levels of physical activity are associated with increased within-network and
decreased between-network functional connectivity in children, was partially supported
by the pattern reported here.

Previous studies that have investigated associations between hippocampal rs-FC,
physical activity, and fitness have reported strikingly similar patterns of covariation. A
study involving Spanish adolescents reported regional similarities in hippocampal rs-FC
but with cardiorespiratory fitness as a covariate [21]. Additional evidence suggests physical
activity and fitness play a significant role in attentional network functional connectivity
variation in this age group [22]. Research on young adults has also established a significant
relationship between hippocampal rs-FC and physical activity and fitness [40–44]. The
current study observed hippocampal rs-FC patterns similar to those reported in previous
studies on young adults, and it adds to the growing body of evidence that hippocampal
rs-FC may be influenced by physical activity during development. Furthermore, future
studies expanding upon the 8–13-year-old age range of the current study will be necessary
to fully characterize the associations between physical activity, fitness, and functional
brain development.

The right frontal and temporal lobe clusters observed in this study are parts of brain
regions often associated with the dorsal (DAN) and ventral (VAN) attention networks, re-
spectively [38]. The DAN plays a key role in alerting and attending to relevant visuospatial
stimuli, while the VAN is recruited during stimulus-driven tasks in association with short-
term memory. Differences in these functional networks are important because attention
and memory abilities improve significantly throughout childhood [45]. Increased within-
network and decreased between-network connectivity of these networks is associated with
greater attentional abilities and increasing age in children [1,46–50]. Furthermore, the phe-
nomenon of a decrease in functional connectivity between the hippocampus and regions
strongly associated with the DAN is consistent with a more segregated brain network sys-
tem, which is characteristic of this developmental period [1,51,52]. Evidence suggests that
during development, abundant short-range connections between regions are slowly pruned
and replaced by long-range connections that, with progression through childhood, begin to
more closely resemble the functional networks in the adult brain [6,7,53,54]. Physical activ-
ity may influence this developmental process: we observed that periadolescent children
reporting greater levels of physical activity displayed a pattern of decreased functional
connectivity between the hippocampus (hippocampal memory network) and a significant
cluster in the DAN and increased functional connectivity between the hippocampus and
the VAN. Based on both the current and prior work, we posit that physical activity plays an
important role in the development of hippocampal rs-FC, particularly attention network
connectivity with the hippocampus.
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Importantly, there are methodological differences between the current study and prior
work. For example, much of the current published literature on hippocampal volume
and/or functional connectivity focuses on children with high BMI values (body mass
index) or lower fitness levels [21,24,44], whereas the current study includes children with
a wide range of BMIs (12.75–32.81 kg/m2) and does not include BMI as a variable of
interest. While there is evidence that BMI may play a role in hippocampal function [55],
there is scientific merit in understanding how these relationships apply to children across
the spectrum of BMI and fitness throughout development. Exercise and physical activity
influence the hippocampus regardless of BMI in the adult population [15,18], and it is
important to understand whether this relationship is robust across there lifespan, beginning
in childhood.

The current study is not without its limitations. First, self-reported physical activity is a
coarse measure of how much movement and exercise periadolescent children are participat-
ing in daily, and quantitative measurements may be more robust. Several studies have used
responses to the same questionnaire to test hypotheses associated with physical activity and
other brain variables [23,56,57]. Another limitation of our data was that the distribution
of reported days of physical activity was negatively skewed such that sedentary children
were less well represented in the sample. However, there were four or more children (and
associated rs-fMRI datasets) at every response level, and this provided adequate represen-
tation for our analysis. Also, our rs-fMRI data-processing approach incorporated global
signal regression, a widely used approach intended to address methodological confounds
inherent to rs-fMRI data; global signal regression has itself been subject to critique, and
an active debate continues in the literature [58,59]. The high-quality brain imaging data
and robust statistical thresholds utilized in the current study provide reassurance that our
findings were most likely related to true variation in functional connectivity as a function
of physical activity. In the future, quantitative measures of physical activity (accelerometry)
should be analyzed to replicate these results and elucidate other patterns of rs-FC that could
be influenced by these variables. Finally, the current study utilizes an observational design,
while much of the currently published literature describes studies using interventional
designs. However, our results fit well with the currently published findings within this
body of research despite the observational nature of this study.

In summary, this study provides evidence that hippocampal rs-FC is significantly
associated with physical activity in periadolescent children. The significant differences in
the superior frontal gyrus and the superior temporal sulcus extend to developmental popu-
lations the previous findings of an association between physical activity and hippocampal
rs-FC. These findings suggest that physical activity may be associated with greater segrega-
tion of functional networks. Future studies on rs-FC in periadolescent children employing
quantitative measurements of physical activity could further elucidate how these factors
influence brain development. Differences in these functional connectivity patterns as a
function of physical activity could be related to underlying cognitive functions that de-
pend on hippocampal contributions such as declarative or relational memory abilities.
Understanding how modifiable lifestyle factors, including physical activity, influence the
trajectory of development in brain regions that are especially vulnerable to neurological
disease may have great importance for developing preventative interventional strategies
with which to preserve these brain regions and networks. For example, changes in hip-
pocampal rs-FC have been observed in association with a variety of diseases throughout
the human lifespan, including childhood heart disease [60], temporal lobe epilepsy [61],
and early changes in Alzheimer’s disease (AD) [62–64]. AD pathology initially affects the
medial temporal lobes and the hippocampus, and, over time, AD affects multiple brain
regions and networks, including attention networks; insight into how physical activity
might strengthen and/or protect these regions and networks from an early age could be
critical for disease prevention later in life.
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Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/brainsci13111558/s1, Figure S1: Bilateral, whole-brain map of mean
hippocampal rs-FC; Figure S2: Bilateral, whole-brain map of rs-FC covarying with physical activity.
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