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Abstract: In various applications, such as disease diagnosis, surgical navigation, human brain atlas
analysis, and other neuroimage processing scenarios, brain extraction is typically regarded as the
initial stage in MRI image processing. Whole-brain semantic segmentation algorithms, such as
U-Net, have demonstrated the ability to achieve relatively satisfactory results even with a limited
number of training samples. In order to enhance the precision of brain semantic segmentation,
various frameworks have been developed, including 3D U-Net, slice U-Net, and auto-context U-Net.
However, the processing methods employed in these models are relatively complex when applied
to 3D data models. In this article, we aim to reduce the complexity of the model while maintaining
appropriate performance. As an initial step to enhance segmentation accuracy, the preprocessing
extraction of full-scale information from magnetic resonance images is performed with a cluster tool.
Subsequently, three multi-input hybrid U-Net model frameworks are tested and compared. Finally,
we propose utilizing a fusion of two-dimensional segmentation outcomes from different planes to
attain improved results. The performance of the proposed framework was tested using publicly
accessible benchmark datasets, namely LPBA40, in which we obtained Dice overlap coefficients of
98.05%. Improvement was achieved via our algorithm against several previous studies.

Keywords: brain extraction; whole-brain segmentation; magnetic resonance imaging (MRI); semantic
segmentation; U-Net

1. Introduction

Over the past few decades, numerous algorithms have been developed and consis-
tently enhanced for the purpose of whole-brain segmentation. These algorithms have now
become a crucial element in the field of large-scale neuroscience and neural image analysis
research. As the utilization of these algorithms experiences a significant surge, there is a
corresponding increase in the demand for enhanced precision and dependability. While
the study of fully automated brain extraction techniques has been extensively explored, it
remains a dynamic field of research. With the advancement of deep learning techniques,
the accuracy of semantic segmentation algorithms for brain tissue has shown significant
improvement, attracting considerable attention in the field.

Traditional methods or tools for brain extraction primarily employ a combination
of image registration, atlas-based techniques, intensity and edge feature information, as
well as level set and graph cutting algorithms to generate accurate brain masks in MRI
images. Several algorithms and neural image analysis software have been extensively
utilized in the field, which include the Brain Extraction Tool (BET) and its associated
algorithms [1–4], 3DSkullStrip from the AFNI toolkit [5], the Hybrid Watershed Algorithm
(HWA) provided by Free Surfer [6], and the robust learning-based brain extraction (ROBEX)
method [7]. The deformable spherical mesh model in BET is expanded from its initial
position at the center of the image, taking into account local intensity values and surface
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smoothness. 3dSkullStrip is a variant of BET that incorporates external points to inform
the delineation of the grid boundaries. HWA employs edge detection techniques and atlas-
based deformable surface models to perform segmentation. ROBEX utilizes a triangular
grid that is constrained by the shape model in order to align with the probabilistic output
generated by a brain boundary classifier based on random forest methodology. The majority
of these algorithms heavily depend on the alignment of the query image with the atlas, or
on making significant assumptions regarding the geometry, orientation, and image features.
When certain geometric assumptions are not met, the accurate identification of features
becomes challenging, and image registration may not guarantee convergence to the exact
solution. In numerous instances, the accuracy of these tools’ results is often insufficient due
to the inclusion of non-brain structures or the incomplete preservation of brain connections
in the segmentation outcomes. Hence, the majority of these tools offer users various options
and parameters to configure and experiment with, resulting in brain extraction being a
semi-automated or supervised task rather than a fully automated one.

In recent years, image segmentation based on neural networks has garnered significant
attention from researchers due to the aforementioned limitations of the traditional methods.
A 3D brain extraction algorithm was proposed by Clacek et al. [8], which utilizes seven 3D
convolutional layers for the purpose of voxel-level image segmentation. Cubes with
dimensions of 53 × 53 × 53 were utilized as input to the network, centered around
the gray-scale target voxels. Among the comprehensive evaluations and comparisons
documented in the literature [8], the performance surpasses that of state-of-the-art brain
extraction algorithms in publicly accessible benchmark datasets. SegNet [9] is a deep
convolutional neural network that employs encoders and decoders to perform semantic
pixel-level segmentation. The model encoder is comprised of 13 convolutional layers from
the VGG16 [10] architecture, which are utilized for downsampling and maximum pooling.
Moreover, the pooling coordinates serve to mitigate the loss of pixel location information
resulting from the presence of multiple pooling layers. Furthermore, the decoder performs
up-sampling by utilizing the corresponding maximum pool index values. Finally, the
Softmax classifier is utilized to generate the class-output feature map for each pixel. The
U-Net model [11] utilizes the concept of symmetry relationships between encoding and
decoding layers to predict medical image segmentation. Two convolutional layers are
employed in the encoder to achieve downsampling through the use of maximum pooling.
The decoder employs the upper convolution operation to increase the resolution and
establish connections with the corresponding feature map size of the encoder. The 3D
U-Net model has been widely employed in various applications of volumetric CT and MR
image segmentation. These applications include the diagnosis of cardiac structures [12],
bone structures [13], vertebral column [14], brain tumors [15,16], liver tumors [17], lung
nodules [18], nasopharyngeal cancer [19], multi-organ segmentation [20], head and neck
organ at-risk assessment [21], and white matter tract segmentation [22]. The utilization
of 3D models, however, results in a significant surge in computational demand, thereby
necessitating high-performance computer hardware systems. To address this issue, certain
U-Net methods propose employing dimension reduction techniques to enhance processing
efficiency. Auto-context 2.5D net for brain extraction [23] incorporates the concept of
parameter iteration to enhance the accuracy of segmentation and employs a technique of
reducing three-dimensional voxels to three slices, thereby effectively reducing the number
of deep learning parameters. The performance of auto-context 2.5D net is close to that of
3D processing, but because the convolution kernel used is the superposition of three 2D
planes, the training parameters are still significantly higher than those of 2D processing,
and the complexity of processing still has room for optimization.

In addition, there are currently several directions for optimizing the U-Net using
existing modules. These include adding the residual modules to the U-Net network [24,25]
to enhance its learning ability, incorporating attention blocks [26] into the encoding and
decoding process, and utilizing advanced U-Net connection methods [27] to improve
information interaction across different levels. Furthermore, some studies [28] suggest
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that the U-Net cascade method is highly effective, and optimizing the preprocessing and
postprocessing are very important. MVU-Net [29] linearly fused the prediction results of
three different views, but the difference in pixel segmentation accuracy under different
views is not considered. A 3D CNN or U-Net [30,31] segmentation network makes full use
of the characteristics of three-dimensional data, but it has the problem of a large amount of
calculation, just like the Auto-CNN method mentioned in [23].

In our collaborative research on brain tissue segmentation algorithms with medical
institutions, striking a balance between algorithm complexity and efficacy has consistently
been a pivotal consideration. The practical application of software necessitates that we take
into account training time and real-time segmentation.

This paper aims to further investigate the optimization of the overall segmentation
method for brain tissue, with a specific focus on the dimensionality reduction hybrid U-Net
framework. The following aspects will be covered:

(1) Preprocessing is performed by utilizing the self-supervised global information of
the original data, which effectively mitigates the limitations of a localized convolution
window. Specifically, the extraction of global amplitude information is efficiently achieved
through amplitude-based K-means processing, enabling the realization of clustering and
noise reduction.

(2) The concept of data self-mining is employed to utilize gradient images and con-
struct a hybrid U-Net structure with multiple inputs. We constructed three hybrid U-Net
networks and evaluated their performance. The results indicate that incorporating a hybrid
fusion approach during the decoding process yields the highest efficiency.

(3) In order to address the issue of a high number of learning parameters in 3D voxel
segmentation, an analysis is conducted on the limitations of the two-dimensional U-Net
approach. We would like to highlight that the slices exhibiting poor segmentation accuracy
typically contain a smaller proportion of brain tissue. We have proposed a combination
algorithm following the segmentation of 2D slices, which utilizes multi-dimensional slice
information to complement each other and achieves a high level of precision in 3D fusion
segmentation accuracy.

As described in nnU-Net [28], the U-Net architecture itself is an excellent structure,
and the modification of preprocessing, postprocessing, and some details could significantly
improve the network’s performance. In this manuscript, we introduce two new approaches
in preprocessing and postprocessing:

Firstly, in the preprocessing stage, we propose using a clustering method instead of
the traditional z-score standardization. Test results show that this approach can improve
the classification results of U-Net by about 0.9% in Dice against the traditional technique.

Secondly, in the post-processing stage, we analyze and point out that the insufficient
accuracy of two-dimensional U-Net segmentation mostly occurs in slices with less brain
tissue, particularly the slices at the edge of the brain tissue. In other words, the disadvantage
of 2D segmentation compared with 3D segmentation mainly occurs in slices with less brain
tissue. However, for the sagittal plane, cross section, and coronal plane, the edge of the
brain in one of the coordinates may be the middle position of the brain in another or two
coordinates. In this way, we comprehensively use the segmentation results of different
sections for fusion, that is, the weighted superposition of the classification probability
value of each pixel, so as to obtain a better three-dimensional segmentation result. In this
way, the calculation amount of directly using the three-dimensional U-Net network can be
significantly reduced, and the approximate accuracy can be achieved.

In addition, we conducted comparisons and tests for multi-input U-Net networks.
Specifically, we compared three multi-input networks after the gradient map, using the
input image form. One network followed the common approach, while the other two
networks considered different levels of structural complexity. The conclusion revealed that
all nodes exhibited some degree of performance redundancy. Furthermore, we found that
training multiple inputs separately and sharing a decoding link during the coding stage
proved to be an efficient approach.
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The proposed method achieves superior segmentation results through a series of
processing steps while reducing computational requirements. It has been successfully
implemented in the neuronavigation system and utilized in numerous accurate navigation
treatment studies at Nanjing Brain Hospital. Real-time performance and accuracy of
segmentation have been validated, demonstrating promising practical prospects.

In the remainder of this paper, we first provide a global view of our brain extraction
method in Section 2.1, then give detailed descriptions of innovative aspects in three separate
subsections, and finally verify the performance of the model through experiments on a
brain MRI dataset.

2. Materials and Methods
2.1. Network Architecture

As it is widely acknowledged, U-Net incorporates a framework consisting of an
encoder and decoder that relies on convolutional kernels. Therefore, the segmentation
outcome would be significantly impacted by the size of the kernel. Restricted by the
computational burden and the need for local information extraction, the kernel size is
typically not significantly large. The dilated convolution algorithm has been proposed as a
means to address this contradiction. However, it should be noted that this approach may
result in the loss of local information, as not all points within the window are handled.
Additionally, it is important to consider that the size of the window cannot be unlimitedly
increased. In this study, we examine the utilization of clustering pre-processing techniques
to gather comprehensive intensity data from MRI images. Based on the analysis of pixel in-
tensity across the entire graph, the implementation of clustering pre-processing techniques
has the potential to mitigate the limitations associated with conventional kernel methods.
The classical K-means clustering algorithm will be employed in this study, as depicted in
Figure 1a. The initial 3D voxel tissue will be partitioned into six distinct categories based
on the conventional MRI processing software, SPM12 [32].

On the other hand, researchers have endeavored to enhance the efficacy of semantic
segmentation through various approaches, ranging from the framework and layers to
the intricate calculation methodology. For instance, the loss function is enhanced by
incorporating an additional penalty based on the logarithm of the edge of the mask. This
modification has the potential to enhance the performance of segmentation in edge areas.
Nevertheless, the experimental findings indicate that determining the scales of weighted
values is a challenging task, as they are highly sensitive to the data. It is also advisable to
concurrently train the edge information data with the original image data. Currently, in
the context of U-Net multi-input training, it is common practice to superimpose multiple
input data solely at the input layer. This results in the formation of a matrix of K × N ×M
prior to training. This processing appears to have limitations in effectively extracting
information from multi-input data. As depicted in Figure 1b, this study aims to compare
the conventional multi-input method with two innovative networks. The first network
trains two sets of data separately, each with its own encoder–decoder framework. In this
approach, the encoder layers and decoder layers between two inputs are fully connected.
The alternative approach involves training two input datasets using two distinct encoder
processes, while simultaneously utilizing a single decoder process.

In addition to other factors, enhancing the performance of 3D networks can be achieved
through straightforward dimensional extensions. However, it should be noted that 3D
networks generally require more computational resources, particularly in terms of memory.
Even when utilizing the purported 2.5D processing architecture [23], it is evident that the
average runtime is significantly longer compared to the traditional 2D approach. According
to the findings of the test results, the utilization of 3D information has been shown to
significantly enhance brain edge classification. In our study, it was observed that the 2DU-
Net classification model did not perform effectively at the boundary slices of the entire
brain. On the basis of the aforementioned, we propose a processing structure that combines
different 2D planes, as illustrated in Figure 1c. The 2D-U-Net method is implemented on
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the axial, coronal, and sagittal planes individually. Subsequently, the segmentation results
obtained from each plane are combined using a weighted addition approach, which takes
into account the proportion of brain tissue in each slice. Only two-dimensional U-Net
processing and low-computation fusion processing are implemented in our algorithm,
rendering it a dependable and efficient post-classification processing technique.

Based on the above framework, in the following three sections, we will make a detailed
analysis and introduction to cluster preprocessing, multi-input hybrid net, and dimensional
reduction reconstruction, which are the most innovative aspects of this study.
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2.2. Full Image Information Mining with a K-Means Cluster Preprocessing

The convolutional kernel serves as the fundamental computational unit in contem-
porary deep learning models. The determination of kernel size remains an issue that
requires resolution. The local convolution kernel makes it challenging to capture the overall
information of the entire image. Dilated convolution is a valuable technique for explicitly
modifying the field-of-view of filters and controlling the resolution of feature responses.
However, it still has limitations, as it may result in the loss of certain information. In
contrast, the traditional K-means algorithm may offer several advantages when applied to
MRI images:

(1) Reducing the impact of noise interference. Clustering can be employed as a
technique to effectively group low-amplitude noise, thereby mitigating its influence on the
outcomes of classification tasks.

(2) Minimization of amplitude variation within each category. Amplitude fluctuations
in pixels within the same tissue are an inevitable occurrence, and the utilization of clustering
techniques can effectively mitigate this amplitude variation, thereby enhancing the accuracy
of tissue classification.

In fact, numerous conventional techniques for brain tissue segmentation rely on
the utilization of clustering algorithms. The CAT module of SPM employs an iterative
approach to process brain tissue by means of clustering and registration, with the aim of
achieving tissue classification. Hence, in this research, the utilization of K-means clustering
is employed as the primary preprocessing technique for the classification of MRI images.
The brain tissue is divided into six distinct categories separately, as the SPM [32] did.

2.3. Hybrid-U-Net Framework

Currently, in the field of medical image segmentation, several researchers employ
a combination of CT, MRI, and other imaging modalities for hybrid training processing.
However, in many instances, acquiring diverse format data from testers poses a significant
challenge. In the present study, our objective was to utilize a two-dimensional gradient
map of the MRI image as supplementary data for hybrid training purposes.

Moreover, in the conventional multi-input hybrid network, it is common practice to
concatenate two input images at the input layer. This implies that two images are combined
into a single input dataset for subsequent training, as illustrated in Figure 2. It appears that
the traditional multi-input network is incapable of fully leveraging the distinct information
present in both images. In this paper, we examine two distinct hybrid U-Net frameworks
that incorporate the fusion of two input datasets at specific layers during the encoding and
decoding processes.
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As depicted in Figure 2, the U-Net architecture relies on the encoder–decoder pro-
cedure as its central framework. The DepthConcatenation, which occurs between the
encoding and decoding layers, can be interpreted as a branch. With the inclusion of
multiple image input layers, the hybrid U-Net model can have several potential network
architectures. Firstly, we propose a fully connected hybrid U-Net architecture. This archi-
tecture involves training two complete U-Net models, one for the input image and another
for the corresponding gradient image. At each step in the encoder–decoder procedure,
the layers between the two models are concatenated, as shown in Figure 3. DepthCon-
catenation layers are incorporated to establish a connection between the aforementioned
networks. Each layer of the DepthConcatenation process combines four images from both
networks, resulting in a fused representation.
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The aforementioned networks appear to be intricate and may possess certain short-
comings. First, the fully connected network’s skeletons were trained independently on
two input images. Secondly, this fully connected network may exhibit a significant level of
redundancy. Next, we examine an alternative framework that divides the training process
of two input images solely in the encoder section, while merging the decoder section of the
two networks, as illustrated in Figure 4. In the subsequent experiments, we will compare
the two proposed networks with the traditional input superposition network.
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2.4. Dimensionality Reduction U-Net for 3D MRI Data

The accuracy of current semantic segmentation in two-dimensional (2D) processing
is typically lower compared to the use of three-dimensional (3D) processing. This is
because 3D processing has the advantage of utilizing information from adjacent slices and
integrating a larger number of pixels, resulting in more precise judgments. Nevertheless,
as a result of the substantial expansion of 3D processing parameters, there is a notable
increase in both the duration of the training process and the memory resources needed
for processing. In fact, a significant body of test results suggests that the benefits of 3D
segmentation processing primarily lie in the boundary position, specifically in regions
with a lower proportion of brain tissue. The performance of 2D processing in this area is
hindered by the absence of auxiliary adjacent slice pixels.

In light of this phenomenon, we propose a method to enhance the segmentation
accuracy of 3D MRI data. This involves decomposing the entire dataset into two or three
mutually vertical 2D slice datasets. Each of these sets is then separately trained, and
the segmentation results are subsequently fused to improve accuracy. In reality, when
examining smaller sections of brain tissue in one plane, it is possible for the tissue to appear
more prominent in the other vertical plane. Therefore, combining segmentation results from
different planes can enhance the accuracy of 3D classification. As depicted in Figure 5a,
central slices in the coronal plane exhibit a greater proportion of brain tissue, as indicated
by the blue area. On the contrary, slices located at the upper edge of the transverse
plane (red area) exhibit a comparatively lower proportion of brain tissue pixels in the
corresponding slices. According to the results of semantic segmentation on a 2D dataset
in the transverse plane, it can be observed that the accuracy of semantic segmentation
decreases in the edge slices, as depicted in Figure 5b. This decrease in accuracy is identified
as the primary factor contributing to the insufficient accuracy of the 2D segmentation.
On the contrary, this particular region is part of a larger proportion of brain tissue in
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the coronal plane slices, leading to improved segmentation performance when using the
coronal 2D dataset, as depicted in Figure 5c. Therefore, this characteristic can be utilized to
integrate the outcomes of multiple 2D plane segmentations in order to enhance the overall
segmentation performance.
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Figure 5. Comparison of two-dimensional U-Net effects of marginal region voxels under different
profiles. (a) The position of the upper edge region voxel (in red) of the transverse section in the
two-dimensional coronal section (in blue). (b) Poorly segmented two-dimensional U-net results for
edge transverse plane images; the left blue mask shows the poor predicted result with U-Net, and the
right red mask shows the label. (c) Two-dimensional U-Net segmentation results in the coronal plane;
the left blue mask shows the predicted result with U-Net, and the right red mask shows the label.

Figure 6 illustrates the relationship between the segmentation accuracy of 2D slices
and the proportion of brain tissue pixels in the sagittal plane. The horizontal axis in this
figure represents the sequential numbering of 2D slices, ranging from 1 to 120. The blue
curve represents the proportion of brain tissue pixels in each specific slice, while the red
curve represents the F1 score of U-Net segmentation. It is evident that the accuracy of
semantic segmentation significantly increases as the proportion of brain tissue in the entire
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slice increases. On the contrary, the accuracy of semantic segmentation decreases when the
number of brain pixels in one slice is relatively low. This is typically observed in positions
with large or small slice serial numbers, which are located near the edge of brain tissue.
Hence, the multi-plane fusion architecture proposed in our previous study has the potential
to enhance the accuracy of 3D segmentation.
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Through the aforementioned analysis, it has been confirmed that the primary fac-
tor contributing to the decline in 2D semantic segmentation performance is the reduced
proportion of brain tissue at the periphery of the brain. Based on this assumption, the
results of pixel segmentation in various sections are integrated and computed using a 2D
approach. The softmax classification results are utilized as fundamental parameters, and
the proportion of brain tissue in the image is assigned a weight to generate new 3D data
representing probability values. The calculation method is presented as follows:

Pc = w1·P1 + w2·P2 + w3·P3, (1)

The symbol P1, P2 , P3 denotes the semantic segmentation prediction results obtained
from the sagittal, transverse, and coronal planes. The symbol w1, w2 , w3 indicates the
weighted values, which are calculated based on the normalized proportion of brain tissue
in each section. The main prediction value is attributed to the section with a relatively
higher proportion of brain tissue for a specific pixel.

3. Results
3.1. Datasets

The algorithm under consideration was assessed using benchmark datasets obtained
from the LONI Probabilistic Brain Atlas Project (LPBA40, https://www.loni.usc.edu/
research/atlases, accessed on 1 December 2022) [33]. This dataset comprises 40 T1-weighted
MRI scans of individuals without any known health conditions. The spatial resolution of
the scans is 0.86 × 1.5 × 0.86 mm3. We employed a five-fold cross-validation approach
in all of our experiments. Cross-validation is used to protect a model from overfitting,
especially if the amount of data available is limited. In our test, there will be five subsets
with equal sizes. In each iteration, the model is trained on one specific subset and validated
on the others.

The evaluation of the output from all algorithms was conducted by comparing it to
the ground truth. The ground truth was obtained manually prior to this study and was
available for the benchmark datasets. Figure 7 shows a set of raw slices with benchmark

https://www.loni.usc.edu/research/atlases
https://www.loni.usc.edu/research/atlases
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labels, and we can see that there is a good match between the brain and label. This
dataset has been generally used for deep learning brain extraction algorithms [24,26,34],
which makes it suitable for testing the algorithm in this manuscript. According to the
segmentation results of previous studies, we can see good performance with UNet with
this dataset. In this manuscript, we will continue to test our algorithm with this dataset
and compare the results with previous studies.
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In this experiment, the ADAM optimizer will be used as the optimizer with a learning
rate of 1 × 10−3. All the experiments are performed using an NVIDIA Tesla V100 GPU
with 32 GB of memory. Models are trained and compared using the Deep Learning Toolbox
in Matlab (version 2020a).

3.2. Results

To assess the efficacy of the algorithms, the Dice overlap coefficient was employed to
compare the predicted brain mask (P) with the ground truth mask (R) that was manually
extracted. The Dice coefficient was calculated using the following formula:

D =
2|P ∩ R|
|P|+ |R| =

2TP
2TP + FN + FP

(2)
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The terms TP, FP, and FN represent the true-positive, false-positive, and false-negative
rates, respectively. The symbol denotes the process of summing over all the elements. We
additionally present specificity and sensitivity as metrics for comparing algorithms. Sensi-
tivity represents the ability of brain extraction methods to correctly recognize brain tissue,
and specificity represents the ability of brain extraction methods to correctly recognize
non-brain tissues, which are calculated using the following formulas:

Fspecificity =
TN

TN + FP
(3)

Fsensitivity =
TP

TP + FN
(4)

Table 1 presents the outcomes of our proposed approach in comparison to several
alternative methods across the evaluated datasets. For comparison, the results of the
classical BET algorithm as well as the recently proposed Auto-U-Net are given, which are
taken from [23]. Our algorithm showed the highest Dice coefficients among all methods,
with an increase of about 0.32% over the Auto-U-Net methods in the LPBA40 dataset. The
improvement in performance was achieved through the proposed pre-processing hybrid
training and 2D combination framework, which is named PHC-U-Net for short in the
following part of this manuscript.

Table 1. The mean and standard deviation of the three evaluations of the public dataset LPBA40 with
different brain extraction methods.

Method Dice Sensitivity Specificity

BET 94.57 (±0.02) 98.52 (±0.005) 99.24 (±0.01)
U-Net 96.79 (±0.004) 97.22 (±0.01) 99.34 (±0.002)

Auto-U-Net 97.73 (±0.003) 98.31 (±0.006) 99.48 (±0.001)
DeepLabV3+ 97.72 (±0.005) 98.23 (±0.004) 99.36 (±0.002)

SegNet 96.92 (±0.003) 97.98 (±0.003) 99.33 (±0.001)
Preprocessing-U-Net 97.69 (±0.005) 98.27 (±0.007) 99.39 (±0.002)

Prepro-Hybrid1-U-Net 97.68 (±0.004) 98.28 (±0.003) 99.38 (±0.003)
Prepro-Hybrid2-U-Net 97.76 (±0.003) 98.33 (±0.004) 99.49 (±0.005)
Prepro-Hybrid3-U-Net 97.72 (±0.002) 98.29 (±0.003) 99.41 (±0.004)

Prepro-Hybrid2-U-Net with
2D combination (PHC-U-Net) 98.05 (±0.005) 98.52 (±0.004) 99.51 (±0.002)

The utilization of cluster preprocessing in U-Net demonstrates a notable enhancement
of 0.9% compared to the conventional approach. This finding provides evidence that reduc-
ing the pixel amplitude distribution through cluster preprocessing significantly improves
the effectiveness of U-Net. Subsequently, a comparison was conducted to assess the impact
of employing three distinct multi-input networks following preprocessing. Hybrid 1 is
the traditional input layer fusion method (Figure 2). And hybrid 2 encodes separately
while sharing one decoding network (Figure 4). Then, hybrid 3 trains the two input images
separately in the entire encoding and decoding net, connecting these two nets through
deep connections (Figure 3).

The test results of the three different hybrid nets show that the second hybrid mode
exhibits the best performance. According to our previous analysis, the performance of
the first net is insufficient because it only concatenates the images at the input layer. The
primary factor contributing to the lack of significant improvement in the performance of
the third mode could be attributed to the separate training of the two constructed networks,
which may have hindered effective fusion.

Finally, using two-dimensional combination processing can reduce the error in the
edge region segmentation, which helps to further improve the segmentation accuracy.

For ease of observation, Figure 8 shows the quantitative comparisons between our
methods and other skull-striping algorithms according to the results of Table 1. As we can
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see, the proposed method resulted in the highest Dice score with the testing datasets and
outperformed the traditional U-Net and BET. Similar results to Auto-U-Net can be achieved
with the proposed K-means preprocessing, whereas the proposed algorithm has a lower
computational burden than Auto-U-Net. Both hybrid processing and two-dimensional
combination techniques have been found to enhance performance. Consequently, the
PHC-U-Net model yields the highest level of performance.
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With respect to [35], the gradient map of the pre-processed image was utilized as
an additional input image, encompassing the grayscale trends of the pixels. The test
results indicate that the utilization of a two-input hybrid net can enhance the amount of
information available for training purposes. We additionally conduct tests on various other
images, including the edge map, for hybrid training purposes. However, the results show
no improvement in performance but a certain decline. The reason for this phenomenon
could be attributed to the fact that the information obtained through the convolution
kernel is more comprehensive compared to edge detection. Consequently, the conventional
edge detection method may result in the loss of certain information. Figure 9 presents
a comparison of the predicted outcomes obtained from three different models: U-Net,
U-Net with K-means as a preprocessing step, and a two-dimensional hybrid U-Net model.
It can be seen that the performance of pre-processed U-Net is significantly better than
that of original U-Net, which can effectively reduce the mistaken ‘holes’ in the prediction
results. Meanwhile, the performance of the hybrid network can be further enhanced by
incorporating gradient images in specific edge regions. In this slice, the performance
improvement of the 2D combination is negligible.

To demonstrate the efficacy of the two-dimensional combination algorithm, a com-
parison is made between the outcomes of U-Net, U-Net with K-means as a preprocessing
step, a two-dimensional hybrid U-Net network, and the proposed PHC-U-Net algorithm,
as depicted in Figure 10. The prediction accuracy gradually increases with each processing
step, and finally, the overall PHC-U-Net framework can greatly alleviate the problem of
segmentation ability degradation caused by insufficient pixel units at edge areas.
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Figure 9. The predicted masks superimposed on MRI data in the coronal plane. These four images
show the improvement of the predicted brain mask in different steps of the proposed algorithm.
(a) The predicted brain mask with the original U-Net, and several deficiencies are marked with boxes
in yellow. (b) The prediction performance is improved with K-means preprocessing, whereas one
can still see the drop-off at the edges of the brain. (c) The image demonstrates the enhancement of
the edge area through the utilization of a hybrid net, which can be seen within the red box. (d) The
overlay of the referenced label mask onto the MRI data.

The proposed method is essentially a 2D U-Net model and yields low computational
costs. The model parameter amount of the algorithm in this paper is less different from
that of conventional UNet, about 40% of the parameter amount of Auto-U-Net, and about
10% of 3D U-Net. In terms of test time, the length of the processing time is 4.7 s, about 45%
of the Auto-U-Net. As to memory usage, under the selected mini-batch size, the occupied
memory of our algorithm is also significantly lower than that of 3D U-Net and Auto-U-Net.
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Figure 10. Predicted masks overlaid on MRI data (transverse section). (a) The brain mask predicted
using the original U-Net model. (b) The improvement in prediction performance achieved through
K-means preprocessing. (c) The enhancement in the edge area achieved by employing a hybrid net.
(d) The good performance obtained using the PHC-U-Net model. (e) The superimposed reference
label mask on the MRI data.
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4. Discussion

Compared with the traditional brain segmentation methods, the UNET-based methods
obtain the features of images through training without the need to extract features manually.
Meanwhile, UNET methods also do not need image registration, which is almost a necessary
process in traditional segmentation methods. For UNET methods, some recent articles have
optimized the performance by changing the encode and decode modules or adding some
new deep learning frameworks with UNET. In this paper, we try to provide a more basic
optimization idea, that is, how to improve the performance of two-dimensional processing
through preprocessing, postprocessing methods, and a simple multi-input network to
obtain a better three-dimensional segmentation effect. This kind of method is applicable or
partially applicable to most UNET-based networks.

Based on the experimental results in Section 3, the dimensionality reduction UNET
network that we proposed is superior to several recently proposed deep learning methods
and some classical brain extraction technologies. We achieved the highest Dice coefficient
by striking a balance between performance and efficiency. This was achieved through the
utilization of clustering preprocessing, multi-input hybrid training, and postprocessing
dimensionality reduction on the standard dataset.

Although clustering methods have been widely used in traditional image matching
and segmentation, we first applied them to deep learning preprocessing, and their per-
formance showed a very significant improvement, reaching about 0.9%. This has very
important practical significance; that is, using very simple processing can obtain the ap-
proximate effect of complex network structure changes, which also confirms what nnUnet
proposed: that preprocessing is an important step in improving the performance of Unet.
The amplitude range of MRI data is relatively large, but for brain segmentation, such a fine
and complex pixel amplitude distribution is not required. On the contrary, a limited pixel
distribution will help the effect of brain segmentation. Other medical images may have
similar results, and we will continue to investigate them in subsequent studies.

When considering mixed input, it can be observed that the structure that shares
a common decoding part has better performance than the structure that connects all
the corresponding layers. This is also a very meaningful conclusion, because with the
development of UNET, there are unet+, unet++, and unet3+ network configurations, and
more and more nodes are connected together. However, for multi-input networks, there
is no evidence to support the conclusion that connecting more nodes will result in better
performance. As shown by our test data results, for a multi-input UNET structure, there
may be redundancy in the interconnection between the layers within the coding component,
and the effect of using the same decoder may be better.

In this paper, we also focus on dimensionality reduction processing, specifically using
2D Unet to approximate the results of 3D processing. This is important for some medical
institutions that do not have high-performance computers, and also helps to reduce the
complexity of the model, so as to continue to add other modules in subsequent studies.
As described in the article [23], UNET does not require a large structural change when
extended to a 3D network, but 3D networks usually have higher requirements on computing
resources, especially memory. We utilize three sets of two-dimensional networks to simulate
the impact of three-dimensional processing, which can effectively decrease the memory
requirements during processing.

5. Conclusions

In this manuscript, we present a novel framework that incorporates modifications
to the hybrid U-Net model for the purpose of brain tissue segmentation. The proposed
method incorporates three enhancements in the areas of preprocessing, hybrid framework,
and two-dimensional fusion. These improvements effectively reduce the network size
while maintaining a satisfactory level of segmentation accuracy. It should be noticed that
our proposed clustering preprocessing method and hybrid input framework have the
potential to serve as a general processing approach for a wide range of medical image deep
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learning segmentation methods. The utilization of a two-dimensional segmentation fusion
architecture can effectively mitigate the hardware requirements in scenarios involving
high-pixel and large-volume data. Additionally, this approach is beneficial for enhancing
training speed.

It is possible to deduce the subsequent conclusions briefly from the test results:
(1) The application of clustering for data preprocessing demonstrates a notable en-

hancement in brain tissue segmentation. The presence of grayscale variations within the
same tissue poses a challenge for deep learning classification. After the process of cluster-
ing, the grayscale values of the tissue undergo compression, resulting in a narrower range.
Consequently, the utilization of U-Net yields improved outcomes, particularly in terms of
reducing misclassification areas.

(2) When considering hybrid inputs, it was observed that the architecture that shared
a common decoding part of U-Net performed better than the architecture that connected
all corresponding layers. In essence, it is possible for redundancy to be present in the
interconnections between layers within the encoding component.

(3) The results of 2D section segmentation are integrated to form 3D data by consider-
ing the proportion of brain tissue. This combination approach demonstrates comparable
performance to the established three-dimensional U-Net method while also substantially
reducing computational complexity and hardware demands.

However, for the data on lesions or infants, the effectiveness of the method proposed
in this paper needs to be further tested in subsequent studies. In particular, reducing the
pixel gray distribution may affect the segmentation effect of this special brain tissue, and
may need to be optimized specifically, which will be considered in future studies.
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