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Abstract: (1) Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that
threatens the population health of older adults. However, the mechanisms of the altered metabolism
involved in AD pathology are poorly understood. The aim of the study was to identify the potential
biomarkers of AD and discover the metabolomic changes produced during the progression of the
disease. (2) Methods: Gas chromatography–mass spectrometry (GC–MS) was used to measure the
concentrations of the serum metabolites in a cohort of subjects with AD (n = 88) and a cognitively
normal control (CN) group (n = 85). The patients were classified as very mild (n = 25), mild (n = 27),
moderate (n = 25), and severe (n = 11). The serum metabolic profiles were analyzed using multivari-
ate and univariate approaches. Least absolute shrinkage and selection operator (LASSO) logistic
regression was applied to identify the potential biomarkers of AD. Biofunctional enrichment analysis
was performed using the Kyoto Encyclopedia of Genes and Genomes. (3) Results: Our results
revealed considerable separation between the AD and CN groups. Six metabolites were identified
as potential biomarkers of AD (AUC > 0.85), and the diagnostic model of three metabolites could
predict the risk of AD with high accuracy (AUC = 0.984). The metabolic enrichment analysis re-
vealed that carbohydrate metabolism deficiency and the disturbance of amino acid, fatty acid, and
lipid metabolism were involved in AD progression. Especially, the pathway analysis highlighted
that l−glutamate participated in four crucial nervous system pathways (including the GABAergic
synapse, the glutamatergic synapse, retrograde endocannabinoid signaling, and the synaptic vesicle
cycle). (4) Conclusions: Carbohydrate metabolism deficiency and amino acid dysregulation, fatty
acid, and lipid metabolism disorders were pivotal events in AD progression. Our study may provide
novel insights into the role of metabolic disorders in AD pathogenesis and identify new markers for
AD diagnosis.

Keywords: Alzheimer’s disease; metabolomics; serum metabolic change; metabolic pathway

1. Introduction

Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative diseases
and has become one of the most challenging diseases in modern society. It is character-
ized by progressive and irreversible cognitive deterioration, memory loss, and behavioral
disturbances, ultimately leading to death [1]. Currently, approximately 45 million people
worldwide are affected by AD, and this number is predicted to triple by 2050 [2]. Individu-
als suffering from AD require constant human and medical care, which imposes a heavy

Brain Sci. 2023, 13, 1459. https://doi.org/10.3390/brainsci13101459 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci13101459
https://doi.org/10.3390/brainsci13101459
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0002-9425-2967
https://doi.org/10.3390/brainsci13101459
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci13101459?type=check_update&version=1


Brain Sci. 2023, 13, 1459 2 of 16

global burden on public health and socio-economic development [3]. Despite the remark-
able achievements in AD research, the molecular mechanisms underlying its pathogenesis
and progression are still not completely understood. No efficient medical treatment to
change the course of the disease is available for AD dementia [4]. Treatments have only
been approved for the dementia stage of the disease and provide modest symptomatic
benefit but no slowing of progression. Consequently, further study of the pathogenesis is
needed to search for an effective therapy for AD.

The complex and heterogeneous nature of AD pathology has been extensively studied,
yet our understanding remains incomplete. The defining pathological hallmarks of AD are
accumulations of amyloid β (Aβ) and hyperphosphorylated tau, leading to axonal death,
synaptic dysfunction, and ultimately cortical atrophy [5,6]. Moreover, other pathological
events also contribute to the disease’s pathology, such as increased levels of reactive oxygen
species, cytokine release, and the activation of microglia and astrocytes [7]. While these
pathological changes are well documented, they do not fully capture the broad spectrum
of AD pathology. Recent literature reveals an emerging focus on metabolic dysregulation
as a significant component of AD [8], suggesting that AD might also be viewed as a
metabolic disease.

Current evidence demonstrates that AD is associated with compromised glucose uti-
lization and diminished responsiveness to insulin in the brain [9]. Thus, it is important to ex-
plore metabolic alterations throughout the disease trajectory to understand AD progression
better. Metabolomics has emerged as a powerful tool in systems biology for investigating
the molecular basis of diseases. In particular, mass-spectrometry-based metabolomics can
elucidate disease mechanisms by analyzing and quantifying metabolite changes [10,11].
A growing body of evidence has shown that metabolic perturbations in various path-
ways, such as cholesterol metabolism, energy metabolism, glycine, serine and threonine
metabolism, and glutamine and glutamate metabolism, may mediate the occurrence of
Alzheimer’s pathology [12,13]. However, most studies to date have focused primarily on
identifying the plasma markers of AD [14,15], leaving a gap in our understanding of how
AD affects metabolism more broadly. In light of this, we aim to enhance our understanding
of how metabolism can be affected by AD.

In this study, we aimed to address this gap by employing an untargeted metabolomics
approach to profile the serum metabolome in a sample of 173 individuals with AD. We used
receiver operating characteristic curves (ROC) and least absolute shrinkage and selection
operator (LASSO) logistic regression to identify potential novel diagnostic markers of AD.
Further, we sought to uncover the biochemical pathways implicated at different stages of
AD, from very mild to severe. Our work not only identified new markers for AD diagnosis
but also provided novel insights into the role of metabolic alterations in AD pathology.
Our findings contributed to the growing body of literature on AD as a metabolic disease
and underlined the importance of investigating metabolic changes to fully understand the
progression and pathology of AD.

2. Materials and Methods
2.1. Study Population

The experiment samples were composed of 88 patients with AD and 85 normal controls
(CN). All samples were recruited from the Department of Geriatrics, The First Affiliated
Hospital of Chongqing Medical University. This study was approved by the Ethics Com-
mittee of The First Affiliated Hospital of Chongqing Medical University (approved on
22 July 2014; approval no. 2014-15-2). All participants gave written informed consent
before participating in the study. All subjects were diagnosed with “probable AD” on
the basis of the 2011 National Institute on Aging-Alzheimer’s Association (NIA–AA)
criteria [16]. Neuropsychological battery was performed in patients with AD, including a
Chinese version of the Mini-Mental State Examination (MMSE), an auditory verbal learn-
ing test, a clock drawing test, a Boston naming test, trail marking tests A and B, a digit
span test, a neuropsychiatric inventory, geriatric depression scale scoring, and a Hachinski
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ischemic score. The disease severity was graded according to the global score of the Clinical
Dementia Rating (CDR). The extent of dementia is categorized into four degrees: very
mild (CDR 0.5), mild (CDR 1), moderate (CDR 2), or severe (CDR 3) [17]. Participants
with an MMSE score > 28 and without complaint of memory decline were recruited as
the CN group. Candidates with one of the following statuses were excluded: (1) patients
had any pre-existing acute physical diseases, psychiatric comorbidities, or other mental
disorders; (2) patients had illicit drug use or alcohol abuse; or (3) patients had a history
of stroke, severe renal or liver dysfunction, or malignancy. The clinical characteristics of
patients are shown in Table 1.

Table 1. Characteristics of AD patients and CN people.

Characteristics Total AD Control p

No. of subjects 173 88 85
Age 73.89 ± 9.41 74.56 ± 9.31 73.20 ± 9.52 0.345

Gender
Female 97 (56.1) 47 (53.4%) 50(58.8%) 0.541
Male 76 (43.9) 41 (46.6%) 35 (41.2%)

MMSE 20.51 ± 9.89 12.27 ± 7.28 29.04 ± 0.87 0.000
CDR
0.5 25
1 27
2 25
3 11

2.2. Chemicals

All the chemicals and solvents were analytical or HPLC-grade. Methanol, acetoni-
trile, pyridine, n-hexane, methoxylamine hydrochloride, N, and O-Bis (trimethylsilyl)
trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS) were purchased from
CNW Technologies GmbH (Düsseldorf, Germany), while the L-2-chlorophenylalanine was
from Shanghai Hengchuang Bio-Tech Co., Ltd. (Shanghai, China).

2.3. Treatment of Serum Samples

Venous blood (5 mL) was collected in evacuated collection tubes without an antico-
agulant and then transported to the laboratory within 1 h. After resting for 1 h at room
temperature, the blood samples were centrifuged at 3000 rpm for 10 min. We collected
the supernatant and then transferred it into a sterile centrifuge tube. The extract was
centrifuged at 12,000 rpm and 4 ◦C for 10 min. After centrifugation, 0.2 mL of the extract
was deposited in a centrifuge tube. The samples were kept at −80 ◦C and thawed at room
temperature before analysis. A quantity of 10 µL of 2-Chloro-L-phenylalanine (0.3 mg/mL)
was added into a 1.5 mL EP tube with 50 µL of the sample and dissolved in methanol as
the internal standard. The samples were mixed using vortexing for 10 s. Then, 150 µL
of the ice-cold mixture of methanol and acetonitrile (2/1, v/v) was added and vortexed
for 1 min, ultrasonicated at ambient temperature (25 ◦C to 28 ◦C) for 5 min, and stored at
−20 ◦C for 10 min. The extract was centrifuged at 12,000 rpm and 4 ◦C for 10 min. The
quality control (QC) sample was prepared by mixing aliquots of all samples into a pooled
sample. An aliquot of the 130 µL supernatant was transferred into a glass sampling vial
for vacuum-drying at room temperature. In addition, 80 µL of 15 mg/mL methoxylamine
hydrochloride in pyridine was added. And then, the resulting mixture was vortexed
vigorously for 2 min and incubated for 90 min at 37 ◦C. An 80 µL volume of BSTFA (with
1% TMCS) and 20 µL of n-hexane were added to the mixture, followed by vortexing it
vigorously for 2 min, and then derivatized at 70 ◦C for 60 min. The samples were placed at
room temperature for 30 min before GC–MS analysis.
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2.4. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis

The GC–MS analysis samples were run through an Agilent 7890B gas chromatography
system with an Agilent 5977A MSD system (Agilent Technologies Inc., Santa Clara, CA, USA).
The separation was carried out in a 30 m × 0.25 mm DB-5MS (film thickness 0.25 µm,
Agilent J & W Scientific, Folsom, CA, USA) fused silica capillary column. The carrier gas
was helium (99.999%), and the flow rate was 1.5 mL/min. The injector temperature was
260 ◦C, the injection volume was 1 µL, and the sample injection was carried out in splitless
mode. The solvent delay time was set to 5 min. The column temperature started at 60 ◦C,
ramped up to 125 ◦C at a rate of 8 ◦C/min, to 210 ◦C at a rate of 5 ◦C/min, to 270 ◦C
at a rate of 10 ◦C/min, to 305 ◦C at a rate of 20 ◦C/min, and finally held at 305 ◦C for
5 min. The temperatures of the MS quadrupole and ion source (electron impact) were set to
150 ◦C and 230 ◦C, respectively, and the collision energy was 70 eV. The mass spectrometry
data were obtained in full-scan mode with an m/z range of 50–500. The QCs were injected
every 15 samples throughout the run to provide a set of data from which repeatability
could be assessed.

2.5. Metabolite Data Processing and Statistics Analysis

The GC–MS chromatographic peaks were extracted, deconvoluted, and identified
using the Automated Mass Spectral Deconvolution and Identification System software
and Agilent ChemStation (AMDIS, version 2.71). The compounds were identified by com-
paring the MS fragmentation patterns (the mass-to-charge ratio and the relative intensity
of the mass spectra against a reference ion) and the respective GC retention time to an
in-house MS library established using chemical standards. The relative concentrations of
metabolites were extracted via the peak height of the most abundant fragmented ion mass
using the MassOmics XCMS R-based script. The metabolite levels were first normalized
using the abundance of the internal standard (2-Chloro-L-phenylalanine). Subsequently,
median centering was performed using 21 QC samples to correct for batch variation. For
every metabolite in the normalized dataset, Student’s t-test was applied to compare the
expression levels in the AD and CN groups. The t-test was applied to analyze the dif-
ferences between the two groups, while the Wilcox test and the Kruskal–Wallis (K–W)
test were used to analyze for abnormally distributed variables. Significantly altered
metabolites in AD were considered when the FDR < 0.05. Principal component analysis
(PCA) was performed using MetaboAnalyst v4.0 (http://www.metaboanalyst.ca (accessed
on 1 August 2021)). The area under the receiver operating characteristic (ROC) curve
was calculated using the pROC R package (version 1.18.0). The graphic illustrations of
heatmaps, line graphs, boxplots, correlation analysis, and chord plots were created using
the ggplot2 and GOplot R-packages [18]. The metabolic profiles were fit into LASSO logis-
tic regression using the glmnet package. In order to evaluate the ability of the LASSO model
to identify AD, ROC analysis was completed using the pROC package on the test set and
combined set. All statistical calculations were generated in the R software (Version 3.6.3).
Pathway Activity Profiling (PAPi), a network algorithm, was used to quantify the metabolic
pathway activities [19]. A p-value < 0.05 or adjusted p-value (q-value) < 0.05 was considered
statistically significant.

3. Results
3.1. Metabolite Profiling of AD

An untargeted metabolomic analysis was conducted using serum samples in order to
evaluate the differences in the serum metabolites between patients in the AD and CN groups.
The average age of the studied population was 73.89 years, with females making up 56.1% of
the cohort. The clinical characteristics of the enrolled subjects are presented in Table 1. There
were no statistically significant differences in age and sex distributions between patients in
the AD and CN groups. Using our in-house database, 211 metabolites were identified. As
shown in Figure 1A, the PCA score plots demonstrated considerable separation between
the AD group and CN group, indicating that it was useful for distinguishing metabolic

http://www.metaboanalyst.ca
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biomarkers. Of the 211 metabolites identified, the concentrations of 62 were found to be
significantly different between AD and CN patients. Among these significant differential
metabolites, there were 18 belonging to amino acids, 12 belonging to carbohydrates and
carbohydrate conjugates, and 7 belonging to lipids and lipid-like molecules (Supplementary
Table S1). The heatmap illustrates the top 50 metabolites identified in our study. The
metabolites were selected based on having the 50 lowest p-values (Figure 1B).
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(A) The principal components analysis (PCA) score plots show the considerable separation be-
tween AD (n = 88) and CN (n = 85) groups. (B) Heatmap, top 50 different metabolite expressions
(Student’s t-test).

3.2. Identifying Potential Diagnostic Biomarkers for AD

Based on the significant differential metabolites, we explored potential diagnostic
biomarkers for AD. Six metabolites, including (S)−3,4−dihydroxybutyric acid, behenic
acid, homovanillic acid, L−norleucine, 2-naphthol, and mannobiose, exhibited signifi-
cant predictive power for AD, as demonstrated by an AUC of greater than 0.8 (Figure 2,
p < 0.001). To further elucidate the clinical relevance of the six metabolites, we inves-
tigated the correlation of metabolites with the MMSE score and the CDR. Interestingly,
the (S)−3,4−dihydroxybutyric acid and L−norleucine levels were positively correlated
with the MMSE score, and behenic acid homovanillic acid, 2−naphthol, and mannobiose
were negatively correlated with the MMSE score (Figure 3). Correspondingly, the level
of the six metabolites was also statistically different in patients at different clinical stages
(Figure 3, p < 0.001). The six metabolites constituted a strong tool for differentiating between
AD and CN groups within both the female and male samples (Supplementary Figure S1).
The results suggested that these metabolic markers were not influenced by the gender of
the individual. Therefore, based on our findings, the six metabolic biomarkers could be
highly effective as blood markers for AD.

3.3. Construction of the LASSO Logistic Regression Model

We constructed a LASSO logistic regression model to determine whether the samples
belonged to the CN group or AD group. The metabolomics data were randomly divided
into a training set (n = 86) and a test set (n = 87). The purpose of the training set was to
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identify potential diagnostic metabolites. The testing set was used to verify the classification
efficiency of the model. The combined set refers to the merging of the training set and
testing set. Three potential predictors in the training cohort were identified and were
featured with non-zero coefficients in the LASSO logistic regression model (Figure 4A,B).
Next, the ROC curve measures were used to evaluate the predicted performance of the
LASSO regression model. The AUC of the three-metabolite-based model was 0.984 in the
test set and 0.989 in the combined set (Figure 4C,D). This result indicated that a panel of
three metabolites (MG (18:0/0:0/0:0), (S)-3,4-Dihydroxybutyric acid, and behenic acid) was
able to differentiate AD patients from CN patients.
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cluding L−glutamine and L−asparagine. MG (0:0/18:0/0:0) significantly increased, and
L−Pipecolic acid decreased at the moderate stage. Lastly, the malic acid, a TCA cycle
intermediate, was dysregulated by the end severe stage of the disease.

Brain Sci. 2023, 13, x FOR PEER REVIEW 7 of 16 
 

 
Figure 3. Correlation analysis of the potential biomarker metabolites with cognitive function and 
disease severity. (A–F) Correlation between potential biomarkers and MMSE score. Correlation co-
efficients were based on Spearman’s correlation analysis. (G–L) Distribution of the levels of metab-
olite at different clinical stages of AD. Overall differences between groups were tested with the K–
W test. Asterisks indicate significant vs. CDR 0 groups; *** p < 0.001; **** p < 0.0001. MMSE, mini-
mental state examination. CDR, Clinical Dementia Rating. 

Figure 3. Correlation analysis of the potential biomarker metabolites with cognitive function and
disease severity. (A–F) Correlation between potential biomarkers and MMSE score. Correlation coef-
ficients were based on Spearman’s correlation analysis. (G–L) Distribution of the levels of metabolite
at different clinical stages of AD. Overall differences between groups were tested with the K–W test.
Asterisks indicate significant vs. CDR 0 groups; *** p < 0.001; **** p < 0.0001. MMSE, mini-mental
state examination. CDR, Clinical Dementia Rating.
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Figure 4. Metabolite selection using the LASSO model. (A) The LASSO coefficient profiles of
whole features. Choose the best parameter (λ) in the LASSO model and use the lowest standard
five-fold cross-validation. (B) Ten-fold cross-validation for tuning parameter (lambda) selection
in the LASSO regression model. A vertical line was drawn at the value selected using five-fold
cross-validation, where the best lambda resulted in three features with non-zero coefficients. (C) ROC
curve analysis of the test set. (D) ROC curve analysis of the combined set.

3.5. Discovery and Comparison of Dysregulated Metabolic Pathways across Various Phases of
Dementia Severity

The identified serum metabolites were used to investigate the differences in metabolic
activity between the different disease stages (Figure 6A). The most significantly altered
metabolic pathways were related to amino acid metabolism, carbohydrate metabolism,
lipid metabolism, cofactors, and vitamins metabolism. The amino acid biosynthesis was
upregulated in AD patients compared to CN patients. However, valine, leucine, and
isoleucine biosynthesis showed downregulation from the very mild to the moderate stage,
and upregulation with severe dementia. Interestingly, unlike the downregulation of the ma-
jority amino acid metabolism pathways, we observed an upregulation of the d-glutamine
and d−glutamate metabolism in patients with AD. Figure 6B shows the association be-
tween differential metabolites and their corresponding metabolic pathways. In addition,
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the pathway enrichment analysis showed some pathways of the nervous system were
significantly enriched. The synaptic vesicle cycle and GABAergic synapse pathways were
downregulated, and retrograde endocannabinoid signaling was enhanced in dementia
patients. We also explored the metabolites involved in the significant pathways of the
nervous system (Figure 6C). L−glutamate was involved in four significant nervous sys-
tem pathways, including the GABAergic synapse, the glutamatergic synapse, retrograde
endocannabinoid signaling, and the synaptic vesicle cycle.

Brain Sci. 2023, 13, x FOR PEER REVIEW 9 of 16 
 

3.4. Identifying Specific Differential Metabolites at Different Stages of Dementia 
To investigate the changes in serum metabolites at different stages of dementia, the 

disease stages were categorized into “very mild”, “mild”, “moderate”, and “severe”, 
based on the CDR. Then, we identified the metabolites that varied significantly from the 
very mild to severe stages of the disease. As shown in Figure 5, the most significant 
changes in the metabolite concentrations occurred during the very mild to the mild stage. 
The serum metabolites that appeared disordered at the very mild dementia stages were 
mainly associated with lipid and fatty acid metabolism. Nine metabolites demonstrated a 
significant difference in their concentration levels at the mild dementia stage. Carbohy-
drates were the most abundant among the identified metabolites, followed by amino ac-
ids, including L−glutamine and L−asparagine. MG (0:0/18:0/0:0) significantly increased, 
and L−Pipecolic acid decreased at the moderate stage. Lastly, the malic acid, a TCA cycle 
intermediate, was dysregulated by the end severe stage of the disease. 

 
Figure 5. The heatmap shows the differences in the serum metabolome and associated metabolic 
pathways in different groups based on disease stage. The relative concentrations of serum metabo-
lites are illustrated via a log2 fold change (log2 FC). Red color blocks represent higher metabolite 
levels in the dividend groups than the divisor groups, whereas green color blocks represent lower 
metabolite levels in the dividend groups than the divisor groups. Only the metabolites with a p-
value less than 0.05 and a q-value less than 0.05 (false discovery rate) are displayed. Based on the 
CDRs, the disease stages were classified into “very mild”, “mild”, “moderate”, and “severe”. 

Figure 5. The heatmap shows the differences in the serum metabolome and associated metabolic
pathways in different groups based on disease stage. The relative concentrations of serum metabolites
are illustrated via a log2 fold change (log2 FC). Red color blocks represent higher metabolite levels in
the dividend groups than the divisor groups, whereas green color blocks represent lower metabolite
levels in the dividend groups than the divisor groups. Only the metabolites with a p-value less than
0.05 and a q-value less than 0.05 (false discovery rate) are displayed. Based on the CDRs, the disease
stages were classified into “very mild”, “mild”, “moderate”, and “severe”.
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4. Discussion

In this research, we employ an untargeted metabolomics and bioinformatics approach
to identify dysregulated metabolic pathways and discover new potential AD biomarkers.
Serum metabolomic analysis demonstrates that the global metabolite profile alternates
when comparing the CN group and patients at different disease stages. Pathway enrichment
analysis shows that sugar metabolism, amino acid metabolism, lipid metabolism, the
TCA cycle, and nervous system pathways are significantly dysregulated in AD. A new
diagnostic model of AD is also constructed using the LASSO logistic regression model with
high accuracy.

In recent years, AD has been increasingly considered a metabolic disease, and some
scholars even proposed that AD is a kind of type 3 diabetes [20]. Our study visualizes the
possible mechanism of metabolism alteration in AD in Figure 7. First of all, the neurons of
AD patients usually cannot catabolize glucose efficiently, so glucose metabolism deficiency
becomes a notable characteristic of AD. The results demonstrate that the accumulation
of carbohydrates, such as d−galactose, d−arabitol, glycerol, d−fructose, and erythritol,
was observed at the mild dementia stages, and the carbohydrate metabolism pathway is
significantly downregulated in dementia patients, indicating carbohydrate utilization is
reduced in AD patients. Previous studies demonstrated that AD patients showed decreased
concentrations of central-nervous-system-specific glucose transporters [21]. Consistently,
positron emission tomography studies in AD patients report cerebral glucose utilization
being impaired decades before the onset of histopathological and clinical features [22]. Thus,
disturbed glucose metabolism is likely to indicate the progression of AD pathology [23].
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When glycolysis is impaired, glucose no longer sustains the energetic demand of the
brain. Consequently, the neurons affected by AD may become reliant on the catabolism of
amino acids and fatty acids to maintain cellular ATP levels. This is consistent with a trend
towards the upregulation of amino acid biosynthesis and a lower serum level of amino
acids in the AD group of our study. Particularly, L-valine and L-isoleucine, which belong
to branched-chain amino acids (BCAAs), are significantly lower in AD. We speculate that
brain cells use the carbon skeleton of BCAAs as auxiliary fuel to support the failing energy
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metabolism in AD [24]. Therefore, the concentration of BCAAs in the blood is significantly
lower. However, we find the degradation of BCAAs is also downregulated in AD. This
may be attributable to the higher energy demand, and the cerebrum decreases BCAA
degradation in the periphery to maintain the appropriate levels of BCAAs. Furthermore,
other studies reported that BCAAs could enter the TCA cycle via acetyl CoA or succinyl
CoA and release large amounts of ammonia, leading to neuronal cell death [25]. This may
be the reason why previous research found lower BCAA concentrations were associated
with worse cognitive function and a higher risk of dementia [26,27]. Further studies
are warranted to determine the causes of the changes in BCAA levels and the effects on
the brain.

As the increased amounts of ammonia released from BCAA catabolism could lead
to neuron death, neurons may counteract this by expressing high levels of the glutamine
synthetase enzyme to turn ammonia into glutamine. Our results indicate that L−glutamine
is significantly increased at the mild dementia stage, and the d-glutamine and d-glutamate
metabolism pathways are upregulated at all stages of the disease. L−glutamate is involved
in the GABAergic synapse, the glutamatergic synapse, retrograde endocannabinoid sig-
naling, and the synaptic vesicle cycle. It is well known that glutamine and its closely
related neurotransmitter glutamate play a critical role in excitatory signaling in the central
nervous system (CNS). Altered glutamatergic neurotransmission has long been known
to be involved in the progression of AD. Previous studies have reported that impaired
glutamine metabolism as a pathological process occurs earlier than the presence of amyloid
plaque in AD [28,29]. Higher-circulating glutamine is associated with worse cognition
and increased risk of dementia and AD [13,30]. These findings are in line with our results;
glutamine may change at the mild stage of dementia and play an essential role in the
occurrence and development of the disease.

In addition to amino acid metabolism, brain metabolism seems to shift from primarily
aerobic respiration to fatty acid β-oxidation [31]. We find abnormal accumulations of
TCA cycle intermediates in AD, which may reflect TCA cycle and aerobic respiration im-
pairment. For example, the level of citric acid significantly increases in AD patients, and the
level of malic acid is higher at the severe stage of dementia. Similarly, a previous study also
found that there were more TCA cycle intermediates in the plasma of AD patients compared
to CN subjects [32]. An apparent disturbance of the TCA cycle metabolism is observed
in the brain of severe sporadic AD [33]. On the other hand, a trend of lipid deposition is
observed at the very mild stage of dementia in our research, such as cholesterol. Pathway
enrichment analysis indicates lipid metabolism is significantly dysregulated in AD. Two
fatty acids are higher at the very mild and mild stages of dementia. Consistently, abnormal
lipid metabolism has long been demonstrated to be involved in AD pathology [34,35]. It
has been suggested that Aβ accumulation could stimulate lipolysis, contributing to fatty
acid release and triggering lipid deposition [36]. Notably, a previous study reports that
the adipose tissue in AD began to undergo lipolysis to release free fatty acids for energy
production under energy-demanding conditions [37]. This disruption of the homeostasis
of lipid metabolism affects the production and clearance of β-amyloid and tau phosphory-
lation and induces neurodegeneration [36]. Further investigation is needed to explore the
underlying contributions of lipids and fatty acids to the progression of AD.

Furthermore, several changes are observed in the nervous system with AD. Retro-
grade endocannabinoid signaling is upregulated and the synaptic vesicle cycle and the
GABAergic synapse are downregulated in dementia patients. A previous study reported
that enhanced endocannabinoid signaling, particularly around the senile plaques, could
exacerbate synaptic failure in AD [38]. Amyloid-induced aberrations in synaptic activity
are one of the causes of synaptic toxicity in AD. Aβ oligomers reduced synaptic vesicle
recycling by impairing endocytosis and the formation of fusion-competent vesicles [39].
GABAergic dysfunction also plays a primary role in or is a compensatory response to
excitotoxicity, contributing to AD by disrupting the overall network function [40,41].
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Lastly, three metabolites are identified as potential AD diagnostic biomarkers us-
ing the LASSO logistic regression model. A classification model with an AUC of 0.984 is
established using MG (18:0/0:0/0:0), (S)-3,4-Dihydroxybutyric acid, and behenic acid.
(S)-3,4-Dihydroxybutyric seems to be a substitute for glucose as oxidative fuel during
starvation [42], and it is likely related to a reduced cerebral glucose metabolism. A pre-
vious study reported significantly higher levels of behenic acid were exhibited in the
parietal cortex of subjects with moderate AD [43]. MG (18:0/0:0/0:0) is a monoacylglycerol.
A previous study also reported that monoacylglycerols were elevated in the gray matter of
MCI and old dementia patients [44]. Our results demonstrate the changes in the behenic
acid and MG (18:0/0:0/0:0) in the brain tissue are also observed in the peripheral blood in
AD. Behenic acid and MG (18:0/0:0/0:0) may be potential candidates as blood biomarkers
to reflect alterations in the brain in AD. These biomarkers provide new opportunities
for clinical diagnosis and treatment; however, the underlying mechanisms of the three
shortlisted metabolites are not fully understood. Therefore, further profound research
is needed.

While our study provides novel insights into the metabolic alterations associated
with AD, there are limitations that should be taken into account. First, co-existing chronic
diseases, such as diabetes, could have an impact on metabolic profiles. We try to control for
this by excluding patients with known systemic diseases, but the presence of undiagnosed
conditions cannot be entirely ruled out. Second, demographic characteristics such as the
level of education, which can influence cognitive reserve and potentially affect disease
progression, are not accounted for in our analysis. Future studies could focus on addressing
these limitations and conducting more controlled experiments to understand the causal
relationships between these metabolic changes and AD.

In summary, the metabolomics-based analysis reveals that metabolic alterations have
already arisen at the very mild stages of dementia. The disruption of energy metabolism
may be at the core of a vicious cycle in AD, leading to a wide range of metabolic disorders,
including abnormal glucose metabolism, impairments in the TCA cycle, and the dysregula-
tion of amino acids, fatty acids, and lipids. Furthermore, a metabolic diagnostic model of
AD is constructed using the LASSO logistic regression, which could robustly differentiate
AD patients from CN patients. Our study identifies new markers for AD diagnosis and
highlights the role of metabolic changes in the progression of AD. The importance and
underlying processes of these findings should be confirmed in future studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/brainsci13101459/s1: Figure S1: The ROC curves of the six potential biomarkers in the
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AD patients.
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