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Abstract: Consciousness has been described as acting as a global workspace that integrates perception,
imagination, emotion and action programming for adaptive decision making. The mechanisms of
this workspace and their relationships to the phenomenology of consciousness need to be further
specified. Much research in this area has focused on the neural correlates of consciousness, but,
arguably, computational modeling can better be used toward this aim. According to the Projective
Consciousness Model (PCM), consciousness is structured as a viewpoint-organized, internal space,
relying on 3D projective geometry and governed by the action of the Projective Group as part of a
process of active inference. The geometry induces a group-structured subjective perspective on an
encoded world model, enabling adaptive perspective taking in agents. Here, we review and discuss
the PCM. We emphasize the role of projective mechanisms in perception and the appraisal of affective
and epistemic values as tied to the motivation of action, under an optimization process of Free Energy
minimization, or more generally stochastic optimal control. We discuss how these mechanisms
enable us to model and simulate group-structured drives in the context of social cognition and
to understand the mechanisms underpinning empathy, emotion expression and regulation, and
approach–avoidance behaviors. We review previous results, drawing on applications in robotics and
virtual humans. We briefly discuss future axes of research relating to applications of the model to
simulation- and model-based behavioral science, geometrically structured artificial neural networks,
the relevance of the approach for explainable AI and human–machine interactions, and the study of
the neural correlates of consciousness.

Keywords: consciousness; computational modeling; projective geometry; active inference; affective
value; epistemic value; emotion; social cognition and communication; behavioral science

1. Introduction

The pursuit of a well-motivated, operational, and falsifiable theory of consciousness
remains hot in cognitive science (see [1]). Such a theory holds the key to answering fun-
damental questions in psychology, neuroscience, cybernetics, artificial intelligence and
robotics. A wealth of proposals of varying degrees of precision and heuristic value have
flourished over the years. Yet there remains no consensus about which contender might be
most promising. With the development of cognitive neuroscience and related empirical
approaches (electrophysiology, neuroimaging), a great deal of research has been focused
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on the neural correlates of consciousness (NCC) as the presumed shining path to under-
standing its underlying mechanisms [2–4]. To be sure, understanding the relationships
between consciousness and the brain would not merely improve our understanding of
consciousness itself and its relations to behavior; it also seems to be a necessary condition
for a complete theory of consciousness considered as part of nature. However, there is
no reason to restrict research on consciousness to the study of its neural mechanisms.
Investigating the principles and mechanisms that constitute consciousness irrespective
of their neural implementation could set the stage for more theoretically grounded and
model-based research in cognitive neuroscience, with well-posed quantitative hypothe-
ses [5], while mitigating methodological roadblocks besetting the search for the NCC and
neurally grounded models of consciousness more generally [6]. From this perspective,
purely phenomenological and functional postulates offer relevant starting points for the
formulation of a mathematical theory of consciousness.

1.1. Consciousness as an Integrative Whole

One pervasive intuition about the phenomenology and function of consciousness is
that it integrates a multiplicity of cognitive functions and mechanisms into a coherent
whole in order to facilitate cognition, learning, and adaptive behaviors or, more generally,
to perform a cybernetic function for adaptive systems [7]. It integrates and mediates the
interplay of processes such as perception, imagination, emotion, affective and epistemic
(curiosity-related) drives, social cognition and action planning to leverage both exploration
and exploitation behaviors.

Two recent, prominent theories embrace such an integrative view. Integrated Infor-
mation Theory (IIT) conceives of the relevant whole as corresponding to the dynamical
ensemble (or complex) of interactions between a system’s parts (e.g., brain networks) that
maximizes the quantity of information in such ensembles, measured in terms of Φ, which
cannot be reduced to the sum of information contained in those parts when considered
independently [8]. In other words, IIT operationalizes the notion that the whole is more
than the sum of its parts. IIT remains quite general; it predicts that some very simple physi-
cal systems (e.g., two suitably connected photo-diodes) are conscious [5,9]. Moreover, its
formalism is difficult to apply in significant simulations and falsifiable empirical research.

The Global Workspace Theory (GWT) [10,11] conceives of consciousness as an integra-
tive workspace featuring limited capacity and serial processing for decision making. The
workspace accesses and broadcasts salient multimodal sensory information and combines
it with information from memory. It supports the monitoring and reduction of uncertainty
and error-correction mechanisms. It performs non-social and social imaginary simulations
and appraises their outcomes. Its core function is to support planning, decision-making,
and action programming. GWT has been modeled using “toy” models of neural networks
in an analogical manner in conjunction with empirical research using brain imaging [12–14].
However, GWT has not offered mathematical principles or models capable of capturing
the ensemble of functions it considers for consciousness, let alone the mechanisms of their
interaction. Attempts at mathematical modeling of GWT, though quite interesting, have
remained rather generic, have been based on information-theoretic concepts, and have
focused on neurally relevant notions [15]. However, they have not integrated the type
of geometrical perspective we see as being central to consciousness; and they cannot be
straightforwardly operationalized to generate simulations relating the GW, cognitive and
affective processing, and behavior.

Furthermore, formal expressions of IIT and GWT have not been derived in a way
sufficiently specific to enable the direct comparison of their predictions; instead indirect and
rather non-specific hypotheses have been proposed to assess their relative worth, focusing
on whether the NCC involves anterior versus only posterior regions of the brain [16]. The
debate is far from settled (see [9,17,18]). Similar limitations related to a lack of specificity
and discrepancies between levels of observation arise when considering other theoretical
proposals, e.g., using the General Theory of Information (GTI) [19,20].
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1.2. The Subjective Perspective of Consciousness

Another pervasive intuition about the phenomenology and function of consciousness
is the constitutive role played at its core by a “subjective perspective”. Such an internal
perspective has been conceived of as a non-trivial, viewpoint-organized, unified, embodied
three-dimensional (3D) representation of the world in perspective [8,21–25].

This subjective perspective is often referred to as a first-person perspective (1PP) in
the literature on visuo-spatial perspective taking [26–28]. Moreover, as we will understand
the matter here, seeing the world through someone else’s eyes or imagining ourselves
from an external observer perspective corresponds to adopting a third-person perspective
(3PP) [26–28]. Although a few authors also use egocentric and “altercentric” perspectives
to refer to 1PP and 3PP, respectively [29,30], we sometimes use the latter abbreviations in
this article. Note that whichever subjective perspective is adopted, its content is always a
subjective perspective, somehow echoing Merleau-Ponty [31], writing: “I am a conscious-
ness, a strange creature which resides nowhere and can be everywhere present in intention”
(p. 43), and “[...] if the spatio-temporal horizons could, even theoretically, be made explicit
and the world conceived from no point of view, then nothing would exist; I should hover
above the world, so that all times and places, far from becoming simultaneously real, would
become unreal, because I should live in none of them and would be involved nowhere.
If I am at all times and everywhere, then I am at no time and nowhere” (p. 387). Thus,
the concepts of 1PP and 3PP as we use them here do not correspond to their frequent use,
sometimes including also a second-person perspective (2PP), in consciousness studies, e.g.,
in neurophenomenology, to distinguish consciousness as experienced directly from a 1PP,
from consciousness as it can be studied indirectly from a 3PP, for instance, to study its NCC.

One of the key functional roles of this subjective perspective would be to enable
situated systems [32] imbued with consciousness to take different perspectives, through
imagination or action, in order to appraise affordances and maximize utilities at multiple
time scales [25,33,34]. The process would combine (spatial, interoceptive and exteroceptive)
cognitive and affective representations for action programming [35,36]. Perspective taking
would also support social cognition, including empathy and Theory of Mind (ToM), which
rely on the ability to infer the mental states of others, especially their beliefs and desires,
and to predict their behaviors [36–39]. Consistent with our approach, simulation theory
hypothesizes that humans use their own cognitive and affective functions to imagine
themselves in the “shoes” of others, to simulate their subjective experience and infer the
corresponding expected behaviors [40–44]. Modeling such subjective perspectives is an
essential challenge for consciousness science [45–50].

Some, including GWT proponents, have decided to set the challenge aside [2,11],
while others, in particular IIT proponents, have attempted to tackle it based purely on
information-theoretic concepts [8]. However, we hold that the latter have largely failed to
capture the phenomenon in a compelling and operational way (see [5]).

The behavioral literature on spatial perspective taking builds upon the distinction in-
troduced by Flavell [51,52] between level-1 perspective taking (L1PT), when judging whether
objects can be seen by another, which appears to operate at a rather pre-reflective level,
and level-2 perspective taking (L2PT), which entails a more reflective and explicit simulation,
deliberately attempting to imagine seeing through someone else’s eyes. In this literature,
L1PT is construed as requiring one to mentally trace someone else’s line of sight, and cogni-
tive processing times increase with the distance between the eyes/head of the agent being
observed (an avatar, a doll, or a real person, depending on the study), and the target of
his/her overt attention ([53]). In contrast, L2PT is construed as requiring one to reconstruct,
more or less precisely, the visual appearance of the world from someone else’s perspective,
and cognitive processing times increase with the angular disparity between the observer
and the observed person’s line of sight ([54]). Overall, L2PT seems to be more cognitively
demanding than L1PT ([26,53]). Moreover, there is evidence that L1PT can be triggered
outside of cognitive control, contrary to L2PT ([55]). Further, the ability for L2PT emerges
later with respect to L1PT, in terms of both human development (two-year-old children
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show evidence of L1PT, and L2PT seems to be fully developed later around five years of
age; see [51,52,56]) and phylogeny (L2PT may be human-specific, whereas L1PT is present
in the caching behavior of birds and among chimpanzees; see [57] for a review). However,
there is currently a debate about whether ToM requires L2PT, when L1PT could provide a
minimal ToM ([58]). This issue is certainly related to the fact that classic ToM tasks may
in fact measure lower-level processes (attention orientation, face processing, etc.) that do
not directly evaluate ToM ([59–61]) but could contribute to an implicit ToM, referred to as
“submentalizing” [62], and constitute a building block of explicit ToM.

1.3. Projective Geometry at the Core of Consciousness

We have hypothesized that three-dimensional (3D) projective geometry is a critical
ingredient that is missing in previous accounts. We hold that it is this geometry that allows
us to understand and model the phenomenology and functions of consciousness and to
make better sense of how they are bound together within an integrated whole structured as
a subjective perspective and imbued with capacities for perspective taking. This hypothesis
is at the basis of our Projective Consciousness Model (PCM) [25,63–69] (see also [70]).

Our primary endeavor centers on the modeling of the phenomenology and func-
tions of conscious experience, irrespective of consciousness’s physical underpinnings (see
Section 4.4 for further discussion of how the PCM may relate to NCC hypotheses). Here,
our objective is not to pursue the question of how the geometry of first-person experience
comes into existence. Instead, we focus on the exploration of how we can construct a
quantifiable model for it, one that is amenable to empirical testing.

Projective geometry is the geometry of perspectives and points of view (see [68] for
a presentation of projective geometry in a relevant context). It extends affine geometry
with points at infinity, where all “parallel” lines meet, yielding a projective space. Geomet-
rical spaces can be defined by the group that acts on them. In the case of 3D projective
geometry, this group is PGL3. Its action applies (projective) transformations that preserve
the incidence structure of points, lines and planes, but not angles, and, in doing so, this
action realizes changes in perspective. Group action can transform the distribution of
information in space, e.g., affective and epistemic values, through group operations such
as the pushforward measure (see [69] and below).

In the PCM, the action of 3D projective geometry is conceived of as an integral mecha-
nism for systems to perform active inference [71–73]. Active inference is a process by which
agents infer the causes of their sensations and the consequences of their actions in order to
explore and exploit their environment in an optimal way. They can do so based, for instance,
on the minimization of Free Energy (FE), which encodes the divergence between their ex-
pectations and their sensations or behavioral outcomes. In this context, the minimization of
FE entails the maximization of affective and epistemic values and generates goal-driven
and curiosity-driven actions [74]. Of note, beside FE-based approaches, active inference
can be understood and modeled using other methods; all those approaches relating more
generally to stochastic optimal control (see Section 2).

Through geometrically structured representations and perspective taking, the PCM
operationalizes both the subjective perspective as a mechanism of information integration
and the principles and functions of the global workspace from GWT (Figure 1). It does so,
moreover, in a manner that captures and makes sense of core aspects of the phenomenology
of consciousness. According to the model, projective geometry offers a mechanism of
(conscious) access to an otherwise unconscious world model, encoding objects and their
relations in a componential manner. In this context, the world model can be thought of as a
homogeneous space for the 3D projective group, i.e., a space in which actions are structured
by a group so that, from any point in space, all other points could potentially be reached or
represented by applying the same unified principles. The hypothesis is that such a group
structures the agents’ internal space of representation for active inference or more generally
(stochastic) optimal control. We call the resulting space and corresponding projective
transformations, as they play a core role in appraising affective and epistemic value and



Brain Sci. 2023, 13, 1435 5 of 23

generating drives in relation to action planning through, for instance, the minimization of
FE, the Field of Consciousness (FoC).

Interestingly, although much research still needs to be done on this topic, it also
allows us to make sense of empirical distinctions such as L1PT and L2PT. Indeed, projective
geometry is imbued with fundamental properties of reciprocity, related to projective duality,
so that it is effectively immediate for an agent representing information within a projective
space to understand relations of incidence in a pre-reflective manner [68]; this is consistent
with LPT1. Likewise, the explicit action of the projective group on the space, which
requires controlled projective spatial transformations, precisely corresponds to operations
subsumed by the notion of LPT2. Below, our simulations of ToM build largely upon LPT2,
with explicit simulations of the other’s point of view, but further work should leverage
projective reciprocity and duality in a more operational manner to integrate pre-reflective
mechanisms such as those described by LPT1 (see Section 4.5).

Figure 1. Modeling approach: from metaphors to computation. (Left Tier) Two principles to be
combined: A Global Workspace (GW), integrating and processing multiple sources and types of
information and priors, and a Subjective Perspective (SP). (Right Tier) Field of Consciousness (FoC),
projective geometry and active inference, as a GW through a SP. The FoC is structured by a 3D
projective space, undergoing transformations through the action of the projective group (PGL) for
perspective taking (PT). Each possible perspective is associated with affective and epistemic values
depending on the distribution of information in the space, with the values themselves yielding a value
of FE. The projective transformation associated with the lowest expected FE is selected, providing the
agent with a model for its actions (moving so as to adopt the perspective minimizing the FE). The
approach is based on the duality between PT and actual or imagined actions in ambient space. At
the lowest level of processing, the FoC is calibrated (FC) to select the specific projective framing of
information in the projective space (which modulates the precise representation and perception of
information in space). This process underlies conscious access to information and is the basis for
multiple perceptual illusions.

1.4. General Positioning

Beyond the aim of understanding, via computational modeling, how phenomenol-
ogy relates to function and behavior, our approach emphasizes the role of geometrically
structured representations for information integration, learning, planning, and control.
It connects to geometric machine learning, topology, and data analysis, and pursues the
integration of geometrical principles into active inference and reinforcement learning (RL).
It shows how geometry can be leveraged in order to understand and model the dynamics
of agents, building upon the duality between geometrical transformations and action. Our
working hypothesis is that geometry, and more specifically 3D projective geometry, as
structuring an internal subjective space via the action of a group, (1) supersedes the need
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for an objective representation of the environment and of the agent in its environment (e.g.,
exact position and metrical distances in external space) as typically required in artificial
agent control and (2) plays a key role in regularizing information processing, learning, and
communication, in a manner that fosters adaptability and resilience across sensorimotor
contingencies for open dynamical systems and facilitates related inferences.

In what follows, we review and discuss the PCM, focusing on how projective ge-
ometry can account for the integration of perception, imagination, motivation, emotion,
social cognition and action in consciousness in the context of active inference. We first
present the model formally in a synthetic manner to situate its general principles. We then
present and discuss key results obtained so far with the approach and introduce a new
operationalization of empathy and its effect on emotion regulation and behavior based on
the model. Finally, we discuss ongoing research on applications of the model in behavioral
science, machine learning, and human–machine interactions, as well as perspectives for the
study of the NCC.

2. Model

In this section, we present the model formally, from a bird’s-eye point of view, with
the aim of situating our modeling framework at the highest level of generality. We have
implemented such principles in specific ways in the context of specific studies, and we refer
the readers to the corresponding references for details on how we did so mathematically
and algorithmically [65–67,69]. At this point, much work remains to be performed to
formulate a definitive implementation of the mathematical principles that would integrate
all the components we are considering in a fully unified manner and without ad hoc
solutions, which we have sometimes had to employ in order to generate simulations in
specific contexts.

2.1. Motivation

We consider agents evolving in an environment that contains other agents. The agents
plan their actions (moves) and explore their environment based on partial information
obtained through observations. To do so, they model their environment through a world
model or state space, and beliefs are kept about the state of the environment of the agent
but also about the beliefs and action policies of other agents. Agents model the dynamics
of their environment, which contains other agents, through a generative model, which also
accounts for the consequences of their actions on the environment; it is a stochastic model
of the consequences of the actions of the agents based on the current beliefs of the agents.
The order of ToM of an agent quantifies how intricate the thought process of the agent is
with respect to planning based on the policies of other agents, taking into account that those
agents can also plan their actions based on their policies. One way to model agents with
ToM is through a interactive, partially observable Markov decision process (I-POMDP) [75,76].
In the simplest case of one agent interacting with its environment, this reduces to a partially
observable Markov decision process (POMDP). POMDP and active inference or the Free Energy
Principle share similar generative models in cases in which agents decide on what action to
do based on their current observations [73]; we discuss the similarities and dissimilarities
between both approaches at the end of Section 2.3.1.

The particularity of our agents is that their world model or state space, denoted S, has
an additional structure, that of a group that can act on the state space, denoted G; such
a space is called a G-space. We will explain how a slight modification of POMDPs can
account for such a structure (Section 2.4).
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2.2. Prerequisites

Let us first recall what a group is.

Definition 1 (Group, §2 Chapter 1 [77]). A group is a set G with an operation: G× G → G
that is associative, such that there is an element e ∈ G for which e.g = g for any g ∈ G, and any
g ∈ G has an inverse denoted g−1 defined as satisfying g.g−1 = g−1.g = e.

We call a group-structured (measurable) space a space provided with a (measurable)
group action; we now make this statement formal.

Definition 2 (Group-structured space, G-space). S is a group-structured space for the group G
when there is a map h : G× S→ S denoted as h(g, s) = g.s for g ∈ G and s ∈ S, such that

1. (g.g1).s = g.(g1.s) for all g, g1 ∈ G, s ∈ S
2. e.s = s, for all s ∈ S

For a given group G, this space is called a G-space.

A homogeneous space is a G-space over which the group G acts transitively, i.e., from
any point s ∈ S, any point s′ can be reached via the action of an element g ∈ G: g.s = s

′
.

In what follows, we assume that S is a topological space that is measurable (for the
associated Borel σ-algebra); furthermore, we assume that h, the function that defines the
group action on S, is continuous and therefore measurable.

Let us give two examples of group-structured spaces. The 3D vector space R3 is
structured by the group of invertible matrices GL3(R) as GL3(R) acts on R3. Similarly,
the projective space P3(R) is structured by the group of projective linear transformations
PGL(R3). Both are in fact homogeneous spaces. Let us now define the projective general
linear group formally, as it is at the basis of the PCM.

Definition 3. The 3D projective space P3(R) is the set of lines of R4. Any bijective linear transfor-
mation from R4 to R4, i.e., any invertible 4× 4 matrix denoted as M, defines a projective linear
transformation in PGL(R3).

Homogeneous coordinates are a way to map a (dense open) subset of P3(R) to R3 by
remarking that when the last coordinate of λ := (λ1, λ2, λ3, λ4) is non-zero, then it defines
the same line as ( λ1

λ4
, λ2

λ4
, λ3

λ4
, 1). When expressed in homogeneous coordinates, the projective

(linear) transformation can be expressed as a partial map from R3 to R3 defined as follows:
let (λ1, λ2, λ3) ∈ R3 denote (λ1, λ2, λ3, 1) as λ̃; assume that the last coordinate of M(λ̃)
does not vanish, i.e., M(λ̃)4 6= 0; then, the projective transformation can be written as

φ(λ1, λ2, λ3) =

(
M(λ̃)1

M(λ̃)4
,

M(λ̃)2

M(λ̃)4
,

M(λ̃)3

M(λ̃)4

)
(1)

In the rest of the Methods section, we will present how to model agents with world
models structured with a group G, which can be any group; G can be, for example, GL3(R),
PGL(R3) as it appears in previous work [66,67,69]—see [65] for more details on the pro-
jective general linear group—but the presented framework is not restricted to these two
groups, and we are now exploring the effect of other groups on the behaviors of agents
modeled with this framework.

The space of probability measures over a set X will be denoted as P(X). We will call a
stochastic map from a space X to Y, denoted π : X → Y, a Markov kernel; more precisely, a
Markov kernel π : X → Y is a (measurable) function that sends x ∈ X to π(.|x) ∈ P(Y), a
probability measure on Y.
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2.3. MDP, POMDP and Active Inference

Definition 4 (Markov Decision Process: Definition 1 [78]). A Markov Decision Process is a
collection 〈S, A, T, r〉 where

• S is the set of configurations of the environment;
• A is the collection of actions of the agent;
• T : S× A → S is the transition probability, which captures the consequences of the action

a ∈ A of the agent on the environment that changes from st to st+1;
• r : S × A × S → R; it is the reward function for an action a ∈ A and two states (s, s′)

thought of as st and st+1.

An MDP is a model of the environment of the agent and the consequences of its actions.
A policy is a prescribed way the agent acts when faced with a state s of its environment;
it is encoded by a Markov kernel π : S → A. A policy allows us to define a probability
distribution on ∏t≥1 S× A given an initial state s0

P|π,s0
(sk, ak; k ≥ 1) := ∏

k≥0
T(sk+1|sk, ak)π(ak|sk) (2)

It is the distribution of planned future states and actions under the policy π. It is
common to require that the agent finds a Markov kernel π∗ : S → A, called an optimal
policy, that maximizes its utility, which is an expected sum of future rewards with horizon
t (t could be ∞):

V(s0) = max
π

EP|π,s0
[ ∑
0≤k≤t

γkr(sk+1, ak, sk)] (3)

0 < γ < 1 acts as a discount factor.
When the state of the environment is not known by the agent but inferred by ob-

servations, the previous formalism is changed into an extended formalism: a Partially
Observable MDP.

Definition 5 (Partially Observable Markov Decision Process [79]). A POMDP is defined as a
tuple 〈S, A, T, r, O, Z〉, where 〈S, A, T, r〉 is an MDP, and

• O is the set of possible observations.
• Z is the observation kernel, Z : S× A → O, which specifies the probability of observing a

particular observation given the current state and action.
• r is a reward function whose domain is S× A; r : S× A→ R.

In the framework of POMDP, an agent keeps beliefs about the state space S, denoted
as b ∈ P(S), that are updated through observations using Bayes’ rule. Action a induces a
change in belief,

Ta ◦ b(s′) := ∑
s∈S

T(s′|s, a)b(s) (4)

An agent can plan the belief update induced by observation o ∈ O after its action a,
defined as,

∀s ∈ S b|o,a(s) :=
Z(o|s, a).Ta ◦ b(s)

∑s∈S Z(o|s, a).Ta ◦ b(s)
(5)

However, anticipated observations one step ahead are theoretical for the agent and
depend on its belief about the environment; in other words, the anticipated observations
are stochastic and depend on the choice of actions. A policy is a kernel π : P(S)→ A that
sends beliefs to actions. The distribution of anticipated observations is then given by

Pb
O1
(o) := ∑

a∈A

(
∑

s′∈S
Z(o|s′, a) ∑

s∈S
T(s′|s, a)b(s)

)
π(a|b) (6)
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In order to introduce the usual utility function that an agent with partial observations
wants to maximize, let us now show that POMDPs are particular MDPs. A POMDP can be
reformulated as an MDP where the state of the environment is replaced by the space of
possible beliefs about the environment; such a process is called a belief MDP. The following
is a dictionary:

• S̃ := P(S)
• Ã := A
• T̃ : S̃× Ã→ S̃ is defined as

T̃(b′|b, a) = ∑
o∈O

Pb
O1
(o)1[b′ = b|o,a] (7)

• r̃ : S̃× A→ R is defined as
r̃(b) = ∑

s∈S
b(s)r(s, a)

The utility of the POMDP is the utility of the belief MDP defined by the dictionary.

2.3.1. Relation between POMDP and the Free Energy Principle

POMDPs, active inference, and the Free Energy Principle share similar generative
models; in particular, in our previous work [66,67,69], we considered such models when
agents decide on what action to take based on their current observations. One (minor)
difference between both frameworks is the objective function of the agent. For POMDP,
in the context of stochastic optimal control theory, it is encoded by a sum of expected
rewards (value function), and for the free energy principle, it is a probabilistic version
of this function that is considered (duality between Bayesian estimation and stochastic
optimal control [80,81]); however, both formalisms share many similarities [73]. In the
rest of the article, we refer to how the value function relates to the states of agents as the
“affective value” of the actual or anticipated state. An important difference between the two
frameworks is that in POMDPs, belief updates are performed through the exact application
of Bayes’ rule, while in active inference it is through an approximation of such a rule
(approximate variational inference). We chose to present our framework as a specialization
of POMDPs as POMDPs constitute a standard way to model agents interacting with their
environments. However, as our modification only concerns the space on which the beliefs
of the agent are kept, our approach can be transcribed in terms of the Free Energy Principle.

2.4. POMDP with Group-Structured State Space

We will call an MDP with group-structured state space an MDP where the state space
S is a G-space, for some group G, and a subset of the set of actions is the group G.

Definition 6 (MDP and POMDP with group-structured state space). An MDP with a group-
structured state space is a tuple 〈S, A, T, r, G〉 where G is a group and 〈S, A, T, r〉 is an MDP that
satisfies the following properties:

• S is a G-space
• G is a subset of the set of actions A,
• For all g ∈ G, T(s′|s, g) = 1[s′ = g.s]

A POMDP with a group-structured state space is a tuple 〈S, A, T, r, O, Z, G〉 where 〈S, A, T, r, G〉
is a group-structured MDP (structured by G) and 〈S, A, T, r, O, Z〉 is a POMDP.

Remark 1. One should note that the action of an element of the group g ∈ G on g : S→ S induces
an action on the beliefs over S, defined as, for any b ∈ P(S), A is a measurable subset of S,

∀A ⊆ S, g∗b(A) := b(g−1(A)) (8)
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However, following the same procedure as the one that transforms a POMDP into a (belief)
MDP does not make a POMDP with a group-structured state space into a (belief) MDP with a
group-structured state space: T̃ is a stochastic map and not a deterministic map; therefore, it cannot
come from the action of a group on the space of beliefs.

We think of G as all the actions the agent can perform that do not change its envi-
ronment but change the way it perceives its environment. For example, in our work up
to now, G contains the movements that the agent can make in its environment; these
movements change the representation the agent has of its environment through a change
in the egocentric chart. Our formulation is to be opposed to a state space equipped with a
reference frame global to all entities in the environment, the agent included; in this latter
formulation, moves of the agent only change its position in the environment, and to be
accounted for, it requires the agent to model its own configuration in the environment. Of
course, higher-level cognition involves such a configuration, which is an extension of what
we describe in this section, but here, we wish to focus on the most basic mechanisms of in-
terest. Our proposition is to encode the actions of the agent that only change its perception
of its environment as a transformation of the state space and disregard the configuration
of the state space for entities that are not the agent. In particular, we believe that such an
approach could adequately accommodate evolving the perceptual skills of the agent, for
instance, through the addition of new sensors into the same theoretical framework.

We propose that imbuing world models with a “geometric” structure, given by a group,
is one way to capture different perception schemes of agents. In particular, in [69], we
explore how changing the geometric structure of a state space, namely the group G acting
on S, impacts the behavior of an agent; we consider a reward based on the relative entropy

DKL(b′‖b) = ∑
s∈S

b′(s) ln
b′(s)
b(s)

(9)

and horizon T = 1; the associated objective function corresponds to the “epistemic
value” [74].

When agents must model other agents and their beliefs, one can specify further
POMDPs into interactive I-POMDPs [75]. We attempted to mimic such a formalism in an
approximate formulation proposed in [66,67]. Modeling interacting agents with group-
structured state space can be performed with I-POMDPs by requiring that every agent
simulates other agents that have group-structured state spaces. It is one way to accommo-
date both I-POMDPs and group-structured state spaces.

To conclude, according to the formulation of the PCM we introduced above, looking
for a working definition of consciousness to better situate our approach on the map of
possible classes of models at a very high level of generality, we can say that conscious
agents can be modeled using an Interactive Partially Observable Markov Decision Process
whose state space is structured by the action of the Projective Group.

3. Results

In this section, we review published results obtained based on the principles of
the PCM. We also show novel preliminary results derived from applying the model to
simulating processes related to empathy, emotion regulation, and its role in the control of
approach–avoidance behaviors.

3.1. Perceptual Illusions

In [65], we proposed an initial version of the model that focused on visual perception,
aiming to account for perceptual illusions, in particular the Moon Illusion, whereby when
the Moon is low on the horizon, its size appears bigger than when it is high in the sky
(Figure 2). The model’s predictions were validated in a virtual reality experiment by
comparing simulations of the Moon’s apparent size as a function of its elevation, with
psychophysical estimations of relative apparent size by human participants. In the same
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contribution, we also accounted for the Ames Room Illusion, which uses forced perspective
on a geometrically deformed room to induce the illusion that two persons standing against
a back wall appear to have radically different sizes. See also [25] for initial accounts of
other illusions such as the Necker Cube, Heautoscopy (the experience of the perceptual
reduplication of one’s own body accompanied by an ambiguous sense of self-location), and
Out-of-Body Experiences. In all these cases, the illusions were conceived of as arising from
the calibration of a 3D projective frame under the minimization of free energy (FE). They
resulted from the way information is conditioned by priors and accessed in consciousness
according to the model, generating a posterior representation structured by 3D projective
geometry, corresponding to a perceptual content within the subjective perspective.

Figure 2. Perceptual illusions: the Moon Illusion. (a) Simulations. Left-Tier: Charts of relations
between parameters in the model. Top and Middle: FE as a function of projective parameters λ,
µ, and σ. The FE function is strictly convex, guaranteeing a unique solution. Bottom: Relative
area of the perceived Moon as a function of elevation (in degrees) and σ, showing a range of
possible magnifications. Right Tier: Rendering of a world model (including the Moon at projective
infinity) in a projective 3-space as a function of elevation (in degrees), whose calibration resulted from
minimizing FE. (b) Validation in virtual reality. Top Tier: Virtual Reality (VR) scenes for two conditions,
environment On versus Off, displaying a reference moon (near the horizon) and a target moon at a
given elevation. The task for the participants was to adjust the perceived size of the reference moon to
make it match that of the target moons at various elevations. Bottom Tier: Result charts. (Error bars are
standard errors). Left: Between-participant average perceived relative area as a function of elevation
and condition. With the environment cues On (blue) versus Off (red), on average, the empirically
perceived areas (dashed curves) decreased versus did not decrease with elevation, demonstrating
an effective Moon Illusion in VR. On average, the PCM predicted the observed nonlinear curves
(continuous lines) with a better predictive power than a linear model (grey line). Right: Average
(and variability of) PCM parameters, σ, C′, and λ estimated from empirical data, as a function of
the presence (1) or absence (0) of environmental information. The estimated projective parameters,
which control the calibration of participants’ FoC according to the PCM, could offer model-based
psychometric metrics, representing features of the detailed projective structure of the participants’
individual consciousness. See [65].
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3.2. Imagination, Emotion, Drives, Social Cognition, and Adaptive Behaviors

In [66,67], we introduced a more encompassing model and software implementation
to study how the model could account for adaptive and maladaptive social behaviors
through mechanisms of perspective-taking in robots and virtual human agents (Figure 3).

Figure 3. Simulations of social–affective agents. (a) Robotic context. Top Tier. Left: Setup. Two
robots (Anki Cozmos) and two objects (cubes). Robot S is the subject, i.e., the robot of interest. In
the small bottom chart, arrows indicate whether an agent likes or dislikes a cube or an agent. The
dashed arrow from O to S indicates beliefs held by S about O. The absence of an arrow implies neutral
preference. Right: Chart of the FE of S as a function of time (iterations), for the two conditions tb
(true beliefs) and fb (false beliefs). Average FE across trials (error bars: standard errors). Bottom
Tier. Illustration of the situation with actual robots. Snapshots are shown for two time points: T(0)
and T(end). T(0) corresponds to the beginning of phase 2. Upper row: Condition tb phase 2. Lower
row: Condition fb phase 2. (b) Virtual humans. Top Tier: Setup. Arrows from circles marking the
initial position of S and O indicate fixed initial prior preferences towards entities. Middle Tier: Results.
Views from above of virtual environment for Trial 1 (left) and Trial 2 (right). Trajectories: orange
traces are S, blue traces are O, green traces are predictions about O according to S, and red traces are
predictions about S according to O. Bottom Tier: Top, face close-up of S as a female virtual human;
Bottom, first-person perspective of S on O (male virtual human).

A pivotal operation was the quantification of affective and epistemic values as a
function of projective transformations associated with possible actions, e.g., moving in
a certain direction. Projective transformations induce a magnification (or shrinking) of
information in the space equivalent to the effect that approach (or avoidance) behaviors
have on perception, according to the model. The transformed information was integrated
spatially to compute affective and epistemic values of actions; these related to how much
of the FoC that information would occupy as a function of action (see [66,67] for technical
details). The rationale for the relationship between projective transformations, as magni-
fying or shrinking the apparent size of information in space, and affective or epistemic
value was that agents that want or are curious about something should approach that thing,
effectively making it bigger in their FoC, while agents that do not want or are uninterested
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in something should avoid that thing, effectively making it smaller in their FoC. The re-
sulting relationships between affective value and the distance z of an object or another
agent from the agent of interest (about which the latter agent had prior positive or negative
preferences p) yielded a law approximating 1/z. This was consistent with psychophysical
empirical findings about the intensity of felt negative emotions as a function of the distance
of threatening stimuli [82]. Affective and epistemic values of anticipated actions were then
used to control parametric probability distributions and compute the Kullback–Leibler
divergence (DKL) between those distributions and ideal distributions representing goals
as an approximation of FE. The minimization of FE induced corresponding affective and
epistemic drives to approach or to avoid objects and other agents. Using the same basic op-
erations, agents could simulate each other’s FoC, making inferences about the preferences
and uncertainties of others based on emotional expressions and spatial configurations and
predicting each other’s behaviors accordingly. This enabled agents to further minimize
their expected FE by taking into account others’ expected behaviors. Mechanisms of social
influence, related to normative (conformism) or informational (acquisition of new interests)
influences [83], were also implemented by manipulating the weight of the expected FE
attributed to another agent in the computation of an agent’s own FE, or the update of the
agent’s own prior preferences as a function of preferences attributed to the other.

The action of the projective group on affective and epistemic values directly con-
tributed to maximizing expectation satisfaction and information gain in the agents, resulting
in different strategies of action combining exploration and exploitation. Through emotional
expression and projective geometry, social agents could communicate and understand
each other, enabling them to infer key information about their environments. They could
simulate each others’ minds recursively, relying on their spatial and affective behaviors, in
a manner that fostered the transfer of information localization, i.e., the operation, which
relates to attention, of restricting relevant information to certain regions of space in the
agents’ internal representation.

On this basis, in [66], we could generate adaptive and maladaptive behaviors in robots.
This work is relevant to developmental and clinical psychology, specifically in relation to
the ability to be resilient through imaginary projections when confronted with obstacles;
social-approach and joint-attention behaviors; the ability to take advantage of false beliefs
attributed to others; avoidance behaviors typical of social anxiety disorders; and restricted
interests, as observed in autism spectrum disorders.

In Figure 3a, we show simulations performed for a non-verbal version of the classic
Sally and Anne Test [84,85], operationalizing an objectivization of the ability to take advan-
tage of false beliefs attributed to others. Two robots (Anki Cozmos) were used, with robot
S, the robot of interest (the subject), and robot O, the other, along with two objects, cubes
c1 and c2. This simulation aimed at assessing the ability of S to take advantage of another
agent O’s false beliefs. We operationalized Sally and Anne Test for our non-verbal context,
using a competitive situation between agents generating a conflict between approach and
avoidance for S. Cube c2 was associated with positive prior preferences for both agents.
Cube c1 was neutral. Both agents believed that the other had positive preferences for c2. S
disliked O and believed O disliked S, but O was neutral about S. Even though approaching
c2 would minimize FE for S in isolation, the prediction by S that O would approach c2
made S tend to avoid c2 in order to avoid O. The simulation was divided into two phases:
at iteration 30, S and O were re-positioned at their initial location, and the locations of c1
and c2 were switched. Two conditions were contrasted. Condition tb: O had true belief
about the location of c2 at all times. Both S and O could witness the switching of the cubes
and maintain true beliefs about their location, and they could understand that the other
agent had true beliefs about it. Condition fb: in phase 2, O had false belief about the location
of c2, as, before switching between cubes c1 and c2, O was rotated so it could not witness
the switching. S, being a witness of that contingency, inferred that O would hold false
beliefs about the location of c2. In Condition tb, robot S could not approach its preferred
cube c2 as it expected robot O to approach it and had to move away from the scene to
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minimize its FE (see (T2) in Figure 3a). In Condition fb (phase 2), after the locations of c1 and
c2 were switched, robot S could approach its preferred cube c2, as it rightfully expected
robot O to approach the wrong cube, thus further minimizing its FE.

In [67] (see Figure 3b), we used two virtual humans, a subject S and another agent
O, starting on opposite sides of a small building (middle rectangle in the figure top-tier),
competing for access to vending machines VM1 (right) and VM2 (left) on opposite ends of
a gas station, with different intrinsic values (one being better than the other). Both O and S
liked (positive signs) VM1 and VM2 but preferred VM1 (longer arrow). S disliked O and
believed that O disliked S (negative signs) and thus would try to avoid S to minimize its
FE. In fact, O liked S. The aim of this simulation was to assess the ability of S to infer the
order of O’s Theory of Mind (ToM) and its preference toward S in order to optimize the
outcome, i.e., to have minimal FE at the end. Agents could not see each other except when
arriving together near a vending machine. ToM of order 0 (ToM-0) corresponded to no
ToM, ToM of order 1 (ToM-1) to the simulation of the other as performing ToM-0, ToM of
order 2 (ToM-2) to the simulation of the other as performing ToM-1, and so on, up to order
3 in this publication. When agents would run into each other at a vending machine, they
could use their observations of approach–avoidance behaviors and emotional expressions
(negative versus positive reactions to running into another) as evidence to update the
preferences they attributed to the other. Agents demonstrated a variety of behaviors as
a function of initial conditions that were consistent with behaviors we would expect in
humans performing a similar task. The simulation was divided into two trials. In the
example shown in Figure 3b, in trial 1, S initially assumed wrongly that O was performing
ToM of order 0 (ToM-0), i.e., no ToM, whereas O was actually performing ToM of order 2
(ToM-2). O correctly predicted that S would go to VM2 in order to avoid O. Since O liked
S, O went to VM2. Both S and O ended up finding themselves at VM2. S could then use
sensory evidence to revise its priors. In Trial 2, S selected ToM of order 3 (ToM-3), correctly
attributing ToM-2 to O and positive preferences (p = 0.8) of O toward S. S then chose to
go to VM1, both maximizing reward in terms of VM and avoiding O, which resulted in
minimal FE.

In [69], we further proved theoretical results demonstrating that changing the group
that structures the internal world model of the agents influences their curiosity-driven
exploratory behavior. We compared the action of the Euclidean Group to that of the
Projective Group on the computation and maximization of epistemic value and on the
ensuing behaviors of exploration in a simple search task. Only the Projective Group
induced behaviors of approach toward the uncertain location of an object of interest due to
its effect of magnification on information and how such an effect influenced epistemic value
and induced a drive under FE minimization. This result further suggests that projective
geometry has unique properties for supporting information integration, valuation, and
action planning in adaptive systems.

3.3. Application to Empathy, the Regulation of Emotion Expression, and the Control of
Approach–Avoidance Behaviors

Here, we aim to show, in a preliminary manner, how the PCM can be further employed
to operationalize mechanisms of empathy and affective processing to control behaviors,
using new simulations and building upon the previous work and software presented above.
These are preliminary results and are to be taken as an indication that, overall, the model
behaves as expected; but many details still need to be worked out before the approach
can be used in experimental settings. We were interested in the relationships between
empathetic processes, the regulation of emotion expression under active inference, and the
control of approach–avoidance behaviors. The goal here was only to assess whether the
model could simulate these types of mechanisms and phenomena as a proof of concept.
However, we believe it is not trivial that the algorithm can produce such effects just by
adding the expression of emotion in the repertory of actions subject to active inference,
e.g., assessing the impact on FE of choosing to smile or frown. The modeling approach is
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consistent with simulation theories of empathy, social perspective taking, affective learning,
and emotion regulation [40,41]. Under these principles, humans use their own cognitive
and affective apparatus to imagine themselves in the position of others in order to simulate
their subjective experience and infer their likely behaviors. This process in turn can be
used to control one’s own behavior. Thus, we are leveraging LPT2 mechanisms of ToM
(see Section 1.3). In particular, we wanted to incorporate emotional expression under
voluntary control into the repertory of behaviors used by agents for FE minimization as
part of active inference. We used previously published algorithms and corresponding
software from [66,67] and added this feature. We considered how simulating the FoC of
another agent performing ToM could lead an agent to express emotions that are opposite
to those it actually undergoes in relation to the other agent because of social influence of,
e.g., conformism (see [66] for technical details about the operationalization of this concept).
We simulated a simple dyadic situation in which two agents, A0 and A1, faced each other,
across several combinations of parameters (Figure 4). For instance, in one combination
of parameters, A0 did not like A1. In all conditions, A1 was prosocial (it liked to meet
new agents), so it had a positive prior about A0. A0 was aware of that prior. Then, in
the example considered, A0 had two choices, expressing the negative emotion it was
experiencing or a positive emotion against its own preferences. Because of normative social
influences, A0 took into account, in the computation of its own FE, the expected FE it
attributed to A1 through ToM (related to the inferred affective state of the other agent) as a
function of its choice of emotion expression. Expressing a negative emotion would increase
FE in A1, while expressing a positive emotion would decrease it. As a result, A0 chose to
express a positive emotion to minimize its own FE.

Figure 4. Overall relationships between FE, emotion expression and approach–avoidance behav-
iors as a function of parameters. Simulations of dyadic interactions between A0 and A1. Several
combinations of parameters were varied: the preference of A0 toward A1 (negative, neutral or
positive); the level of social influence A1 had on A0 (from none to high; the influence of A0 on A1
was assumed to be high); and the order of ToM used by A1 and A0 to perform active inference (from
ToM-0 to ToM-2). Left chart: The contribution to FE of expressing a positive emotion minus the contri-
bution to FE of expressing a negative emotion (see color bar). When expressing a positive emotion is
advantageous compared to expressing a negative emotion, that dependent variable entails negative
values. For higher levels of social influence of A1 on A0, and for negative or neutral preferences of A0
toward A1, as well as at least a ToM order of 1 used by A0, expressing a positive emotion yielded a
lower amount of FE in A0, as expected. For positive preferences of A0 toward A1, even in the absence
of a direct social influence, expressing a positive emotion was still advantageous as A0 anticipated
that it would drive A1 to approach A0, which would minimize A0’s FE in this condition. Middle chart:
Emotion expressed (from negative to positive) minus emotion felt (from negative to positive). In the
absence of a social influence of A1 on A0, and for negative preference of A0 toward A1, as well as at
least a ToM order of 1 used by A0, the emotion felt by A0 was more negative than its expressed emotion,
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but both were negative. For positive preferences, the emotion expressed by A0 was more positive
than the positive emotion felt by A0. For higher levels of social influence of A1 on A0, the emotion
expressed by A0 was more positive than the emotion felt by A0 (in particular for negative preferences
of A0 toward A1). This effect might indicate a need to find better solutions for the normalization of
parameters in the implementation (more generally, the generative model of emotion expression needs
serious developments beyond the simplistic solutions we used for practical reasons). Right chart:
Distance between A1 and A0. In the absence of the social influence of A1 on A0, and for negative
preference of A0 toward A1, as well as at least a ToM order of 1 used by A0, A1 moved away, as
A0 expressed a negative emotion. Otherwise, in general, A1 tended to approach A0, thus reducing
the distance.

Furthermore, we considered both voluntary and involuntary aspects of emotional ex-
pression using the principles and virtual humans implemented in [86]. Facial expressions of
virtual humans had two main components: a musculoskeletal component, which was oper-
ationalized using action units (AUs) ([87]), controlling features such as smiling or frowning,
and a physiological component, related to the Autonomic Nervous System (ANS), with two
subprocesses related to the tone of the sympathetic versus parasympathetic branches of the
ANS. The ANS component controlled features such as pupil diameter, skin tone (related to
blood surface capillaries’ perfusion), and sweating. High parasympathetic tone entailed
pupil contraction, reddish skin tone, and no sweating, whereas high sympathetic tone
entailed pupil dilatation, pale skin tone and sweating. The ANS component was assumed
to be involuntary and hard to control. We simulated agent A1 in two conditions (Figure 5):
(1) with minimal sensitivity to the ANS features expressed by A0 versus (2) with maximal
sensitivity to those features (we used a simple weighted average as a first implementation
of the sensitivity function). A0 expressed voluntary positive emotions through the AU
component to minimize its own FE, even though it disliked A1. Thus, it also involuntarily
expressed its negative felt emotion through increased pupil diameter, paleness and sweat.
A0 was assumed to be at a fixed position so that it would not move away when seeing A1.
In condition (1), A1 was only sensitive to the AU component and thus wrongly inferred
that A0 was happy to be approached by A1. As a result, A1 approached A0, making A0
very uncomfortable. In condition (2), A1 was sensitive to the ANS component and thus
correctly inferred that A0 would not be happy to be approached by A1. As a result, A1
moved away from A0.

Figure 5. Impact of sensitivity to involuntary emotion expression on the agents’ dynamics. Per-
ception of voluntary versus involuntary aspects of emotional expression and approach–avoidance
behaviors. T0 corresponds to the initial setup in both condition (1), in which A1 was only sensitive
to the AU component, and condition (2), in which A1 was sensitive to the ANS component. Tend
corresponded to the end state of the simulations for both conditions. See text.
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4. Discussion

Although much theoretical and experimental work remains to be done, the PCM offers
a powerful account of the integrative and functional role often ascribed to consciousness
that is consistent with core aspects of its phenomenology. It accomplishes this by bringing
forth the fundamental structuring role of 3D projective geometry in information processing
and optimal planning in the context of active inference or more generally optimal stochastic
planning. Projective geometry appears to be able to operate as an internal subjective
perspective that acts on a variety of types of information to relate multiple cognitive
functions and processes into a global workspace. In this last section, we wish to briefly
discuss related perspectives and ongoing axes of research that we intend to pursue based
on the PCM.

4.1. Behavioral Science

One of the motivations of our approach is to study how consciousness influences
behaviors and how behaviors influence consciousness. The PCM has the advantage of
offering an operational framework that can be implemented for empirical research based
on states and observable behaviors that can be quantified in humans. This can be per-
formed independently from any hypothesis about the NCC. Mathematical models can be
implemented computationally in a precise manner. Hypotheses can be formally expressed
and tested by comparing simulations and human behaviors. In particular, we are interested
in combining the model with virtual reality as a space of interaction and observation. We
started carrying this out in our work on the Moon Illusion [65] and developed a simulation
framework in our work on ToM in virtual humans and its current extension for studying
the relationships between empathy, emotional regulation, and behaviors of approach and
avoidance, which provides a groundwork for future research on social cognition and more
complex social behaviors. The overarching goal is to design tools for standardized, model-
based psychometric assessments of social cognition in virtual reality, leveraging the PCM
in order to enable inference-driven interactions between artificial agents and real humans,
in different conditions and across different populations, including clinical populations.

4.2. Machine Learning

Another axis of research we are actively pursuing is to investigate the potential ad-
vantages of using geometrically structured representations over more classical machine
learning (ML) approaches, such as state reinforcement learning (SRL) [88] (see [69] for the
background and rationale). We are now working on deriving theorems for and imple-
mentations of what we call Perspective Neural Networks (PNNs), in which geometrical
frames are associated with internal layers in order to regularize network inferences. We
are currently considering two main directions of research in this context. The first one
pertains to addressing how geometry could play a role in attentional mechanisms for
optimizing learning and inference. The effects of the relative magnification and shrinking
of information due to the action of the Projective Group are notably of interest for spatial
attention. The second one concerns domain adaptation and learning transfer across input
modalities, such as transfer from visual information to haptic information for inference and
object recognition. The representation learning of the action of geometrical frames within
an internal global workspace could mediate the control of inferences across modalities and
facilitate learning transfer [89].

4.3. Human–Machine Interfaces and Interactions

A third axis of research is to further develop our models and implementations, includ-
ing through the integration of ML mechanisms such as PNN, in order to design robotic
and virtual agents that will more naturally interact with humans and that will be more
explainable (pre hocand post hoc) by humans than systems based purely on models such as
deep learning and deep RL. Geometrically structured world models lend themselves well
to intuitive, shared representations between different agents. The tools we have developed
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in our line of research could be employed to design artificial agents in a way that makes
their internal representations intrinsically explainable, which is an important goal of XAI
(explainable AI). By accessing the geometric representation of the agent, a human subject
could highlight key features the agent should focus on in order to improve learning, for
example. We expect such methods to be highly useful, including when interacting with
agents that have to accomplish tasks that are highly unnatural for humans (e.g., too small a
scale or too large a scale), so that common geometric representations would build a bridge
between humans and machines, enabling a common lexicon, so to speak. Furthermore,
we expect that interacting with agents following the PCM principles will render those
interactions more human-like and natural to users, as could be assessed through user
experience experiments. Likewise, the PCM includes explicit parameters and states that
have a direct psychological interpretation and can thus be used to explain (and control) the
behaviors of agents.

4.4. The Neural Correlates of Consciousness

Another axis of research, which is at this point more remote than the previous ones
in our agenda, is to test hypotheses about the NCC based on the PCM. For instance, one
of the predictions of the PCM is that consciousness accesses and processes information by
bringing it into a projective space and transforming it through the action of the projective
group [65]. We have proposed some preliminary hypotheses about the anatomo-functional
underpinning of the process (see Section 4.1 in [25,65]).

In [25], we predicted that the brain embeds two main engines that are coupled: (1) a
higher-level inference engine integrating systems concerned with homeostasis, emotion,
memory, language and executive functions, or, more generally, personal relevance for
agents; and (2) a lower-level (sensorimotor) projective geometry engine, concerned with
multisensory integration and motor programming and representing the world and the
body in space. We hypothesized that the inference engine involves anterior cortical and
subcortical systems, including limbic and non-limbic frontal and temporal association
cortices, the amygdala and the hippocampus, and that the projective geometry engine
involves posterior temporal–parietal–occipital, modal and multimodal sensory systems,
in particular parietal systems, integrating exteroceptive, proprioceptive and interoceptive
processing, but also frontal premotor regions.

Spatial memory and affective or personal relevance processing [90] are tightly related
in the brain, e.g., through the interactions between the hippocampus [91] and amygdala [90],
and more generally, through interactions between regions of the so-called Default Mode
Network (DMN), including medial temporal systems [92]. On the other hand, occipital,
posterior temporal and parietal regions are strongly related to spatial transformations and
processing [93–97]).

When retrieving autobiographical memory, one can adopt an internal perspective, that
is, a first-person perspective (1PP), or an external/observer third-person perspective on
oneself (3PP). Interestingly, the adopted perspective (whether internal or external) during
memory retrieval depends on the nature of the emotion associated with the event [98]. Emo-
tional events are more likely to be remembered through an internal 1PP than through an
external 3PP. Reciprocally, the viewpoint used during autobiographical memory retrieval
can influence how we perceive the emotional intensity of memories so that memories
associated with internal perspectives are more emotionally intense than memories associ-
ated with external perspectives [99] (see also [100]). Among the brain regions supporting
changes in emotion due to shifting perspective during autobiographical memory retrieval,
there are the amygdala and the precuneus [101]. The amygdala supports the emotional
experience associated with the retrieval of personal memories [102]. The precuneus is an
associative region within the human posteromedial cortex [103] involved in visuo-spatial
perspective taking [104] and supposedly a core system for the sense of self [27,105] (see
also [106]).
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The still ongoing debate in cognitive neuroscience regarding whether conscious access
and experience require frontal–parietal interactions or solely activity in posterior cortices [2,13]
might be partially driven by a focus on different aspects of consciousness relating to the
division into two main engines in our hypothesis.

However, beyond such general anatomic–functional hypotheses, further developments
are required to precisely formulate quantitative hypotheses that could be operationalized
in order to test them using electrophysiological and neuroimaging methods with a high
degree of sensibility and specificity. Generally speaking, we could design neuroimaging
experiments to probe the NCC based on parametric manipulations aimed at isolating neural
systems and interactions consistent with 3D projective geometrical operations mediating
the minimization of FE.

Likewise, recent work [107] suggests that the geometry of the anatomical organization
of the brain may constrain the propagation and interaction of its electrical fields. However,
given our current knowledge, the geometry and functional processes underlying the PCM
cannot be directly related to such principles in any rigorous or meaningful way, that is, using
mathematics, yet. This applies to other proposals that might turn out to be relevant, e.g., the
Temporo-spatial Theory of Consciousness (TTC) [108], the hypothesis that scale-free activity
in the brain may underpin the subjective point of view [109], or the anatomo-functional
hypotheses derived from studies of recovery from general anesthesia [110].

Such current limitations are true, more generally, about any neural model at this point.
Our view (at least that of D. Rudrauf) is that the process we are considering involves a
form of “virtualization” that we expect to be quite indirectly related to the anatomical and
functional processes we can currently observe and model in the brain [6].

4.5. Pre-Reflective Self-Consciousness

Although reflective deliberation is a central aspect of conscious processing for adapta-
tion to the world (e.g., [68,111]), one outstanding issue concerning theories of consciousness
is to account for pre-reflective self-consciousness (PRSC), i.e., the property of consciousness
to be pre-reflectively conscious of itself. This is both a highly debated and often unsatisfac-
torily posed topic in the field. We have speculated that there might be a deep relationship
between the perspectival character of consciousness as governed by 3D projective geometry
and PRSC [68]. Our hypothesis is that the fundamental and unique type of duality that is
at the core of projective geometry might account for the pervasive yet elusive experience
of feeling aimed at (or looked at) when we aim at (or look at) something (I look into the
sky and sometimes it feels in a way like the sky is looking back at me). Such reciprocity
between the observed and the observer arises naturally from duality in projective geometry.
The question of how such properties and phenomena relate to cognition and behavior
remains to be addressed. Generally speaking, one might hypothesize that it entails a
basic form of built-in intersubjectivity and makes us always already prepared to take our
experience as if it were viewed by somebody or something else. Such a feature might be
expected to facilitate ToM and related behaviors for instance. However, the mathematical
operationalization and algorithmic integration of such a mechanism into our model is not a
trivial issue; it should be the topic of future work.
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