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Abstract: Brain insulin resistance is linked to metabolic syndrome (MetS). A low-carbohydrate,
high-fat (LCHF) diet has been proposed to have a protective effect. Therefore, this study aimed to
investigate the brain insulin resistance markers in a rat animal model of MetS and the protective
effects of the LCHF diet. Four groups of male rats (10/group) were created. Group I (Control) was
fed a regular diet. Groups II–IV were injected with dexamethasone (DEX) to induce MetS. Group II
received DEX with a regular diet. Group III (DEX + LCHF) rates were fed a low-carbohydrate, high-
fat diet, while Group IV (DEX + HCLF) rats were fed a high-carbohydrate, low-fat (HCLF) diet. At
the end of the four-week experiment, HOMA-IR was calculated. Moreover, cerebral gene expression
analysis of S-100B, BDNF, TNF-α, IGF-1, IGF-1 R, IGFBP-2, IGFBP-5, Bax, Bcl-2, and caspase-3 was
carried out. In the DEX group, rats showed a significant increase in the HOMA-IR and a decrease in
the gene expression of IGF-1, IGF-1 R, IGFBP-2, IGFBP-5, BDNF, and Bcl2, with a concomitant rise in
S100B, TNF-α, Bax, and caspase-3. The LCHF diet group showed a significantly opposite effect on all
parameters. In conclusion, MetS is associated with dysregulated cerebral gene expression of BDNF,
S100B, and TNF-α and disturbed IGF-1 signaling, with increased apoptosis and neuroinflammation.
Moreover, the LCHF diet showed a protective effect, as evidenced by preservation of the investigated
biochemical and molecular parameters.

Keywords: metabolic syndrome; brain insulin resistance; S100B; BDNF; TNF-α; IGF-1; IGF-1R;
IGFBP-2; IGFBP-5; Bax; Bcl-2; caspase-3; low carbohydrate-high fat diet

1. Introduction

The brain is a complex organ that utilizes 20% of the body’s glucose despite its small
mass, just 2% of body weight [1]. Although glucose utilization is not dependent on insulin-
stimulated translocation of glucose transporter 4 (GLUT4), the brain was labeled as an
insulin-sensitive organ early. The brain’s insulin sensitivity comes from the widespread
expression of the insulin receptor in the brain. In addition, it is now apparent that insulin
and its close relative, insulin-like growth factor 1 (IGF1), can influence brain metabolism
and cellular function [2]. IGF1 plays a pivotal role in brain development and maintenance.
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It promotes neuronal survival, differentiation, and myelination. In adults, IGF1 is linked to
cognitive function and neurogenesis. It acts through the IGF1 receptor, influencing brain
glucose uptake and utilization differently from insulin [3].

Insulin receptor pathways, commonly observed in peripheral systems, play a signifi-
cant role in various functions within the central nervous system [4].

Insulin receptors are located ubiquitously throughout the brain, and their expression
is high in specific regions, such as the cerebellum, cortex, and hypothalamus [5]. In
general, insulin’s normal physiological action via its own receptors plays a crucial role
in the development of the nervous system, influencing the differentiation, proliferation,
and growth of nerve cells. Insulin exerts its effects by binding to its receptor, leading
to increased expression and activity of insulin in the developing brain tissues, including
neurons and glial cells. Additionally, insulin is a neuroprotective agent that protects against
damage caused by ischemia, β-amyloid toxicity, oxidative stress, and apoptosis [6].

Reduced sensitivity of body tissues to insulin action is known as insulin resistance
(IR). The lack of receptor response to insulin could be due to the downregulation of insulin
receptors, the inability of insulin receptors to bind to insulin, or faulty activation of the
insulin signaling cascade. Likewise, the failure of brain cells to respond to insulin is known
as brain IR [7]. Brain IR can lead to metabolic disruptions, such as overeating and impaired
glucose utilization. It is also associated with cognitive challenges, including memory loss,
reduced flexibility, and increased risk for diseases such as Alzheimer’s. Furthermore, IR can
heighten mood disorders, including depression, anxiety, and reduced stress resilience [8].

Low-carbohydrate diets with high fat content have become popular for managing IR
state comorbidities, such as prediabetes and type II diabetes (T2DM), and for preventing
dyslipidemia [9,10]. A low-carbohydrate, high-fat (LCHF) diet improves insulin sensitivity
and treats the IR state by improving systemic inflammation and enhancement of insulin
signaling peripherally at the level of the iliac, visceral fat, and hepatic tissues [11] and
centrally at the level of the brain tissue [12] and by ameliorating mitochondrial dysfunction
and inhibiting apoptosis [13].

Accordingly, the current study aimed to investigate the gene expression of the brain
IR and apoptosis markers in a drug-induced animal model of metabolic syndrome (MetS)
and the possible preventive effects of LCHF. Our hypothesis suggested that the LCHF diet
may offer protective effects against the neurological consequences of MetS. Moreover, a
parallel group of rats fed with a conventional high-carbohydrate, low-fat diet (HCLF) was
used to confirm the potential role of LCHF.

2. Materials and Method

This study was approved by the Biomedical Ethics Research Committee, Faculty of
Medicine, King Abdulaziz University, Jeddah, Saudi Arabia (Reference No 33-21), and by
the Animal Care and Use Committee (ACUC) at King Fahd Medical Research Center, King
Abdul-Aziz University, Jeddah (Protocol Number: ACUC-20-09-21).

2.1. Animals and Experimental Protocol

This study was a nested study derived from the original research project by Al-
nami et al. [14]. Forty male Sprague-Dawley rats, weighing approximately 120 ± 20 g,
were sourced from the Animal House at King Fahd Medical Research Center in Jeddah,
Saudi Arabia. These rats were accommodated in metal mesh cages under conditions of
24 ◦C ± 3 ◦C in temperature, 40–70% humidity, and a 12/12-h light/dark cycle. For the ini-
tial 10 days, the rats were provided with unrestricted access to a standard laboratory chow
diet and water, allowing them to adapt to their new surroundings. They were maintained
under these conditions until they reached eight weeks of age.

The rats were grouped into four groups (10 rats/group) (Figure 1). Group I (Control)
received a regular rat’s diet and was injected with (100 µL) saline subcutaneously. Groups
II–IV were injected with (100 µL) dexamethasone (DEX) [14,15]. Group II (DEX): continued
the chow diet. Group III (DEX + LCHF) rats were fed a LCHF comprising 85 kcl% fat
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(5.5 g/rat), 5 kcl% carbohydrates (1.0 g/rat), and 10 kcl% protein (2.0 g/rat). Group
IV (DEX + HCLF): rats were fed a HCLF containing 85 kcl% carbohydrates (12.0 g/rat),
10 kcl% fat (2.0 g/rat), and 5 kcl% protein (1.0 g/rat). All diets used were isocaloric
(60–61 calories per rat). The diet composition and preparation were previously described
in detail by Alnami et al. [14,16].

Brain Sci. 2023, 13, x FOR PEER REVIEW 3 of 21 
 

The rats were grouped into four groups (10 rats/group) (Figure 1). Group I (Control) 
received a regular rat’s diet and was injected with (100 µL) saline subcutaneously. Groups 
II–IV were injected with (100 µL) dexamethasone (DEX) [14,15]. Group II (DEX): contin-
ued the chow diet. Group III (DEX + LCHF) rats were fed a LCHF comprising 85 kcl% fat 
(5.5 g/rat), 5 kcl% carbohydrates (1.0 g/rat), and 10 kcl% protein (2.0 g/rat). Group IV (DEX 
+ HCLF): rats were fed a HCLF containing 85 kcl% carbohydrates (12.0 g/rat), 10 kcl% fat 
(2.0 g/rat), and 5 kcl% protein (1.0 g/rat). All diets used were isocaloric (60–61 calories per 
rat). The diet composition and preparation were previously described in detail by Alnami 
et al. [14,16]. 

 
Figure 1. Flow chart of the experimental design. 

2.2. Induction of Metabolic Syndrome 
MetS was induced by dexamethasone injection (Saudi Pharmaceutical Industries 

(SPI), Riyadh, Saudi Arabia). A daily subcutaneously injection (250 µg/kg) was adminis-
tered for four weeks, according to the previously described method [14,15]. 

  

End of experiment 
Rat age 12 Weeks 

Data collection , Brain tissue , serum sample 

( Different diet started at the same time as the Dex)
Group I and II recived regular chow diet

Group III recived LCHF
Group IV revived HCLF

Induction Phase
Rat age 8 Weeks 

Rats divided into 4 groups (1 control and 3 recived  daily Dexamithasone for 3 
weeks) 

Preperatory phase 
Rat age 6 week 

12/12 h light/dark cycle). 
fed on ad-libitum standard laboratory rat chow 

Figure 1. Flow chart of the experimental design.

2.2. Induction of Metabolic Syndrome

MetS was induced by dexamethasone injection (Saudi Pharmaceutical Industries (SPI),
Riyadh, Saudi Arabia). A daily subcutaneously injection (250 µg/kg) was administered for
four weeks, according to the previously described method [14,15].
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2.3. Anthropometric Measurement and Tissue Sampling

Anthropometric measurements were conducted to evaluate the overall progress of
the disease and the effectiveness of treatments. BMI was calculated based on the weekly
measurements of height and body weight [17]. All animals were sacrificed, and a cran-
iotomy was performed to dissect the intact brains. The brain volume (in mm3) was
manually measurement using volumetric analysis; the brain volume was manually out-
lined using ImageJ image analysis software (http://rsbweb.nih.gov/ij/), referring to a
standard rat brain atlas. The brain weight (in grams) was estimated according to the
method described in [16]. After brain tissue dissection and isolation of the cerebral cor-
tex, one cerebral cortex hemisphere of each was snap-frozen in liquid nitrogen and used
immediately for RNA extraction. The other hemisphere was used for histological and
immunohistochemical examinations.

2.4. Biochemical Investigations

At the conclusion of the four-week study, the rats were anesthetized using ether. Blood
samples were withdrawn into plain plastic tubes from the retro-orbital venous plexus
after 12 h of fasting. These samples were centrifuged for 20 min and then divided into
aliquots and stored at −80 ◦C for later biochemical analysis. ELISA tests were carried out
to determine fasting glucose (using a kit from Intertek, London, UK, CS605) and insulin
levels (using the Rat Insulin ELISA kit from Novus Biologicals, LLC 10730, Centennial,
Toronto, ON, USA), following the manufacturers’ guidelines. The level of insulin resistance
(IR) was assessed using the HOMA-IR method, introduced by Matthews et al. This index
was calculated by factoring in fasting insulin and blood glucose measurements: fasting
insulin (µU/mL) × fasting plasma glucose (mg/dL) × 0.0551/22.5 [18].

Quantitative determination of serum IGF-1 (Rat IGF-1 ELISA Kit-ab213902), IGFBP-2
(Rat IGFBP-2 ELISA Kit-#ab207615; Abcam, Cambridge, MA, USA), IGFBP-5 (IGFBP5 (Rat)
ELISA Kit-Catalog Number KA4319; Abnova, USA), and TNF-α (Rat TNF alpha ELISA Kit-
ab100785; Abcam, Cambridge, MA, USA) was performed using sandwich-ELISA according
to the manufacturers’ instructions.

2.5. Histological Study

A histological study was performed to ascertain the cellular and tissue level changes
caused by MetS and the LCHF diet. Samples from the cerebral cortex were preserved in
Bouin’s solution. Subsequently, the specimens underwent dehydration through a graded
alcohol series, were clarified in xylene twice, and then were encased in molten paraffin.
Using a rotary microtome, 5-micron thick slices were prepared and set on pristine slides.
To facilitate histological analysis, these slices were then stained with hematoxylin and eosin
(H&E), according to Bancroft and Layton (2019) [19].

2.6. Immunohistochemical (IHC) Study

An immunohistochemical study was performed to visualize and quantify specific
protein expression levels related to inflammation, apoptosis, or other relevant pathways.
For immunohistochemical detection of caspase-3 and S100B reactions, sections from the
cerebrum were placed on positive slides and immune-stained using a standard avidin–
biotin peroxidase complex system according to the kit used, followed by diaminobenzidine
visualization [20]. Sections were treated with primary monoclonal antibodies for caspase-3
(Invitrogen, Carlsbad, CA, USA) at a 1:100 dilution in 3% BSA-PBS and were kept in a
humidified chamber at 4 ◦C overnight. For the S100B antigen, sections underwent a heat
treatment in 10 mM sodium citrate buffer in a microwave for 20 min, followed by cooling
with deionized water. These samples were then exposed overnight at 4 ◦C to primary
antibodies specific for S100 rabbit polyclonal antibody (DAKO, Glostrup, Denmark). The
staining was revealed using biotin-tagged anti-rabbit secondary antibodies and streptavidin
linked with horseradish peroxidase (DAKO Cytomation, Santa Clara, CA, USA), as guided
by the manufacturer. The tissue sections were then stained with hematoxylin, dehydrated
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through ethanol and xylene steps, and prepared for mounting. PBS in place of the primary
antibody served as a negative control, and any successful reaction was seen as a brown
stain, either cytoplasmic or nuclear.

2.7. Morphometric Study

The area percentages of caspase-3 and S100B immunoreactions were measured using
five immune-stained slides of five different rats for each group. Images of immunostained
cells were transferred for analysis using VideoTest Morphology software, Version 4.0 (Saint
Petersburg, Russia) with a built-in routine for area percentage measurement.

2.8. Molecular Studies

The protocol for RNA extraction was described previously by Bima et al. [21]. Briefly,
RNA was isolated from 25- to 35-mg sections of the rats’ cerebral cortex using Tri-FastTM
reagent, triazole, and chloroform (PeqLab. Biotechnologie GmbH, Nordhausen, Germany).
The RNA quantity and quality were assessed using the NanoDropTM 2000 Spectropho-
tometer (Thermo Scientific, Waltham, MA, USA) following the manufacturer’s recommen-
dations [21].

For cDNA synthesis, around 250 ng of total RNA underwent reverse transcription
using the RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, USA, K1622). A
thermal cycler (Techne TC-312, Staffordshire, UK) device was adjusted to the following
program: 25 ◦C for 5 min (primer annealing), 42 ◦C for 60 min (reverse transcription), and
a final increase to 70 ◦C for 5 min for inactivation and reaction termination.

The mRNA levels in the cerebral tissue were then assessed by RT-PCR on the Ap-
plied Biosystem 7500 detection system, utilizing the SYBR® Green PCR Master Mix (Life
Technology, Gaithersburg, MD, USA). The RCR reaction volume was 20 µL; 10 µL SYBR®

Green PCR Master Mix, 2 µL cDNA template, and 2 µL (10 pmol/µL) specific gene primers
and was completed with 6 µL nuclease-free water. The RT-PCR amplification process
involved an initial enzyme activation at 95 ◦C for 5 min, followed by 40 cycles that in-
cluded template denaturation at 95 ◦C for 15 s and annealing/extension at 60 ◦C for
1 min [21]. The rats’ primer sequences used are presented in Table A1. GAPDH was
used as an internal control (reference gene) to normalize the expression of the analyzed
genes. The specificity of the primer sequences was checked using the Primer-BLAST pro-
gram (https://www.ncbi.nlm.nih.gov/tools/primer-blast, accessed on 30 September 2021).
Melting curve analysis was performed to check the specificity of amplified PCR products.

Relative gene expression levels were represented as ∆Ct = Ct target gene—Ct reference
gene. Fold change in gene expression was calculated using comparative ∆∆CT method.

2.9. Statistical Analysis

Data were analyzed using GraphPad Prism software, version 9.5.1. The paired t-test
was used to analyze weight, height, and BMI throughout the experiment. Intergroup
differences were compared with ANOVA, and pairwise comparisons were carried out
using the Tukey method. Pearson’s r correlation coefficient was computed to assess the
linear relationships between different parameters. Data are presented as mean and standard
deviation (SD). A p-value < 0.05 was considered statistically significant.

3. Results
3.1. Effect of LCHF and HCLF Diet on the Anthropometric Parameters and HOMA-IR

This study is part of a large project; some general data, such as anthropometric
parameters and HOMA-IR data, were described previously by Alnami et al. [14]. In short,
the body mass index (BMI) showed a significant increase in the DEX group compared to
the control group. The LCHF diet caused a significant decrease in BMI compared to the
DEX group on a regular diet. On the other hand, HCLF diet-fed rats showed a significant
increase in BMI. Regarding the total brain weight and volume, a significant reduction was
detected in the DEX compared to the control group, with a significant increase in the LCHF
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diet compared to the DEX group. At the same time, the HCLF diet-fed rats showed a
significant decrease. Development of IR state was noted in DEX-treated groups of animals
based on the significant increase in HOMA-IR compared to the control group. HOMA-IR
showed a significant decrease in the LCHF diet group compared to the DEX group. On the
other hand, HCLF diet-fed rats showed a significant increase in HOMA-IR compared to the
negative control and LCHF diet-fed rat groups (Table 1). These data indicated a protective
role for the LCHF diet against developing IR associated with MetS.

Table 1. All studied animal groups’ anthropometric parameters and HOMA-IR.

Control DEX DEX + LCHF DEX + HCLF p-Value (ANOVA)

BMI (baseline) [14] 0.51 ± 0.031 0.52 ± 0.05 0.53 ± 0.05 0.51 ± 0.044 0.87

BMI (Dex induction) [14] 0.65 ± 0.07 0.76 ± 0.08 a 0.51 ± 0.034 a,b 0.93 ± 0.041 a,b,c <0.001

BMI (post-stopping Dex)
[14] 0.72 ± 0.05 0.88 ± 0.05 a 0.53 ± 0.06 a,b 0.97 ± 0.07 a,c <0.001

Brain weight (g) (post
stopping Dex) 3.89 ± 0.21 2.83 ± 0.19 a 3.76 ± 0.43 b 2.56 ± 0.17 a,c <0.001

Brain volume (mm3)
(post-stopping Dex)

1.81 ± 0.11 1.52 ± 0.09 a 1.76 ± 0.06 b 1.44 ± 0.13 a,c <0.001

HOMA-IR [14] 2.43 ± 0.19 4.89 ± 0.39 a 2.67 ± 0.29 b 5.76 ± 0.94 a,b,c <0.001

Data are presented as mean ± SD. SD: standard deviation. Statistically significant if p ≤ 0.05. a: Statistically
significant compared to the control group. b: Statistically significant compared to the DEX group. c: Statistically
significant compared to the DEX + LCHF group. Statistical analysis was performed using one-way ANOVA
followed by Tukey’s post hoc test. BMI and HOMA-IR data are from a previous study by Alnami et al. [14].

3.2. Effect of LCHF & HCLF Diet on Brain Histology

Examination of H&E-stained sections from the control group showed that the cerebral
cortex was formed of pyramidal, granular, and neuroglial cells. The pyramidal cells were
large in size with long apical dendrites, vesicular nuclei, and basophilic cytoplasm. The
granular cells appeared rounded in shape with large, rounded vesicular nuclei. Neu-
roglial cells appeared smaller in size with small, deeply stained nuclei. The homogenous
eosinophilic background (neuropil) between the nerve cells was formed of neuronal and
neuroglial cell processes and contained normal blood vessels (Figure 2A). On the other
hand, the DEX-treated group showed distinct histological changes in the form of necrotic
cells with acidophilic cytoplasm and apoptotic cells with pyknotic nuclei. Some pyramidal
cells were degenerated and irregularly shaped with darkly stained nuclei and perineural
spaces. Some regions of the neuropil showed dilated congested blood vessels with perivas-
cular spaces (Figure 2B). Light microscopic examination of cortical regions of the DEX +
LCHF group showed brain tissue was a morphology similar to normal. Multiple pyramidal
and granular cells appeared normal; however, few necrotic and apoptotic cells were found.
The blood vessels in the neuropil appeared normal (Figure 2C). Last, the DEX + HCLF
group revealed numerous pathological changes. There was a collection of neuroglial cells
(Figure 2D). Multiple degenerated pyramidal cells with darkly stained pyknotic nuclei and
cytoplasmic, vacuolation together with hypercellularity and vacuolation of neuropil, were
demonstrated (Figure 2E), as well as gliosis (Figure 2F).
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Figure 2. A photomicrograph of sections of the cerebral cortex stained with H&E. (A) Controls
showing large pyramidal cells (arrows) with long apical dendrites, vesicular nuclei, and basophilic
cytoplasm, as well as rounded granular cells (curved arrows) with large rounded vesicular nuclei.
The nuclei of neuroglial cells (tailed arrow) and normal blood vessels (BV) are seen in the neuropil
(*). (B) (Dex) shows necrotic cells (crossed arrows) with acidophilic cytoplasm, apoptotic cells (red
arrows) with pyknotic nuclei, degenerated pyramidal cells (zigzag arrows) with darkly stained
nuclei and perineural spaces, and dilated congested blood vessels (DBVs) with perivascular spaces.
Notice the presence of some normal pyramidal cells (arrows) and granular cells (curved arrows).
(C) (Dex + LCHF) shows multiple normal pyramidal cells (arrow) and granular cells (curved arrow),
and normal blood vessels (BVs) in the neuropil. Few necrotic cells (crossed arrows) and apoptotic
cells (red arrows) are seen. (D–F) (Dex + HCLF). (D) shows a collection of neuroglial cells (tailed
arrows). (E) shows degenerated pyramidal cells (zigzag arrows) with darkly stained pyknotic nuclei
and cytoplasmic vacuolation with hypercellularity and vacuolation of neuropil (*). (F) shows gliosis.

3.3. Effect of LCHF and HCLF Diet on the Expression of IGF-1, IGF-1R, IGFBP-2, and IGFBP-5
Expression in DEX-Treated Rats

As shown in Figure 3, DEX treatment resulted in a significant (p < 0.0001) decrease in
both IGF-1 and IGF-1R expression compared to the control group. Rats fed the HCLF diet
showed further exaggeration with significantly decreased IGF-1 compared to the control
(p < 0.0001) and Dex groups (p < 0.05); however, this change did not reach significant
levels in IGF-1R compared to DEX-treated rats. DEX + LCHF, on the other hand, led to
a significant increase in both IGF-1(p < 0.0001) and IGF-1R (p < 0.0001) compared to the
DEX-treated rats. Moreover, the expression of IGFBP-2 and IGFBP-5 decreased significantly
(p < 0.0001) in the DEX-treated group versus the control rats. At the same time, the
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HCLF diet significantly reduced the expression of IGFBP-2 (p < 0.05), while no change
was observed in IGFBP-5 compared to the DEX-treated group. In contrast, the LCHF diet
increased the expression of IGFBP-2 and IGFBP-5 significantly (p < 0.0001) compared to the
DEX-treated group. The changes in gene expression were similar to the changes observed in
serum (Figure 4).
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Figure 3. Low-carbohydrate, high-fat and high-carbohydrate, low-fat diets impact the brain’s IGF
and IGF-binding protein gene expression. (A) IGF-1 gene expression; (B) IGF-1 R gene expression;
(C) IGFBP-2 gene expression; (D) IGFBP-5 gene expression Data were expressed as the mean ± SD.
DEX, DEX + LCHF, and DEX + HCLF groups. DEX: rats treated with dexamethasone to induce MetS;
DEX + LCHF: rats treated with dexamethasone to induce MetS and fed the low-carbohydrate, high-fat
diet; DEX + HCLF: rats treated with dexamethasone to induce MetS and fed the high-carbohydrate,
low-fat diet (applies to all figures). Y axis (Fold expression relative to control). Statistically significant
if p≤ 0.05 *; p < 0.01 **; p < 0.0001 ****. IGF-1: Insulin growth factor-1, IGF-1 R: Insulin growth factor-1
receptors, IGFBP-2: Insulin growth factor binding protein-1, and IGFBP-5: Insulin growth factor
binding protein-5.

3.4. Effect of LCHF and HCLF Diet on the Expression of S100B, TNF-α, and BDNF in
DEX-Treated Rats

As depicted in Figure 5, in comparison to the control group, the DEX treated group
showed a significant increase in the cortical expression of S100B and TNF-α (p < 0.0001)
and a significant decrease in BDNF (p < 0.0001). Moreover, DEX rats fed the HCLF diet had
significantly increased S100B (p < 0.0001) compared to the DEX group with an insignificant
change in BDNF cortical expression. On the other hand, feeding rats the LCHF diet
significantly (p < 0.0001) decreased the expression of S100B and TNF-α compared to DEX-
treated rats with a significant increase in the expression of BDNF (p < 0.0001). Furthermore,
serum TNF-α showed a significant increase in the DEX and DEX + HCLF groups compared
to the control group, while the DEX + LCHF group showed a level similar to the control
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group. Interestingly, a significant, inverse correlation (r= −0.8668, p < 0.0001) existed
between BDNF and TNF-α.
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Figure 5. Low-carbohydrate, high-fat and high-carbohydrate low-fat diets impact the brain’s S100B,
TNF-α, and BDNF gene expression. (A) S100B gene expression; (B) TNF-α gene expression; and
(C) BDNF gene expression. (D) TNF-α serum level. Y axis of gene expression (gold expression
relative to control). Data were expressed as mean ±SD. DEX, DEX + LCHF, and DEX + HCLF
groups. Statistically significant if p ≤ 0.05 *; p < 0.0001 ****. TNF-α: Tumor necrosis factor-alpha,
BDNF: Brain-derived neurotrophic factor.

3.5. Effect of LCHF and HCLF Diet on the Expression of Caspase-3, Bax, and Bcl-2 Expression in
DEX-Treated Rats

As illustrated in Figure 6, in DEX-treated rats, there was a significant increase in the
cortical expression of caspase-3 and Bax compared to the control group (p < 0.0001), while
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there was a significant decrease in Bcl-2 versus the control rats (p < 0.0001). No significant
change was observed in Bax or caspase-3 levels in the HCLF diet group compared to the
DEX group. However, a significant decrease in Bcl-2 cortical expression was observed
t(p < 0.05). Rats fed the LCHF diet had significantly decreased expression of caspase-3 and
Bax compared to DEX-treated rats (p < 0.0001) and showed a significant increase in the
expression of Bcl-2 (p < 0.0001). Furthermore, there was a significant inverse correlation
(r = −0.7032, p < 0.0001) between Bax and Bcl-2.
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brain’s Bax, Bcl-2, and caspase-3 gene expression. (A) Bax B gene expression; (B) Bcl-2 gene expres-
sion; (C) caspase-3 gene expression; and (D) Pearson’s correlation between Bcl-2 and Bax. Y axis
(fold expression relative to control). Data are expressed as mean ± SD. DEX, DEX + LCHF, and
DEX + HCLF groups. Statistically significant if p ≤ 0.05 *; p < 0.01 **; p < 0.0001 ****.

3.6. Effect of LCHF and HCLF Diet on Brain Caspase-3 and S100B Expression

Immunohistochemistry was performed to study the expression of caspase-3 and S100B
in brain cells (Figure 7). Minimal caspase-3 and S100B-positive cells could be observed in
the immunohistochemically stained sections of the control group. Numerous caspase-3-
and S100B-positive cells could be observed in the immunostained sections of the DEX
group. On the other hand, the DEX + LCHF group showed a distribution pattern of the
positively immune-stained neuronal cells by caspase-3 and S100B near that of the con-
trols. In the DEX + HCLF group, the distribution of positively immunohistochemically
neuronal cells stained for caspase-3 and S100B was higher than in the DEX group. The
mean area % of caspase-3 and S100B reaction in all groups is presented in Figure 7I,J. There
was a significant increase (p ≤ 0.001) in caspase-3 and S100B reactions in the DEX vs.
DEX + HCLF group compared with the control group but insignificant increases in
DEX + LCHF compared to the control group, all of which indicated the protective role of
LCHF against apoptosis and neuronal cells stress in this model.
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Figure 7. A photomicrograph of sections of the cerebral cortex immunohistochemically stained
with caspase-3 and S100B. (A) Control group showing minimal caspase-3 expression (arrowheads).
(B) Control group showing minimal S100B expression (arrowheads). (C) DEX group showing moder-
ate caspase-3 reaction (arrowheads). (D) DEX group showing moderate S100B reaction (arrowheads).
(E) DEX + LCHF group showing near control caspase-3 expression. (F) DEX + LCHF group show-
ing near control S100B expression. (G) DEX + HCLF group showing strong caspase-3 expression.
(H) DEX + HCLF group showing strong S100B expression. (I,J) represent the mean area % of caspase-3
and S100B expression, respectively. Data are expressed as mean ± SD and on the high-carbohydrate,
low-fat diet. Statistically significant if p < 0.0001 ****.
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3.7. Correlations of All Measured and Calculated Data in All Studied Rats

Significant correlations were detected between the measured and the calculated pa-
rameters in all rats merged, as shown in Figure 8. HOMA-IR, insulin, and glucose levels
were compared to IR, apoptosis, inflammatory, and neurogenesis parameters. All brain
IR markers (IGF-1, IGF-1, IGFBP-2, IGFBP-5) were strongly, negatively correlated with
HOMA-IR. The apoptotic markers caspase-3 and Bax showed a strong, positive correlation
with high glucose, HOMA-IR, and inflammatory markers (TNF-α), while the anti-apoptotic
Bcl-2 expression was negatively correlated. Markers of brain inflammation or brain damage
(S100B and TNF-α) also showed a strong, positive correlation with insulin and HOMA-IR;
in contrast, brain neurogenesis and neuroprotection markers (BDNF) showed a strong,
negative correlation. All correlations were significant (p < 0.0001).
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4. Discussion

The current study revealed that MetS is associated with changes in the brain at the
morphological and molecular levels.

Our study confirmed the development of brain IR in a DEX-treated rat model of MetS
by decreasing the cerebral expression of IGF-1, IGF-1R, IGFBP-2, and IGFBP-5. Furthermore,
the study showed the protective role of LCHF diet in this model.

Aguirre et al. and de la Monte et al. reported a decrease in IGF-1/IGF-1R expression
in a model of IR and streptozocin-induced T2DM, which agreed with our findings [22,23].
Inhibited IGF-1/IGF-1R in the brain is a marker of impaired brain energy metabolism and
neurotransmitter function, as these markers mediate neuronal survival, plasticity, energy
metabolism, and neurotransmitter function [24,25]. Moreover, IGF-1/IGF-1R expression
inhibition is an essential mediator of brain IR and its consequent pathology [26,27].

Dysregulation of insulin and IGF-1 signaling could explain many associated brain
pathological changes of MetS. Insulin is involved in oxidative stress, enhanced apoptosis,
impaired protein synthesis, dysregulated autophagy, and neuroinflammation [28,29]. Thus,
the interplay among hyperinsulinemia, insulin receptor resistance, downregulation of
insulin-like growth factor-1 receptor, and IR signaling pathways could explain the molecular
basis of the brain IR state [22,30].
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IGF-binding proteins (IGFBP) are a family of six transporter proteins that depend on
and follow the IGF function [31,32]. IGFBPs mediate the actions of IGFs by regulating their
bioavailability. IGFBP-2 [32] and IGFBP-5 [33] are the key members contributing to unique
physiological and metabolic processes. These metabolic processes include phosphatidyli-
nositol 3-kinase (PI3K)/alpha serine/threonine-protein kinase (Akt) signaling and mitogen
activated protein kinase (MAPK) signaling-mediated pathways, such as development, cell
proliferation, differentiation, and migration, as well as inhibition of apoptosis. Moreover,
they also include cyclin-dependent kinase inhibitor 1 (p21), as well as the angiogenic
mediator vascular endothelial growth factor (VEGF) [32,33].

Hyperinsulinemia of MetS and the IR state downregulate the expression of IGF-
binding proteins [34]. This finding was confirmed in the current study. Moreover, low
expression levels of IGFBP-2 at the adipose tissue mRNA and its circulating protein levels
are connected to hyperglycemia and hypertriglyceridemia and positively correlate with
insulin sensitivity. Accordingly, low levels of IGFBP-2 at the gene expression level and low
circulating protein are considered MetS biomarkers [35,36].

IGFBP-5 chromosomal deletion and low expression are associated with increased
adiposity and marked glucose intolerance [37]. Its downregulation is strictly linked to the
IR state [38]. Like in our results, IGFBP-5 mRNA and protein levels were decreased in a
critical IR-related comorbidity: non-alcoholic fatty liver disease (NAFLD) [33]. This finding
proved its involvement in the pathogenesis of IR syndrome.

This study revealed a significant increase in neuroinflammation, and brain tissue
damage was confirmed by increased cerebral expression of S100B and TNF-α (differing in
degree) in all groups that received dexamethasone, with decreased BDNF expression in
DEX and DEX + HCLF only. In the DEX + LCHF group, although there was an elevation in
the biomarkers, it was not as pronounced as in the other groups and was almost comparable
to control group.

The human brain-derived neurotrophic factor (BDNF) is a master neurotrophin highly
expressed in the hippocampus. It promotes neurogenesis, neuroplasticity, and neuropro-
tection. Furthermore, BDNF is an anorexigenic protein that regulates the body’s energy
hemostasis [39]. Like in our results, Lee et al. [40], Motamedi et al. [41], Jamali et al. [42],
and Abdulsada et al. [39] reported that BDNF is downregulated in MetS and is involved in
the pathogenesis of neurodegeneration.

S100B is a calcium-binding protein involved in regulating brain metabolism. It is
present in high concentrations in the glial cells of the central nervous system. Its expression
is increased in the presence of brain tissue damage [43] and chronic cerebral ischemia, as its
level is inversely proportional to cerebral blood flow. Moreover, oxidative stress [44] and
neuroinflammation [45] induce its expression. These findings were confirmed in the current
study, as there was concomitantly increased expression of cerebral TNF-α in rats with MetS
compared to the controls in parallel with increased S100B. The serum level of S100B is
directly correlated with hyperglycemia and hyperinsulinemia in streptozocin-induced type
II diabetes as a model of IR [46]. This concept supports our hypothesis that IR is associated
with increased expression of S100B in the brain. These mechanisms are proposed to explain
the brain’s IR pathophysiology and development [47]. In this study, increased expression of
cerebral S100B was also detected at the protein level, as revealed by immunohistochemical
examination, following the same expression pattern at the molecular level.

Increased apoptosis is a hallmark of MetS. It was confirmed in the present study by
the increased expression of caspase-3 and Bax apoptotic genes with the decrease in the
Bcl-2 anti-apoptotic gene.

Increased cerebral apoptosis in MetS and IR in our study coincided with what was
previously published by Nuzzo et al. [48], Rahmati et al. [49], and Feng et al. [50].

In physiological conditions, glucose is the primary energy source for the brain, and the
continuous supply of glucose is compulsory for neuronal activities, including regulation
of apoptosis, neurogenesis, and neuronal firing [51]. In MetS and other IR conditions,
despite hyperglycemia, the brain experiences decreased glucose transport and utilization,
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leading to reduced glucose availability for brain cells [52] and dysregulation of neuronal
apoptosis [53]. This mechanism could be an additive factor in developing brain IR and its
neurodegenerative consequences.

Moreover, the brain energy supply is diminished due to microvascular and macrovas-
cular changes and defective glucose utilization. This cerebral, energetic defect induces
cerebral cell apoptosis [54].

In our study, the brain weight and volume were reduced in the MetS rat group com-
pared to the normal control rats. This finding correlates with all of the molecular changes
(neuroinflammation and apoptosis) and the high HOMA-IR value, indicating IR and its as-
sociated hyperinsulinemia [8,55–57]. Chronic hyperinsulinism [58] and atherosclerosis [57]
are important mechanisms that explain this finding. Hyperinsulinemia increases peripheral
lactate levels, subsequently increases lactate’s net flux across the blood–brain barrier (BBB),
and decreases energy metabolism within the brain cells, especially the astrocytes, leading
to brain atrophy [59]. Oxidative stress is an essential mechanism of IR [60]. It also leads to
oxidation-mediated cell death, gliosis, and apoptosis, which could explain cerebral atrophic
changes [61].

Reduced brain weight coincided with some histological changes, as our study showed
evidence of apoptosis and degenerated neuroglial cells and pyramidal cells.

Neuroimaging studies revealed structural and functional changes in patients with
chronic IR as documented in T2DM compared with healthy individuals [8]. Furthermore,
cerebral atrophy is detected more frequently in patients with IR and T2DM than in those
without these conditions at the same age [62].

Based on these previously discussed morphological, biochemical, and molecular
effects of MetS and IR, we investigated the proposed protective effect of the LCHF diet in
comparison to the regular or HCLF diet in the MetS rat model.

LCHF diet is also known as the ketogenic diet (KD), as it induces the production of
small amounts of ketone bodies (KBs). This condition is called “nutritional ketosis,” as it
does not affect the normal blood pH of 7.4, which is benign, physiological, and safe [63].
The KD affects IR-related disorders. It improves insulin sensitivity, decreases protein
glycation, and has anti-inflammatory and antioxidant properties [64].

Increases in cerebral expression of IGF-1, IGF-1R, IGFBP-2, and IGFBP-5 in the LCHF-fed
rat model compared to the MetS group were noted in the present study at the molecular and
serum protein levels. These findings agree with Montella et al. and Lilamand et al. [65,66].
This effect could be explained by the brain’s metabolic shift to use ketones as a source of
energy rather than carbohydrates [66].

Our study revealed a significant increase in BDNF with decreases in S100B and TNF-α
expression in the LCHF-fed rats compared to the MetS group.

Previous reports have indicated increased BDNF under nutritional and therapeutic
ketosis [67–69]. β-hydroxybutyrate (βOHB) is the leading enhancer of BDNF expres-
sion [70], as it protects the neurons against oxidative stress and enhances mitochondrial
respiration [71].

In addition, a decrease in cerebrospinal fluid S100B in rats has been reported under
the effects of the KD [72,73]. Like our study, Ziegler et al. (2004) [74] and Vizuete et al.
(2013) [72] reported a decrease in S100B in response to the KD.

Moreover, the anti-neuroinflammatory effect of LCHF on brain cells, as evidenced by
decreased TNF-α expression, was reported by Jiang et al. [75] in their review article and was
confirmed in the current study. The KB-mediated anti-inflammatory effect is induced by the
release of anti-inflammatory cytokines and inhibited pro-inflammatory types, such as NF-
κB and Ikappa B kinase [76]. βOHB suppresses stress-related inflammasome production
in the endoplasmic reticulum [77]. Moreover, the role of KD in neuroprotection is also
mediated by increasing corticosterone levels, exaggerating autophagy and oligodendrocyte
regeneration [64].

This study also showed a decrease in apoptotic gene expression of Bax and caspase-3
and a decrease in the immunoreactivity of caspase-3 with a simultaneous and correlated
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increase in the Bcl-2 anti-apoptotic gene. These findings confirm the anti-apoptotic effect
of the ketogenic LCHF diet [12,13,78]. This effect is related and complementary to its anti-
neuroinflammation [79], antioxidant [80], and mitochondrial enhancement effects [81,82].

In the current study, brain weight and volume and the cerebral cortex histological
picture were close to normal in the MetS model fed the LCHF diet, indicating the protective
role of this diet. This finding also corresponded to a decrease in the HOMA-IR value.
Davis et al. [83] discussed the restoration of brain volume and metabolic activity under
the effect of diet-induced ketosis in their review article. There is controversy about the
impact of ketosis and its duration on brain volume and weight. Our results suggest that
physiological ketosis preserves brain volume and weight. Furthermore, the antioxidative,
mitochondrial biogenesis-enhancing, anti-inflammatory, and anti-apoptotic effects could
explain the beneficial impact of a ketogenic diet on brain volume and weight [84,85].

To determine the impact of the LCHF diet and validate its protective influence on
the studied variables, we also evaluated a parallel group of rats on a conventional high-
carbohydrate, low-fat diet (HCLF). Notably, despite being isocaloric to the LCHF diet,
the HCLF diet led to a significant decline in all examined markers related to cerebral IR,
inflammation, and apoptosis. The development of hyperinsulinemia could be explained by
the HCLF’s high carbohydrates and low-fat or even its high carbohydrates alone and the
consequent effect resulting from high insulin, as described by Joseph et al. [86]. By further
comparing the results of the HCLF-fed group of animals to those provided with LCHF, our
hypothesis was better illustrated and confirmed.

The implications of the current study are reflective of understanding of brain insulin
resistance (BIR). The expression changes in IGFBP-2 and IGFBP-5 could serve as potential
indicators of BIR severity. These variations imply a connection between systemic and brain
insulin resistance and might illuminate broader metabolic dysfunctions. By targeting these
expressions, we could open new treatment avenues for BIR. Additionally, our observations
on the altered levels of proteins, such as S100B, TNF-α, and BDNF, provide deeper insights
into BIR’s molecular intricacies. Specifically, with S100B and TNF-α linked to neuroin-
flammation and a decline in BDNF signifying diminished neurotrophic support, we can
better appreciate the hallmarks of BIR. The current study also underscored the potential
of the low-carb, high-fat (LCHF) diet in BIR prevention and treatment. However, tailored
approaches are necessary, and we emphasize the need for continued research in this area.

5. Conclusions

The current study results concluded that brain IR is a fundamental element of MetS.
MetS is associated with morphological changes due to decreased brain weight and volume
and molecular changes in the form of dysregulated gene expression of BDNF, S100B, and
TNF-α. In addition, there is a disturbed insulin growth factor-1 signaling pathway, as
presented by inhibited gene expression of insulin-like growth factor 1/insulin growth
factor receptor (IGF-1/IGF-1R), IGFBP-2, and IGFBP-5. Increased apoptosis is a hallmark of
MetS, as presented by the increased expression of caspase-3 and Bax apoptotic genes with a
simultaneous decrease in the Bcl-2 anti-apoptotic gene. The administration of a LCHF has
a protective effect on preventing the metabolic effects of MetS. This effect was proven at the
biochemical and molecular levels, as presented by restoring the biochemical and molecular
parameters nearly to those of the control group expression levels. Further molecular
research is recommended to explore the molecular mechanism of the ameliorative effect of
the LCHF diet on MetS-associated cerebral IR.
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Appendix A

Table A1. The primer sequences of the analyzed genes.

Gene The Primer Sequence Reference

S100B
forward 5′-TAG TCC TTG GAC ACC GAA GC-3′

[87]
reverse 5′-CAT CAA TGA GGG CAA CCA T-3′

BDNF
forward 5′-CAG GGG CAT AGA CAA AAG-3′

[88]
reverse 5′-CTT CCC CTT TTA ATG GTC-3′

TNF-α
forward 5′-AAT GGC CTC CCT CAT CAG TT-3′

[89]
reverse 5′-CCA CTT GGT GGT TTG CTA CGA-3′

IGF-1
forward 5′-AAC CTG CAA AAC ATC GGA AC-3′

[90]
reverse 5′-GCA GCC AAA ATT CAG AGA GG-3′

IGF-1 R
forward 5′-GAC AGT GAA TGA GGC TGC AA-3′

[90]
reverse 5′-CCA GCC ATC TGG ATC ATC TT-3′

IGFBP-2
forward 5′-AGA ATG ATG GGG CTC ACG C-3′

[91]
reverse 5′-TTT CTG CTG GTG TTT GGG GT-3′

IGFBP-5
forward 5′-GGG CTC TTT CGT GCA TTG TG-3′

[91]
reverse 5′-ATC TTG GTT TGC TCG CCG TA-3′

Bax
forward 5′-CGG CGA ATT GGA GAT GAA CTG G-3′

[92]
reverse 5′-CTA GCA AAG TAG AAG AGG GCA ACC-3′

Bcl-2
forward 5′-TGT GGA TGA CTG ACT ACC TGA ACC-3′

[93]
reverse 5′-CAG CCA GGA GAA ATC AAA CAG AGG-3′

Caspase-3 forward 5′-GTG GAA CTG ACG ATG ATA TGG C-3′
[93]

reverse 5′-CGC AAA GTG ACT GGA TGA ACC-3′

GAPDH
forward 5′-TCC CTC AAG ATT GTC AGC AA-3′

[89]
reverse 5′-AGA TCC ACA ACG GAT ACA TT-3′
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