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Abstract: Neurocritical care focuses on monitoring cerebral blood flow (CBF) to prevent secondary
brain injuries before damage becomes irreversible. Thus, there is a critical unmet need for contin-
uous neuromonitoring methods to quantify CBF within the vulnerable cortex continuously and
non-invasively. Animal models and imaging biomarkers can provide valuable insights into the
mechanisms and kinetics of head injury, as well as insights for potential treatment strategies. For this
purpose, we implemented an optical technique for continuous monitoring of blood flow changes
after a closed head injury in a mouse model, which is based on laser speckle contrast imaging and a
fiber camera-based approach. Our results indicate a significant decrease (~10%, p-value < 0.05) in
blood flow within 30 min of a closed head injury. Furthermore, the low-frequency oscillation analysis
also indicated much lower power in the trauma group compared to the control group. Overall, blood
flow has the potential to be a biomarker for head injuries in the early phase of a trauma, and the
system is useful for continuous monitoring with the potential for clinical translation.

Keywords: cerebral blood flow; speckle contrast optical spectroscopy (SCOS); laser speckle contrast
imaging; traumatic brain injury

1. Introduction

Traumatic brain injury (TBI) is a significant public health concern and is a leading cause
of death and disability worldwide, especially in children, adolescents, and young adults [1].
Neurocritical care focuses on monitoring CBF to prevent or detect and treat secondary
brain injuries before damage becomes irreversible [1,2]. Thus, there is a critical unmet
need for continuous neuromonitoring methods to quantify CBF within a vulnerable cortex
continuously and non-invasively. Existing neuromonitoring technologies have several
limitations [1–7]. Invasive measures of regional CBF require surgical burr hole placement
of a thermal diffusion or laser Doppler flowmetry probe, which attaches to a single, small
location [3]. Transcranial Doppler (TCD) ultrasound (US) measures flow velocity within
large cerebral arteries but cannot measure cerebral microcirculation and is challenging to
measure over a long period of time [1].

The use of optical blood flow measurements and animal models for TBI and closed
head injury (CHI) has been motivated by the need for a better understanding of the under-
lying mechanisms, biomarkers, and potential therapeutic targets for these conditions [8–11].
TBI can cause significant changes in cerebral blood flow and metabolism, which can lead to
further damage and complications.

Commercially available optical methods such as Near-Infrared Spectroscopy (NIRS)
use a diffuse optical technique that allows for non-invasive continuous monitoring of
hemodynamics in vivo [6,7,12–16]. However, this technique only measures changes in the
concentration of different chromophores and cannot directly calculate continuous CBF.
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Laser Doppler scanning and speckle contrast imaging have also shown promise for blood
flow studies in animals but require extensive skull clearance and are limited in their use for
bedside monitoring [17,18].

We used fiber camera-based speckle contrast optical spectroscopy (SCOS) [19–29] to
measure blood flow in deep tissue. The standard technology for this is continuous wave
diffuse correlation spectroscopy (DCS), which has limitations in terms of cost, speed, and
the number of detectors that can be used. The fiber camera setup can incorporate multiple
fibers in a single camera, making it more cost-effective and increasing both temporal and
spatial resolution. In this research, we monitored blood flow changes in a TBI model
in mice, which was caused by using a weight-drop apparatus, a well-established model
for studying neurophysiological deficits and cell death. Accurate monitoring of cerebral
blood flow (CBF) after head trauma is essential for injury prognosis and planning optimal
treatment [13,30,31]. The research aimed to continuously monitor and quantify the changes
in blood flow non-invasively by using a fiber camera-based approach using SCOS for
measuring and monitoring CBF following closed head injury in a mouse model.

2. Materials and Methods
2.1. Study Design

The animal protocol was accepted by the department of Laboratory Animal Resources
(LAR) of Wright State University. Twenty female C57BL/6J mice were used. The mice were
anesthetized using an isoflurane vaporizer unit with 5% isoflurane while in the anesthesia
chamber. After the initial anesthesia, the mice were given 2.5% isoflurane and fitted with a
nose cone to maintain their unconscious state during the measurements.

The experiment was designed to investigate the changes in blood flow in mice after
TBI induction, and the results were compared to the control measurements. The weight-
drop technique was chosen for inducing TBI as it closely mimics focal head trauma, and
the optical setup was used to record blood flow changes to study the effects of TBI on
cerebral blood flow. The experiment involved a total of 20 mice, which were divided into
two groups: 10 control mice and 10 mice designated for the induction of traumatic brain
injury (TBI). The first step of the experiment involved taking control measurements in the
control group of mice. These measurements were taken for a period of 30 min to establish a
baseline measurement of blood flow. In the TBI mice group, the weight-drop technique
was used to cause the TBI, which involved dropping a cylindrical metallic weight weighing
100 g from a height of 90 cm onto the head of the mouse between the anterior coronal
suture and posterior coronal suture. After TBI was induced, the mice were immediately
transferred to the optical setup platform to record optical measurements for a duration of
30 min. Throughout the process, the mice were kept under anesthesia to ensure that they
did not experience any pain or discomfort. For the control and TBI groups, as soon as the
3 min optical measurements were complete, the mice were euthanized using the cervical
dislocation technique.

2.2. Fiber-Based Speckle Contrast Optical Spectroscopy Setup and Analysis

The custom fiber-based SCMOS system is shown in Figure 1. It consists of a continuous-
wave high-coherence laser source with a 785 nm wavelength (DL785-100-SO, CrystaLaser
Inc., Reno, NV, USA), a sCMOS camera (Zyla 5.5 sCMOS, Andor, An Oxford Instruments
Company, Concord, MA, USA), coupled with a zoom lens (MVL6X12Z, Navitar Inc.,
Rochester, NY USA) to adjust magnification and speckle size, a 600 µm core diameter
multi-mode source fiber, and a multielement flexible custom imaging bundle from Schott
with core diameter of 1.93 mm and 17,000 individual elements capable of collecting speckle
patterns and transmitting them to the sCMOS camera. In general, the system has the
capability to measure multiple source–detector combinations by scanning the source and
by coupling multiple image fibers to the camera. However, here we used only one source–
detector pair for the brain. To secure the source and detector fibers, a custom optical probe
was produced using a 3D printer, and a flexible ninjaflex filament was used on each mouse’s
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head. The source and detector fiber separation was set at 5 mm, and the camera’s exposure
time was set at 20 ms.
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Figure 1. Block diagram of the SCOS device setup illustrating various components and their
interconnections.

The images were acquired using MATLAB (MathWorks, Inc., Version: 9.10.0 (R2021a),
Natick, MA, USA). The rCBF values were obtained through data processing and analysis.
SCOS examines speckle patterns generated by the interference of coherent light scattered by
particles, such as red blood cells. The movement of these particles causes changes in optical
power and speckle pattern blurring, which can be used to estimate blood flow through
speckle contrast Ks. The relationship between contrast and flow depends on the scattering
framework, particle motion, and the presence of static scattering with the relationship
of 1/K2

s = BFI [19–29], where BFI is the blood flow index, which can be described as an
estimation of perfusion, according to the speckle contrast optical spectroscopy theory. This
method is easy to use and allows for real-time data processing, which is why it is widely
used in many SCOS applications.

Speckle contrast, Ks, is given by Ks = σs
<I> , where <I> and σs are the mean and

standard deviation of the intensity in the surrounding area of a pixel. The acquired
frames were corrected against the average intensity of 500 background images, where the
intensity of the mean of dark background images was subtracted from the signal as dark
noise correction before commencing data collection for the experiment, and an area of
200 × 200 pixels of the corrected speckle pattern was used for 1/K2

s calculation.
In our initial experiment, we compared the SCOS results with a lab-standard diffuse

correlation spectroscopy system, which was detailed in our previous publication [32].
Briefly, the DCS system consists of a long-coherence (~10 m) laser source (785 nm Crysta-
Laser Inc., Reno, NV, USA), eight NIR-optimized single-photon counting modules (SPCM-
NIR, Excelitas, Vaudreuil-Dorion, QC, Canada), and an 8-channel auto-correlator board
(Correlator.com), of which one channel was used. A single multi-mode fiber (200 µm core
diameter, 0.39 numerical aperture (NA)) was used to guide the 785 nm laser light to the
scalp, and a single-mode fiber (5 µm core diameter, NA of 0.13) collected the light emitted
from the scalp to the single-photon-counting modules. The separation distance between
the source and the detector fiber was set at 5 mm.

3. Results

In order to evaluate the custom fiber camera SCOS system, the results were compared
to those obtained from the diffuse correlation spectroscopy (DCS) system, which is consid-
ered a standard in the field [9]. The DCS readings and the SCOS readings from the newly
created device were taken at the same time during experiments involving both mouse TBI
and control models, with each system using a single channel. The DCS system utilized a
single-mode fiber as its detector fiber, and both detector fibers (single-mode fiber for DCS

Correlator.com
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and imaging fiber for SCOS) were placed at the same distance from the source (5 mm) and
as close to each other as possible. The results, depicted in Figure 2, showed that the fiber
camera SCOS system was able to accurately detect and measure changes in blood flow
and observe the expected trends, demonstrating its reliability for future in vivo studies
on blood flow changes. The control model, where the mouse was anesthetized and in
resting condition throughout the experiment, showed a relative blood flow change of less
than 4% for both devices, as seen in Figure 2a, while in the TBI model experiment, the
fiber camera SCOS system showed an approximately 15% change, while the DCS device
showed an approximately 18% change 30 min after impact and the induction of TBI, as
seen in Figure 2b. The trends of relative cerebral blood flow changes in both devices were
closely correlated, validating the effectiveness of the developed device as compared to the
established DCS technique.
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Figure 2. (a) Plot of change in CBF for control mice over 30 min using DCS and SCOS. (b) Plot of
change in CBF for TBI mice for 30 min after impact using DCS SCOS.

After the device was validated through simultaneous comparison with DCS, mice
experiments were performed to detect the capability of the device to differentiate between
the TBI group and the control mice population based on the change in blood flow in the
cerebral region.

The results showed that the mean relative blood flow change for the control mice
was less than 4%, while the mean relative blood flow change for the TBI mice was around
10%, 30 min after impact (Figure 3a). Figure 3b indicates the average trace of percentage
change in relative cerebral blood flow for both the control and the TBI mice model. The
experimental results are presented as the mean (µ) and standard error (SE) of relative CBF of
10 sample mice in each case (µ ± SE) throughout the 30 min timeline of data measurement
in the figure mentioned, where the standard error (SE) can be calculated by dividing the
standard deviation (σ) of the sample by the square root of the sample size (n). This finding
clearly demonstrates a significant difference between the control and the TBI population
and that the technique can detect the difference between the two groups.

Brain Sci. 2023, 13, x FOR PEER REVIEW 4 of 9 
 

newly created device were taken at the same time during experiments involving both 

mouse TBI and control models, with each system using a single channel. The DCS system 

utilized a single-mode fiber as its detector fiber, and both detector fibers (single-mode fi-

ber for DCS and imaging fiber for SCOS) were placed at the same distance from the source 

(5 mm) and as close to each other as possible. The results, depicted in Figure 2, showed 

that the fiber camera SCOS system was able to accurately detect and measure changes in 

blood flow and observe the expected trends, demonstrating its reliability for future in vivo 

studies on blood flow changes. The control model, where the mouse was anesthetized and 

in resting condition throughout the experiment, showed a relative blood flow change of 

less than 4% for both devices, as seen in Figure 2a, while in the TBI model experiment, the 

fiber camera SCOS system showed an approximately 15% change, while the DCS device 

showed an approximately 18% change 30 min after impact and the induction of TBI, as 

seen in Figure 2b. The trends of relative cerebral blood flow changes in both devices were 

closely correlated, validating the effectiveness of the developed device as compared to the 

established DCS technique. 

 

Figure 2. (a) Plot of change in CBF for control mice over 30 min using DCS and SCOS. (b) Plot of 

change in CBF for TBI mice for 30 min after impact using DCS SCOS. 

After the device was validated through simultaneous comparison with DCS, mice 

experiments were performed to detect the capability of the device to differentiate between 

the TBI group and the control mice population based on the change in blood flow in the 

cerebral region. 

The results showed that the mean relative blood flow change for the control mice was 

less than 4%, while the mean relative blood flow change for the TBI mice was around 10%, 

30 min after impact (Figure 3a). Figure 3b indicates the average trace of percentage change 

in relative cerebral blood flow for both the control and the TBI mice model. The experi-

mental results are presented as the mean (μ) and standard error (SE) of relative CBF of 10 

sample mice in each case (μ ± SE) throughout the 30 min timeline of data measurement in 

the figure mentioned, where the standard error (SE) can be calculated by dividing the 

standard deviation (σ) of the sample by the square root of the sample size (n). This finding 

clearly demonstrates a significant difference between the control and the TBI population 

and that the technique can detect the difference between the two groups. 
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Further statistical analysis was carried out to compare the magnitude change in
cerebral blood flow between the TBI and the control mice. The Wilcoxon rank sum test was
performed, and the results showed a very strong and significant difference between the
relative blood flow of the TBI mice and the control mice, with a p-value < 10−4. The results
indicate that the device was sensitive in detecting the changes in cerebral blood flow due
to TBI and has the potential to differentiate between the control group and the TBI group
in mice.

Low-frequency oscillations (LFOs) can serve as a potentially novel metric for brain
function, and optical blood flow and oxygenation can detect these oscillations [33–57].
To extract low-frequency oscillations (LFOs) from relative cerebral blood flow, the Welch
method was used to obtain power spectral densities (PSDs), as was carried out in previous
studies [58–63].

Figure 4 displays the mean and standard error of LFO spectrums for the 10 mice in each
group, namely the control and the TBI population. A comparison of the results between
the control and the TBI mice reveals that both groups have similarly shaped frequency
responses. Notably, both groups display significant activity in the range of 0.01–0.06 Hz.
Furthermore, the PSD of the TBI mice population is around 0.014 (a.u) at the very low
frequency band of ~0.02 Hz, while for the control population, it is around 0.021 (a.u). These
findings are consistent across all 10 mice in each group, as demonstrated by the standard
error in Figure 4. Overall, the power spectra of spontaneous low-frequency oscillations
show significant attenuation in all frequencies.
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4. Discussion

This study shows that using optical blood flow measurements is a viable method for
monitoring blood flow in mice with traumatic brain injuries. These measurements can
provide continuous and non-invasive monitoring of blood flow, which can be critical in
understanding the trauma stage, which can be helpful in neurocritical care as it aims to limit
secondary injuries by closely monitoring the brain. The pilot study successfully measured
blood flow in mice’s heads for approximately 30 min, demonstrating the feasibility of
providing continuous, longitudinal measurements of blood flow. The results align well
with those of Abookasis et al. [64], who observed a 13% decrease, and Witkowski et al. [65],
who also observed a similar decrease by using the superficial optical speckle imaging
method. Buckley et al. used DCS for monitoring repetitive concussions in mice for 24 h
and several days and observed a cerebral blood flow (CBF) decrease at 4 h and a gradual
daily based decrease in CBF until day 8 [66]. Fisher et al. observed an acute blood flow
decrease using DCS within 30 min [67].

The attenuation of the power spectrum in the resting state or spontaneous oscillation
in the TBI group are most likely due to the disruption of functional connectivity in brain
networks due to induced trauma. Thus, low-frequency oscillations (LFOs) might be useful
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for providing feedback and identifying potential biomarkers for assessing the trauma stage
and the efficacy of intervention.

It should be noted that there are potential limitations to our study. Although the head
is a complex structure containing many tissue layers, these layers are very thin in mice
(skull~500 µm). Therefore, here the head is considered a homogenous medium. The results
obtained from the experiment represent the average values of a single volume. Another
potential limitation of this approach is the need for space on the scalp for the contact optical
probe, which may be occupied by numerous invasive and non-invasive other devices
during multimodal measurements in future human use. To address this limitation, optical
fibers can be arranged and placed as required in custom 3D-printed probes, which can
reduce the additional space required. This can also enable routine correlation of optical
metrics with other modalities for a more comprehensive understanding of the state of the
monitored tissue. Other limitations include that the study only studied 30 min post-trauma;
a longer time frame might be useful for mimicking clinical cases. The approach is not
limited in this sense; it can allow continuous longitudinal monitoring for hours and days.
Furthermore, the signal is averaged over a volume, and an imaging approach would allow
for assessing focal traumatic changes [68].

5. Conclusions

In this study, we utilized a fiber camera-based speckle contrast optical spectroscopy
(SCOS) technique to monitor blood flow changes in the brain following traumatic brain
injury (TBI) in mice. This technique offers the advantage of being non-invasive and provides
continuous measurements of cerebral blood flow (CBF), which is critical for understanding
the pathophysiology of the brain following trauma.

SCOS has the potential to become a valuable tool for monitoring brain hemodynamics
in a clinical setting, such as in the NICU or in the field. This is particularly important
as monitoring CBF changes in real-time following TBI can help guide intervention and
prevent secondary brain injury. The non-invasive and continuous nature of SCOS can
provide clinicians with the necessary information to make informed decisions in real time,
which could have significant impacts on patient outcomes.
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