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Abstract: Why do neurons communicate through spikes? By definition, spikes are all-or-none neural
events which occur at continuous times. In other words, spikes are on one side binary, existing
or not without further details, and on the other, can occur at any asynchronous time, without the
need for a centralized clock. This stands in stark contrast to the analog representation of values and
the discretized timing classically used in digital processing and at the base of modern-day neural
networks. As neural systems almost systematically use this so-called event-based representation in
the living world, a better understanding of this phenomenon remains a fundamental challenge in
neurobiology in order to better interpret the profusion of recorded data. With the growing need for
intelligent embedded systems, it also emerges as a new computing paradigm to enable the efficient
operation of a new class of sensors and event-based computers, called neuromorphic, which could
enable significant gains in computation time and energy consumption—a major societal issue in
the era of the digital economy and global warming. In this review paper, we provide evidence
from biology, theory and engineering that the precise timing of spikes plays a crucial role in our
understanding of the efficiency of neural networks.

Keywords: spikes; asynchronous computing; neurobiology; computational neuroscience; neuromorphic
engineering; heterogeneous delays; spiking motifs; polychronization

1. Introduction: Importance of Precise Spike Timings in the Brain
1.1. Is There a Neural Code?

Neural activity is directly influenced by our immediate environment and by internal
states and is structured in order to generate motor actions. The efficiency of these actions is
key for survival, which is the sole determinant in the light of natural selection. A central
question of modern neuroscience is to better understand the essence of neural activity, as
exemplified by the recordings observed in neurobiological experiments. One sometimes
uses the expression “decoding the neural code”, although this implies the existence of
a code, i.e., an explicit representation of cognitive processes within the neural activity.
Nevertheless, we will use this terminology in all generality to denote the existence of a
structure in neural activity. In this respect, it is reasonable to declare that neural activity
may be related to specific measurable variables. Since Galvani’s experiments, we know
that an electrical activity applied on muscular nerves can cause the stretching of a frog’s
limb (for a review, see [1]). A central and well-studied way of communication between
neurons is specific electrochemical events called action potentials, or spikes, which were first
discovered at the beginning of the XXth century [2]. In this study, the frequency at which
these spikes are emitted has been shown to be roughly commensurate with the stretch of the
frog’s limb. In the scope of this article, we focus mainly on these spikes in vertebrate systems.
They can be described as brief (about one millisecond) and prototypical, i.e., “all-or-none”,
impulses that propagate along the axons of neurons. Typically, a postsynaptic neuron
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receives incoming spikes from other afferent neurons on the arborized “input” dendrite.
The integration of these spikes by the dendritic tree and the soma of the postsynaptic neuron
results in the modification of its membrane potential that possibly leads to the emission of
an action potential along its “output” axon to reach efferent neurons. Except notably in
the retina where neurons communicate with graded potentials [3], it is assumed that spike
trains are the main component of the neural code. Until recently, most neurophysiologists
used the temporal evolution of the firing rate (for instance, as computed as the average
occurrence of spikes in small temporal windows of about 100 ms) in order to characterize
the dynamical activity of neurons. This may be extended by computing different statistics
on each neuron’s sequence of spikes [4] but also the dependence across neurons [5].

However, computational neuroscience models have suggested that the precise timing
within a sequence of spikes may play a crucial role and that neurons may be synchrony de-
tectors as well as integrators [6]. In particular, it is possible that the minute arrangement of
temporal delays between neurons may provide a computational advantage. We will investi-
gate this very hypothesis in this review. In comparison to a classical analog vector of inputs,
this event-based representation observed in the neural code is essential in understanding
information processing [7]. For instance, it expands the capabilities of representations of
the rate coding hypothesis that relies only on the firing rate by considering representations
based on the precise timing of single spikes. Additionally, numerous studies have demon-
strated the importance of precise timing in neural population activity [8], efficient encoding
thanks to the use of spike latencies [9,10] or precise timing in the auditory system [11,12].
All these findings, and more [13,14], highlight the importance of the temporal aspect of the
neural code and further suggest the existence of precise spatio-temporal spiking motifs
in the input which excites neurons. A mathematical formalization would be particularly
well-suited to neuromorphic computing [15], and would allow for the supervised or self-
supervised learning of such motifs in any event-driven data. Crucially, validating this
hypothesis would also be crucial in our understanding of neural processes.

1.2. Dynamics of Vision and Consequences on the Neural Code

Let us start with a focus on the state-of-the-art of the role of dynamics in vision.
Broadly speaking, vision is the set of processes that allow us to make sense of the world
through luminous signals, and is an intensively studied field in neuroscience, particularly
with respect to deciphering the neural code. In most mammals, light enters the eye to
induce neural activity on the retina, which maintains a certain similitude between the
topology of external visual space and its representation on the retina, called retinotopy.
The origins of this neuroscientific question can be found in the first experiments from
Pierre Flourens which, using lesions in animals, demonstrated the relationship between
visual sensations and activity in the cerebral cortex [16,17]. This was also observed when
recording the activity of the frog’s visual system [2]. In a series of seminal studies, Hubel
and Wiesel [18] showed that this activity could be selective to different features, such as
the visual orientation or motion of elementary contours. For a large proportion of neurons,
there is a remarkably monotonic relationship between the contrast of visual features and
the firing frequency of neurons. However, there is no consensus to explain the multiple
nonlinear mechanisms that transform the visual scene into retinotopic neural activity maps,
even though these processes seem to constitute essential pieces to this puzzle [19].

In particular, there have been some remarkable findings when studying the dynamics
of vision. For instance, Simon Thorpe’s group has shown during the last decades numerous
examples demonstrating that humans can categorize briefly presented images in a fraction
of a second. Their experiments consisted in asking subjects to categorize images that do or
do not contain animals [20]. The results showed that humans were able to perform this task
very well (with a success rate of more than 95%) but above all that, a differential activity for
the two categories of images could be observed by electroencephalography, showing that
this differentiation emerges with a very short latency in neural activity. These results have
been extended to several species, including primates. Different experimental protocols
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have shown, for example, that the motor response could be extremely fast (of the order
of 120 ms) when the task was to perform a saccade [21]. This fast processing correlates
with the surprising experiments of fast serial detection, which consists in presenting a
fast succession of different images and decoding via the EEG if the observer can detect,
for example, the presence of an animal [22]. As expected, the performances decrease
progressively as the frequency of presentation of the images increases. However, it has
been shown in the macaque that a significant performance could be maintained with an
image presentation time of only 14 ms per image.

Although surprising, this speed of the visual cortex in primates is compatible with
the latencies that are recorded at the neuro-physiological level. The rapid propagation
of the visual information in the thalamus, then in the primary visual cortex takes about
45 ms in the macaque [23] and about 60 ms in humans [24]. This functioning of visual
processing as a forward pass is most prominent in fast processing (see Figure 1), and can be
complemented with feedback loops from the higher areas to the sensory areas [25]. An im-
portant consequence of this speed of processing of vision is that it implies that processing is
carried out using only very few spikes per layer. As a comparison, the latencies in macaque
monkeys are approximately as follows: Retina, 20–40 ms; V1, 40–60 ms; IT, 80–100 ms;
MC, 140–190 ms; and to finger muscles, 180–260 ms. Note that, since maximal conduction
speeds are roughly constant, theses latencies are comparable to that found in humans,
with a ratio given by the physical size of the whole system. It follows that if we consider
that a behavioral response occurrs in only 200 ms, it would involve about ten processing
stages along the “forward” pathways of the visual system. Such processes were indeed
efficiently reproduced in feed-forward models trained with back-propagation [26,27]. At
the same time, it was demonstrated that one spike requires a significant amount of time
(about 10 ms) to be conducted from one layer to the next [28,29]. This figure is inspired by
similar schematics performed for monkeys in [29]. As a consequence, these results suggest
that “like other senses, vision relies heavily on temporal strategies and temporal neural
codes to extract and represent spatial information” [30].

1.3. How Precise Spike Timing May Encode Vectors of Real Values

Let us now focus on one processing step along a cortical pathway. Sensory data are
most often represented by continuous values, such as the energy produced by a flow of
photons that hits the different photoreceptors of the retina. How may such information
be encoded in neuronal activity? The analysis of generic raster plots reveals particular
traits that hint at the role of precise timing. For instance, the firing rate of cortical cells in
awake monkeys is highly irregular [31], which makes it, at first sight, inconsistent with
the temporal integration of firing rate. Remarkably, it was observed that the response
of a neuron in a cortical slice to a current step could be highly non-reproducible: while
the first spike is aligned to stimulus’ time, the subsequent spike times tend to diffuse for
independent repetitions of the stimulation [32,33] (see Figure 2). However, if that same
neuron is now driven by a frozen noise, that is, a highly dynamic signal which is repeatedly
replayed from trial to trial, then the output spikes are highly reproducible (for a review,
see [34]). This is consistent with the differential role of different stimulus frequencies (for
instance, the gamma range around 80 Hz) on the reliability of the spike timing reported
in [35]: “we found that, as expected given the resistive and capacitive properties of cortical
neurons, low frequencies have a larger effect on the membrane potential of cortical neurons
than do higher frequencies. However, increasing the amount of gamma range fluctuations
in a stimulus leads to more precise timing of action potentials.”
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Figure 1. Latency of the different processing steps along the human visual pathway.Though the
visual system is highly inter-connected, one can follow the sequence of activations whenever an
image (here a yellow star) is flashed in front of the eyes. Different areas are schematically represented
by ellipses, and arrows denote the fastest feed-forward activation, ordered with respect to their
activation latency in ms. In order, the retina is first activated (20–40 ms), then the thalamus and
the primary visual cortex (V1, 60–90 ms). This visual information projects to the temporal lobe to
reach the infero-temporal area (IT, 150 ms) for object recognition. It then reaches the prefrontal cortex
(PFC, 180 ms), which modulates decision making to evoke the motor cortex (MC, 220 ms) which may
mediate an action. This is eventually relayed through the spinal cord to trigger finger muscles, with
latencies of about 280–400 ms.
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Figure 2. Reproducibility of the spiking response of a neuron. The timing of the spikes produced
following the repetition of a step stimulus is less reproducible than that to a noisy stimulus. The
stimulus current value over time for a step stimulus (top left) and for a noisy one (top right).
Trial repetitions of a leaky integrate-and-fire neuron stimulated by the stimulus on the upper row
(middle row). Membrane potential is represented by dark blue color when light yellow colors
when depolarized) and quantified by the average firing rate across trials (lower row). While this
seems paradoxical at first sight, it highlights the consequence of using the same frozen noise at each
repetition and highlights the highly reproducible pattern of spikes when it is driven by a highly
dynamic input. See this notebook for a replication of the results from [33] using a simple LIF model.

At the level of the retina, it has been shown that a coding of luminance values in the
image using the timing of the spikes may be at work [10]. In particular, these results show
that the response of ganglion cells to the visual gratings projected on the retina could be
encoded in the latency of the response and not only in the frequency of the discharge,

https://github.com/laurentperrinet/2022_UE-neurosciences-computationnelles/blob/master/C_MainenSejnowski1995_Perrinet.ipynb
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as it is often assumed. These results have been extended to natural images and show a
qualitatively similar behavior. The authors’ conclusion is that the precise spiking latency of
the neurons encodes the spatial features of the image. Interestingly, such a precise latency
mechanism may underlie some visual illusions, e.g., the false color illusion in the Benham
Top based on center–surround interactions in the parvocellular pathway [36]. This evidence
found in the retina can be extended to other areas, such as the visual cortex.

In fact, similar results have been demonstrated through neurophysiological recordings
in the primary visual cortex and show that different levels of visual activity will induce
different levels of neuronal discharge latency in the primary visual area [37]. First-spike
latency codes are a feasible mechanism for information transfer, even when biologically
plausible estimates of the stimulus onset are considered, for instance, for sound localiza-
tion [38]. Note also that timing is not entirely sensory or internal, but can be used as a
general neural coding principle. In [39], for instance, they found that the “timing accu-
racy was improved when the environment afforded cues that rats can incorporate into
motor routines. Timing, at least in animals, may thus be fundamentally embodied and
situated.” Many models have used these properties in temporal coding to build fast image
categorization networks [9,40,41]. These models take the form of artificial spiking neural
networks (SNNs) and have been able to demonstrate their practical applications for image
categorization [42]. One of these is the SpikeNet algorithm, which uses a purely temporal
approach by encoding information using one spike per neuron by using the rank of neurons’
activation [41,43]. Another class of artificial SNNs uses precise spike timing as a metric
in order to determine the structure of the network in order to minimize a cost function.
This was implemented in the SpikeProp algorithm [44] and has been extended in novel
gradient-based methods. The subsequent surrogate gradient method is now widely used in
methods that attempt to transfer performance from analog (CNNs) to spike-based (SNNs)
architectures [45]. This type of modeling often uses the classical task of categorizing images
developed in deep learning, while adapting it to the specificity of the event-based repre-
sentation [46]. For instance, [47] implements a STDP-based spiking deep convolutional
neural networks for object recognition or [48] develops a form of spike-based, competitive
learning applied for unsupervised learning. However, the performance of SNNs is still
lagging compared to that of analog networks, and the question of the advantage of using
spikes in machine learning and computer vision remains open. Improvements in this new
generation of Artificial Neural networks (ANN) would bring major advances in terms of
efficient computations in machine learning. They would benefit in particular to a new
generation of cameras called Silicon Retinas [49] (see Section 6).

Even if technology lags far behind biology, this introduction demonstrates the impor-
tance of timing in neural processes, and we will further review the role of precise spike
timing in neural assemblies. We start by reviewing the different hypotheses that aim at
deciphering the neural code with spatio-temporal spiking motifs. After listing some biolog-
ical evidence for the use of precise spike timing, we review some computational models
and neuromorphic technics that add this temporal dimension to their computations.

2. Role of Precise Spike Timing in Neural Assemblies

In this first section, we introduced the notion of rate coding and demonstrated that
spike timing can also carry information. Scientists found experimental evidence for various
hypotheses of neural representations such as population coding [50], time-to-first-spike
coding [10], phase-of-firing coding [51], correlation coding [52] or sparse coding [53]. In
the scope of this review, we infer that spike trains are composed of repeating spiking
motifs and we focus on precise spatio-temporal representations composed of a motif of
spikes defined precisely in time and in the presynaptic address space. In all generality, this
representation can encompass all the previous ones, except for rate coding, which is not
defined locally in time. In this section, we choose to describe different hypotheses, making
use of spatio-temporal patterns of spikes that can be propagated among neural assemblies.

https://michaelbach.de/ot/col-Benham/index.html
https://michaelbach.de/ot/col-Benham/index.html
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2.1. One First Hypothesis: Synchronous Firing in Cell Assemblies

In his book Corticonics, Abeles [54] queried as to whether the role of cortical neurons is
to integrate synaptic inputs or rather to detect coincidences in temporal spiking patterns.
The book gradually leads the reader from the macroscopic cortical anatomy and standard
electro-physiological properties of single neurons to neural network models. While the
first hypothesis favors the rate coding theory, the second possibility highlights the need for
temporal precision in the neural code [6,55]. The book then demonstrates that neural assem-
blies could form so-called “synfire chains,” that is, showing the emergence of synchronous
activity on subsets of neurons, which could be propagated in a stable fashion. More broadly,
the idea of using the synchrony of co-activation in a cell assembly is reminiscent of the
hypothesis that was formalized by Hebb [56]: “cells that fire together wire together”. Since
this date, multiple experimental observations have suggested the existence of this precise
zero-phase-lag spike synchronization in a defined subset of neurons [57]. One possible
function of this synchronization may serve the binding of information distributed in the
brain [58,59].

Some experimental results show the emergence of synchrony, for instance in motor
cortical function [60]. Interestingly, these authors showed that “accurate spike synchro-
nization occurred in relation to external events (stimuli, movements) and was commonly
accompanied by discharge rate modulations but without precise time locking of the spikes
to these external events. Spike synchronization also occurred in relation to purely internal
events (stimulus expectancy), where firing rate modulations were distinctly absent. These
findings indicate that internally generated synchronization of individual spike discharges
may subserve the cortical organization of cognitive motor processes.” Moreover, such
emergence could change over the learning period involved in learning a task [61] and
showed some tuning to movement direction and reaction time [62]. It is important to note
that synchronous events tend to lock to spatio-temporal patterns of neural activity called
LFP beta waves [63] and were also extended to larger assemblies using statistical meth-
ods [64] (see Section 3 for further details). Synchronicity is also an interesting proposition
to explain how the relatively weak thalamo-cortical synapses are able to drive cortical
neurons. Among different explanations, including travelling waves [65], a synchronous
activity at the synaptic level may be sufficient to elicit activity in the cortex [66].

Theoretically, even if the vertebrate’s neural system is not likely to be modeled only
by such deterministic connectivity [67,68], it was shown that a simple model may allow
the propagation of such synfire chains [69] by considering the dynamics of leaky integrate-
and-fire (LIF) neurons in different groups of a similar size. Each neuron of one group is
connected by an excitatory synapse to the next. When a pulse is elicited in the first group,
this may generate a spike in the next group. Depending on the concentration of synaptic
weight values, this new activity may become more or less synchronized with respect to
that of the previous pulse (as measured by the standard deviation of spike times within
the pulse). Recursively applying this to a sequence of groups within a chain generates
either a synfire propagation or not. A simple simulation of synfire propagation is shown in
Figure 3. A crucial aspect of this emergence is explained by the dynamics of the spiking
neuron model [70] and, in particular, the balance between excitation and inhibition [71].
This balance was, for instance, modeled by feed-forward inhibition, a fine-scaled latency
mechanism that is an essential ingredient in modelling so-called push–pull effects in the
primary visual cortex [72]. Further models have shown that such synfire chains could
be embedded in topographies [73], while others used conductance-based neurons with
feed-forward inhibition to improve the robustness of the propagation [74]. In particular,
this was implemented as a computational neuroscience benchmark model using the pyNN
language [75] both in CPU-based and neuromorphic hardware [76].

https://en.wikipedia.org/wiki/Local_field_potential
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Figure 3. Simulation of a synfire propagation using Brian. The model consists of 10 groups (arranged
with the first group represented in the lowest row) of 100 neurons each. Five pulses with decreasing
jitter are generated in the first group around times 10, 30, 50, 70 and 90 ms (with jitters given by a
standard deviation which linearly decreases from 5 to 1 ms). This generates a pulse after a certain
processing delay in the second group with a different jitter. While the first two pulses progressively
vanish in the following groups, starting from the third input pulse (with a jitter of 3 ms), it is
propagated to the following groups. This allows the propagation of the synchronous activity along
the chain of the neural groups.

Attempts have been made to detect such synfire chains in neurobiological data.
Schrader et al. [77] envisioned that “sensitivity is high enough to detect synfire chain
activity in simultaneous single-unit recordings of 100 to 200 neurons from such data,
enabling application to experimental data in the near future”. Indeed, simultaneously
recorded activities of neurons in the primary motor cortex of monkeys exhibited context-
dependent, rapid changes in the patterns of coincident action potentials [60,78]. It is now
commonly accepted that the planning and execution of movements are based on distributed
processing by neural populations in motor cortical areas, yet it is less clear how these
populations organize dynamically to cope with the momentary computational demands.
In [79], the author proposed a simple spike-based computational framework, based on
the idea that stimulus-induced synchrony can be used to extract sensory invariants (for
example, the location of a sound source), which is a difficult task for classical ANNs. It
relies on the simple remark that a serie of repeated coincidences is in itself an invariant.
Many aspects of perception rely on extracting invariant features, such as the spatial location
of a time-varying sound, the identity of an odor with fluctuating intensity, or the pitch of a
musical note.

This is also expressed in the idea that different cortical areas could achieve binding by
synchrony [80]. The synchronicity will generate rhythms at different ranges of frequencies,
with spikes arriving at peak susceptibility (top of a cycle) or down. Such a theory has
surprisingly been validated in EEG recordings to explain for example the continuous
wagon-wheel illusion, i.e., the perceived reversal of the rotational movements of the spikes
in a rotating wheel [81]. More generally, it can be shown that the phase of alpha oscillations
(about 10 Hz) is causally linked with modulations of cortical excitability and with visual
perception [82]. The question still remains open as to know if this is an epiphenomenon or
a working mechanism of the neural code.

2.2. A Further Hypothesis: Travelling Waves

To further investigate the role of precise timing, let us also focus on the role of differ-
ential timings in an assembly of neurons. As we have seen, a visual feature will induce
the firing of different cells at different latencies [37]. Using intracellular recordings, it was
shown that the response to a focal visual activation would elicit a latency basin, that is, a
graded onset of the neural response from the most activated to neighboring neurons [83].
In particular, it was shown that the network of the so-called horizontal connections within

https://brian2.readthedocs.io/en/stable/examples/frompapers.Diesmann_et_al_1999.html
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a cortical area is typically not myelinated, and that this latency basin would be determined
by the propagation speed within that area. For generic visual scenes, these processes would
generate a complex interplay between the dynamics of the sensory signal and the spatio-
temporal determinants of these interactions. Such interactions may underlay anticipatory
mechanisms in the primary visual cortex [84,85]. The underlying process could be the
emergence of propagating waves on the surface of the cortex.

Propagating waves in the neuronal response occur in many excitable media and
were found in neural systems, for instance, in the retina [86] or the neocortex [87]. While
propagating waves are clearly present under anesthesia, whether they also appear during
awake and conscious states remained unclear until recent discoveries. One possibility is
that these waves were systematically missed in trial-averaged data, due to variability. A
recent work [88] presents a method for detecting propagating waves in noisy multichannel
recordings. Applying this method to single-trial voltage-sensitive dye imaging data, the
authors show that the stimulus-evoked population response in the primary visual cortex
of the awake monkey propagates as a travelling wave, with consistent dynamics across
trials. A network model suggests that this reliability is the hallmark of the horizontal fiber
network of superficial cortical layers. Propagating waves with similar properties occur
independently in the secondary visual cortex, but maintain precise phase relations with
the waves in the primary visual cortex. These results show that, in response to a visual
stimulus, propagating waves are systematically evoked in several visual areas, generating
a consistent spatio-temporal frame for further neural interactions.

More recently, novel multi-unit recording techniques have enabled the identification
of travelling waves of neural activity in different areas of the cortex [89]. The authors
reviewed these findings by considering the mechanisms by which travelling waves are
generated, and evaluated their possible roles in cortical function. In particular, spontaneous
travelling waves naturally emerge from horizontal fiber time delays and travel through
locally asynchronous-irregular states [8]. Studies of sensory-evoked neuronal responses
often focus on mean spike rates, with fluctuations treated as internally generated noise.
However, fluctuations of spontaneous activity, often organized as travelling waves, shape
stimulus-evoked responses and perceptual sensitivity. The mechanisms underlying these
waves are unknown. Further, it is unclear whether waves are consistent with the low rate
and weakly correlated “asynchronous-irregular” dynamics observed in cortical recordings.
In that paper, the authors describe a large-scale computational model with topographically
organized connectivity and conduction delays relevant to biological scales. They find that
spontaneous travelling waves are a general property of these networks. The travelling
waves that occur in the model are sparse, with only a small fraction of neurons participating
in any individual wave. Consequently, they do not induce measurable spike correlations
and remain consistent with locally asynchronous irregular states. Further, by modulating
the state of the local network, they can shape responses to incoming inputs as observed
in biology. Such waves also occur in motor areas and Lindén et al. [90] have recently
presented ensemble recordings of neurons in the lumbar spinal cord that indicate that,
rather than alternating, the population is performing a low-dimensional “rotation” in
neural space, in which the neural activity is cycling through all phases continuously during
the rhythmic behavior.

Interestingly, it can be shown that these travelling waves could have a measurable im-
pact on the activity of the visual cortex. This was illustrated in a recent study investigating
the long-range apparent motion effect (lrAM) [91]. The lrAM is the simple phenomenon
of perceiving a smooth motion when showing two dots in a temporal sequence and in
relatively close visual proximity. The lrAM is the core building block underlying the use of
sequences of images to induce the perception of smooth, realistic visual scenes, which is at
the base of movies seen in cinema theaters. In this study, the authors used voltage-sensitive
dye imaging to record the activity of the primary visual cortex of macaque monkeys to the
presentation of the pair of dots presented independently or in conjunction. A probabilistic
modelling showed that the activity of the joint presentation induced a suppressive wave
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in the direction opposed to the perceived direction, shaping the formation of a wave of
propagation travelling at a speed compatible with the perceived motion. A computational
model validated the hypothesis that this process could be mediated by diffusion in the
horizontal layers connecting the different locations within this cortical area. In summary,
the study by Chemla et al. [91] gave a multi-disciplinary account to demonstrate the effect
of travelling waves in the visual cortex.

2.3. A Rediscovered Hypothesis: Precise Spiking Motifs in Cell Assemblies

Travelling waves indicate that spatio-temporal correlations could play an important
role in shaping neural activity. For instance, statistical dependencies in the responses of
sensory neurons govern both the amount of stimulus information conveyed and the means
by which downstream neurons can extract it. In particular, this was put in evidence by ana-
lyzing the functional significance of correlated firing in a complete population of macaque
parasol retinal ganglion cells using a model of multi-neuron spike responses [92], which
shows the precise spatio-temporal differences in this recurrently connected assembly. The
different aspects of information in the data are evaluated by a decoding strategy, highlight-
ing the role of correlations. Note that a similar dataset used in [93] is available from Michael
Berry’s lab [94] and allows testing in order to validate or falsify these hypotheses. However,
in theory, a cortical travelling wave would be stationary, which is incompatible with the
limits in space and time of a neural system. Recent observations may suggest that neural
groups or ensembles, rather than individual neurons, are emergent functional units of
cortical activity. Miller et al. [95] showed that whereas intrinsic ensembles recur at random
time intervals, visually evoked ensembles are time-locked to stimuli. Experiments are
performed using two-photon calcium imaging of populations of neurons from the primary
visual cortex of awake mice during visual stimulation and spontaneous activity. The study
proposes that visual stimuli recruit endogenously generated ensembles to represent visual
attributes. Note that evoked ensembles in response to a natural movie played in a loop
were precisely timed across repetitions.

From another viewpoint, there is a substantial literature in neurobiology indicating
that brain dynamics often organize into stereotyped sequences, such as synfire chains [96],
packets [97] or hippocampal sequences [98]. Going further, researchers found precise repeti-
tions of spontaneous patterns of synaptic inputs in neocortical neurons, in vivo and in vitro.
These patterns repeat after minutes, maintaining millisecond accuracy. Indeed, Ikegaya
et al. [96] demonstrated that in cortical activity, one can find a repetition of several motifs
in spike activity (duration around 1 s +/− 0.5 s, some events in motifs are of similar size
but sometimes absent). These sequences can be specific to a particular layer or column, can
be synchronized with network activity oscillation, and can involve several cells. They also
demonstrated that these sequences can form super sequences, so-called “cortical songs”.
It consists of the assembly of several sequences which repeat in a specific order with a
compressed timing. This spontaneous activity also reveals repeating sequences: about 3000
sequences, each involving 3–10 cells out (of about 900), and lasting up to 3 s. Sequences
have specific topographic structures, in some cases involving only a particular layer or a
vertical column of cells or cells located in a cluster, and are associated with a structured
spatial organization of the neurons that formed them.

Additional studies detail the role of such precise spike timing in downstream infor-
mation transfer and coding [99–101]. This is, for instance, relevant in sensory pathways
in vision [102], audition [52], olfaction [103–105] or touch [106]. In particular, stereotyped
sequences of neural activation have been described in the adult hippocampus and related
to its function in mental travel in time and space [107]. These sequences can be internally
generated [98,99] and may be formed by the chained activation of orthogonal assemblies,
themselves organized as sequence packets [108]. In that protocol, hippocampal sequences
are formed by the ordered activation of smaller sequence motifs. They are stereotyped and
robust since neurons can be activated in the same order across days (see Figure 4 from [109]).



Brain Sci. 2023, 13, 68 10 of 34

As a consequence, hippocampal sequences may rely on an internally hardwired structure
and form the functional building blocks for encoding, storing and retrieving experience.

Figure 4. An example of a precise temporal motif observed in two subsequent days. In this study
by [109], an analysis of calcium fluorescence (heatmap) of hippocampal CA1 neurons participating to
run sequences in consecutive imaging sessions shows repetitions of precise spiking motifs with a
time scale of the order of seconds. Cells were selected and ordered with respect to their activity in
the first imaging session. The black line on top represents the speed of the mouse. Futher analysis
showed that more than the majority of the cells participating in run sequences on the first day were
recruited again in run sequences on the next day. Modified from Figure 1-A from [109] under the
CC-BY PNAS License.

It is interesting to make a parallel with the “Rapid Formation of Robust Auditory
Memories” reported in [110], which uses noise patterns to observe if listeners could learn
to detect repeated occurrences of some frozen noise patterns. In particular, they used
random waveforms to probe the formation of new memories for arbitrary complex sounds.
A behavioral measure was designed, based on the detection of repetitions embedded in
noises up to 4 s long. Unbeknownst to listeners, some noise samples reoccurred randomly
throughout an experimental block. They showed that the “repeated exposure induced
learning for otherwise totally unpredictable and meaningless sounds” by showing that
the sensitivity increases in that case. Note also that “acoustical analyses failed to reveal
any obvious differences between good and bad noises” and that “time reversal had no
significant effect on the detection accuracy (which is quite surprising). The learning is
unsupervised (statistical, automatic), fast-acting (phase transition, “insight”), and long-
lasting (memorization).

That results suggest that precise spiking motifs are not necessarily grouped on a
topography and can be forming apparently randomly arranged connections. Interestingly,
one theoretical viewpoint considers synfire braids [87], where a precise sequential motif of
spikes will synchronize as it reaches the soma of a neuron for which synaptic delays are
adequately tuned. Furthermore, computational modeling shows that at the scale of neurons,
an efficient neural code can emerge where spike times are organized in prototypical, precise
temporal motifs [111], which this author defined as polychronous groups. The rest of this
review will be devoted to present evidence for the use of such precise spiking motifs in
computational neuroscience, neurobiology and neuromorphic engineering. As a summary,
it seems that such precise structural information is essential to the neural code and that
it seems imperative to include this information in the decoding algorithm for a better
understanding of neural activity.

3. Understanding Precise Spiking Motifs in Neurobiology
3.1. Decoding Neural Activity from Firing Rates

In this section, we will review current evidence on how we may take advantage of
spiking motifs in neurobiology, that is, in an effort to understand actual recordings from
biological neural tissues. In most generic computational models, the neural activity is

https://www.pnas.org/doi/full/10.1073/pnas.1718518116
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assumed to be encoded in the firing rate. For instance, the output of the so-called linear
non-linear (L-NL) models is assumed to model the response of a biological neuron as
the sequence of a linear integration followed by a non-linear spiking response generating
spikes according to a Poisson point process [112]. As such, a simple decoding strategy is
to infer the input knowing the neuron’s tuning curves, that is, its selectivity to a range of
features [113] or simply by a simple regression [114]. This latter model assumes a Bernoulli
model for the generation of spikes, such that the decoding amounts to a single-layer logistic
regression. An important perspective of these methods used to decipher the recorded
activity is that it could be ultimately used to fit neural network models to the recorded
activity [115]. In this particular paper, the authors fit the summary statistics of neural
data with a (differentiable) spiking network model. The loss function is the cross entropy
(following the Bernouilli hypothesis with a GLM, where each unit is modelled with an
SRM neuron [70]) and embedded with recurrent dynamics. In particular, it comes with
code and uses the publicly available V1 dataset [116], which allows supervising the model,
with the input being the movie and the output the spikes recorded. These type of model
may infer sparse activity in a set of binary latent variables, each describing the activity of a
cell assembly [117]. Carefully picking the more appropriate metric, as implemented in that
paper by the corresponding neural models, is essential in better understanding neural data.
Importantly, these models are dependent on a core definition of spike measures, and we
will review here how precise spiking motifs are taken into account by such spike distances.

3.2. Decoding Neural Activity Using Spike Distances

There are different solutions to provide with a distance between two given spike
trains. A known measure is the Victor–Purpura distance, which overcomes inconsistencies
experienced with a firing rate (Poisson model) of spike trains [118]. Then a study tries to
solve the problem by including a time constant as a parameter [119]. This parameter will
then be used to interpolate the distance between a coincidence detector and a rate difference
counter. Such distances were extended to non-Euclidean metrics and use morphological
manipulations to compute spike train dissimilarity [120]. Mathematically, the stability of
distance measures induced by level-crossing sampling can be evaluated [121], notably in
light of the so-called Weyl’s discrepancy measure [122], which may lead to the definition of
a cross-correlation measure, an interesting conclusion since the cross-correlation measure is
that which is adapted to the event-based nature of spiking signals. These observations lead
to the intuition that each distance may be as good as the optimal solution of a generative
model for these measures, possibly through non-linear relations [123].

Concerning spike timings, Levakova et al. [124] reviewed existing methods for esti-
mating the latency of neural responses that include Bayesian binning. Alternatively, unitary
event analysis can be performed by a statistical model of coincidence detection [125]. This
was extensively used in detecting above chance significant synchronous patterns [126],
particularly in recordings of pairs of neurons (see [60] for instance), and has been extended
to non-stationary data [127]. A method to detect significant patterns of synchronous spiking
in a subset of massively parallel spike trains in the presence of background activity can be
defined using the statistical evaluation of synchronous spike patterns extracted by frequent
item set mining [128]. By the same group, the SPADE, CAD or ASSET algorithms are
methods for identification of spike patterns in massively parallel spike trains (the spiking
activity of tens to hundred(s) of neurons recorded in parallel) by identifying fine temporal
correlations in the ms precision range [129]. This was recently extended in [130] in order
to find re-occurring patterns in parallel spike train data, and to determine their statistical
significance. The extension improves the performance in the presence of patterns with
different durations, as demonstrated by application to various synthetic data, such as the
synthetic data for synfire chains (see Figure 5), such as surrogates generated to evaluate
precisely timed higher-order spike correlations [131].

https://github.com/EPFL-LCN/pub-bellec-wang-2021-sample-and-measure
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Figure 5. Detecting motifs using SPADE. We used the SPADE algorithm [130] by adapting their
tutorial on the data generated in Figure 3. This allowed to label different precise spike motifs which
are denoted by different colors. Spikes belonging to the same motif have the same color.

Another important algorithm, called SPOTDisClust, is based on the detection of
structured temporal patterns [132]. They introduced an unsupervised method based
on their detection from high-dimensional neural ensembles. The algorithm measures
similarity between two ensemble spike patterns by determining the minimum transport
cost of transforming their corresponding normalized cross-correlation matrices into each
other. Many approaches to this problem are supervised. In other words, they take patterns
occurring concurrently with a known event, such as the delivery of a stimulus for sensory
neurons or the traversal of a running track for determining hippocampal place fields, as a
“template” and then search for repetitions of the same template in spiking activity [133,134].
In SPOTDisClust, the learning is unsupervised. It uses the prior that there is only one spike
per pattern. Using a so-called t-SNE projection (that allows to project this high-dimensional
representation to a lower-dimension map) validated that this clustering method can retrieve
all patterns from the data. The limits of this method are that it is computationally complex,
block-based and strictly specialized for the task at hand. To overcome these difficulties, a
novel method was recently developed [135]. Whether it is the distance between two given
spike trains or a comparison of the spike timings, the complexity and the diversity of the
methods used to measure them are witnesses of the growing interest of the integration
of these measures in the understanding of the neural code. One of the steps to test their
potential usefulness is then to scale these methods to larger amounts of data.

3.3. Scaling up to Very Large Scale Data

Over the past decade, tremendous technological advances across several disciplines
have dramatically expanded the frontiers of experimentally accessible neuroscientific facts.
Bridging across different spatial and temporal scales, combination of in vivo two photon
imaging, large population recording-array technologies, optogenetic circuit control tools,
transgenic manipulations as well as large volume circuit reconstructions are now used to
examine the function, structure and dynamics of neural networks at an unprecedented
level of detail and precision. The daunting complexity of the biological reality revealed
by these technologies highlights the importance of neurobiological knowledge to provide
a conceptual bridge between abstract principles of brain function and their biological
implementations within neural circuits. As a consequence, there is a growing need to scale
these methods to larger amounts of data.

There are multiple approaches which aim at tackling this problem. One algorithm
capable of achieving such a daunting task is the Rastermap algorithm [136]. Basically, it
rearranges neurons in the raster plot based on the similarity of their activity and applies

https://elephant.readthedocs.io/en/latest/tutorials/spade.html
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a deconvolution strategy based on a linear model. Yet this method was mainly tested
on calcium imaging data, which are known to add some imprecision to the timing of the
original spiking activity. The model is openly accessible [137] and has led to important
discoveries. In [138] for instance, it was shown that a neuronal population encodes informa-
tion most efficiently when its stimulus responses are high-dimensional and uncorrelated,
and most robustly when they are lower-dimensional and correlated. Then, in [139], the
authors analyzed spontaneous neural firing, finding that neurons in the primary visual
cortex encoded both visual information and motor activity related to facial movements.
In [140], the authors developed novel machine learning tools and statistical tests for unsu-
pervised spatio-temporal pattern detection in non-stationary environments, which were
applied to simultaneous electro-physiological recordings from tens to hundreds of neurons
for decoding cognitive processes from neural activity. Altogether, this provides evidence
for the importance of such machine-learning-based tools to provide with breakthroughs
in neuroscience.

In the paper by Russo and Durstewitz [140], the authors present a unifying method-
ological and conceptual framework which detects assembly structure at many different time
scales, levels of precision, and with arbitrary internal organization. It uses sliding window
as in [127] and the reliable and efficient analysis of an excess or deficiency of joint-spike
events [141]. They extend the measure to multiple lags [142]. The core measure is based on
a non-stationarity corrected parametric statistical test for assessing the independence of
pairs and an agglomerative, heuristic clustering algorithm for fusing significant pairs into
higher-order assemblies. To overcome the limits of models which require spike times to
be discretized, utilize a suboptimal least-squares criterion, or do not provide uncertainty
estimates for model predictions or estimated parameters, [143] addressed each of these
shortcomings by developing a point process model that characterizes fine-scale sequences
at the level of individual spikes and represents sequence occurrences as a few marked
events in continuous time. As originally introduced by [144], they used learnable time-
warping parameters to model sequences of varying duration, which were experimentally
observed in neural circuits, and demonstrated these advantages on experimental recordings
from the songbird higher vocal center and rodent hippocampus. At a larger scale, in [145],
it was shown that attentional information from V4 or arousal can change the timings of
groups of events in V1. They develop a hidden Markov model for quantifying the tran-
sitions. In particular, they showed that fluctuations in neural excitability are coordinated
between visual areas with retinotopic precision. Top-down attention drives inter-areal
coordination along the reverse cortical hierarchy, predicting better behavioral performance
with increased coordination. Building such models for predicting changes of timings based
on context, such as using a so-called change point model for blocked-based experimental
protocols [146], could therefore provide useful prior information to enhance the decoding
from neural activity.

4. What Biological Mechanism Could Allow Learning Spiking Motifs?

Despite the evidence for the effectiveness of precise spiking detection we presented
above, doubts may remain as to the reliability of this learning mechanism and whether
there is a real need for further research on this subject. The discovery of the existence
of an equivalent biological mechanism in vertebrates as well as the demonstration of the
importance of its role in various developed behaviors allow us to put these doubts to rest.
In the following paragraphs, we will successively describe the first biological observations
of delay learning, identify myelinization as an important actor, and finally study this
phenomenon at the molecular level.

4.1. Biological Observations of Delay Adaptation

One of the first significant pieces of evidence of any neuronal delay in the information
propagation within the animal neural system came from Hermann von Helmholtz’s study
of a frog’s sciatic nerve in 1850 [147,148], and was later confirmed with Young’s study of



Brain Sci. 2023, 13, 68 14 of 34

the squid giant axon [149]. Dendritic propagation delays vary from sub-milliseconds to a
few milliseconds, while axonal propagation delays range from a few milliseconds to tens
of milliseconds, depending on the neuronal population studied [150]. Extensive measures
of nerve conduction velocities were performed in different animals, including humans, and
significant variations related to age, sex and other factors were identified [151].

However, it was not until the study of the interaural time difference (ITD) by Carr and
Konishi [12] that it was discovered that this delay is not homogeneous for all neurons of
the same type and species, but adapts according to their function. This ITD is a biological
mechanism which allows for the azimuthal localization of sound by barn owls, by organi-
cally computing the difference in arrival time of a sound between their two ears. It was first
theorized in the Jeffress “ITD-versus-place model” [152]. As hypothesized by this model,
the nucleus laminaris of the avian brain contains coincidence detectors and, associated
with the nucleus magnocellularis axons, forms circuits for processing ITD [153]. According
to [154], there is a true paradox in auditory neural systems since “neural networks encode
behaviorally relevant signals in the range of a few µs with neurons that are at least one
order of magnitude slower” and therefore necessarily need to play on the response time to
do so. This assertion confused the mean interspike interval, i.e., how often a neuron can fire,
and the specific spike time, i.e., how precisely a spike can be generated. However, it has
nevertheless contributed to the recognition of the importance of time in various biological
mechanisms. A first hypothesis suggested that the sound coincidence was detected using
stereausis, i.e., the temporal disparity between the left and right cochlear loci in the owl’s
brain. However, it was quickly set aside, as the predictions did not match the measured
disparities in the loci, and no variation was perceived in the nuclear laminaris for a similar
sound intensity in both owl ears. The authors supported a second hypothesis, that of dif-
ferent axonal delays in the ipsi- and contra-lateral cochlear nucleus magnocellularis. Seidl
et al. [155] experimentally seconds this hypothesis of a “coarse” regulation of delay, as the
authors concluded that regulations at different sites within individual axons of at least two
parameters, namely, the axon diameter and internode distances, might be responsible for
precise adjustments of physiological delays, thus allowing the ITD detection. The authors
also noted that the barn owl’s axons seem to change in length, thus implementing a “pure
delay line”.

The experiments described above thus conclude on the important role of physiological
delays in the avian sound localization behaviour. However, the relevance of precise timing
in spikes is not limited to birds; for example, in the mouse somatosensory cortex, [156]
found a strong correlation between the delay of the mouse behavioral response and the
timing of multiunit activity evoked by a trained whisker. These experiments also confirmed
previous studies stating that the conduction velocity of a spike in a neuron (in other
words, its delay) depends strongly on the axon diameter [157] and the internode distance
between Ranvier nodes [158]. This mechanism adds to the axonal length delay, which was
previously thought to be the sole influence on the conduction velocity due to its anatomical
soundness—as Seidl et al. [155] experimentally demonstrated, this mechanism by itself
is not sufficient to explain the biological functionality but should be added to the one of
axonal length delay.

4.2. The Importance of Myelination

Gasser and Grundfest [157] experimentally confirmed with homogeneously selected
neurons that the axonal delay is positively proportional to the axon diameter, i.e., the
amount of myelin wrapped around the axon. Indeed, the oligodendrocytes, one of the
many glial cells present in the vertebrates’ nervous system identified in 1924 by Pío del
Rigo Hortega [159], produces thin protein sheets interspersed with lipid layers wrapped
concentrically around the axon, called myelin [160]. Myelinization consists in “two motions:
the wrapping of the leading edge of the inner tongue around the axon underneath the
previously deposited membrane and the lateral extension of myelin membrane layers
toward the nodal regions” [161]. Multiple myelin regions can appear on one neuron axon
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and form the following subdomains: “the internode (corresponding to the compacted
region of myelin), the paranodes (where the outer loops of the myelin contact the axon), the
juxtaparanode (the interface between the paranode and compact myelin, rich in potassium
channels) and the node of Ranvier (the approx 1 µm gap between adjacent myelin intern-
odes [allowing for] the saltatory conduction)” [162]. On average, each oligodendrocyte
produces 20 to 60 myelinization processes and each myelin sheath is 20 to 200 µm long [161].
This demonstrates an additional impact of myelinization on the conduction velocity, as
the number of segments is positively correlated to the axonal delay [158]. Thus, in several
occasions, myelin has been identified as an important actor in the regulation of conduction
velocity in neurons, i.e., axonal delay regulation.

Fields [163], Fields and Bukalo [164] state that myelin facilitates both the neural circuit
function and the behavioral performance: experiments on mammals show that myeliniza-
tion is activity-dependent and directly related to learning and memory consolidation, espe-
cially sensory or motor training and in enriched environments. This biological phenomenon
takes place both at an early age, where the amount of oligodendrocites is particularly high
in the central nervous system [165], and in older animals, due to its involvement in coupling
the activity of distant neuron populations. Myelination helps memory consolidation by
coupling the activity of distant neuron populations and generating nearly synchronous
responses in postsynaptic neurons involved among others in path integration [150], as was
experimentally demonstrated on mice using a Morris water maze [166], contextual fear
conditioning [167] or oligodendrocyte precursor cells (OPCs) knock-out [168]. Myelin also
inhibits axon sprouting and synapse formation, especially in pyramidal neurons [163], and
is involved in axonal energy saving through a reduced axonal capacitance and a shift of the
metabolic load from axons onto oligodendrocytes [162].

It is worth highlighting that myelinization becomes increasingly important in larger
brains where conductance delays are substantial and brainwave rhythms are critical; syn-
chrony errors can lead to neuropsychiatric and neurological dysfunctions [163], such as
Parkinson’s disease, epilepsy or multiple sclerosis [150]. Additionally, a recent study sug-
gests that demyelination of the optic nerve could be an underlying factor in glaucoma [169].
Duncan et al. [162] states that “the loss of myelin and oligodendrocytes fundamentally
alters the neuron, [which are then] susceptible to energetic failure [and] subsequent degen-
eration”.

4.3. Interplay of Delay Adaptation and Neural Activity

However, one question remains: how do oligodendrocytes detect neuronal activity
and regulate the myelinization accordingly? To answer this, we must first study the
myelinization process. The OPCs first proliferate in the white matter via a self-repulsive
process, thus allowing for an evenly spaced network, and identify target axons. Most
OPCs then differentiate into oligodendrocytes and immediately initiate myelinization,
with no further migration [161]. Not much is known about how oligodendrocytes select
the axons to myelinate, but it seems that myelination only takes place on large enough
axons and is strongly regulated by several factors [170], such as Ca2+ activity [171] of the
neuregulin 1 growth factor [172]. The important role of myelination on delay learning
and biological behaviors, as highlighted in the previous paragraph, suggests that the
identification of target neurons as well as the myelin production is also regulated by
neuronal activity. Indeed, Cullen et al. [173] experimentally demonstrated that learning
and associated neuronal activity modify the Ranvier nodes’ length and the periaxonal space
width in the adult mouse brain. They also confirmed that the delay correlates with the
level of skill acquisition. Gibson et al. [174] suggests that neuronal activity does not solely
promote adaptive myelination in the mammalian brain, but also OPC differentiation and
oligodendrogenesis. Some further studies show that oligodendrocytes may detect neuronal
activity thanks to growth factors or neurotransmitters released through ion channels or via
exocytosis, but does not require any axo-glial synaptic communication [163].
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A potential scenario for selective myelination on electrically active axons using non-
synaptic junctions between an axon and an oligodendrocyte is as follows: the axon releases
glutamate in the extracellular environment by vesicle fusion, which activate the oligo-
dendrocyte’s NMDA and metabotropic glutamate receptors. This triggers the axo-glial
signalling complex, involving the phosphorylation of the SRC family kinase FYN followed
by the translation of heterogeneous nuclear ribonucleoprotein A2 into local myelin basic
proteins [163].

The previous paragraphs present the biological mechanisms behind the axonal de-
lay, regulated by myelination. However, the dendritic delay as well as the axonal delay
(see [155]) seems to play an equally important role in the precise timing within a sequence
of spikes. Dendritic delay is involved in the performance, structure and function of the
nervous system, the modulation of spatio-temporal properties of pre- and post-synaptic
activity patterns and the functional limitations of sensory feedback control efficiency [150].
Its role has been specifically identified in the compensation of input asynchrony in the
mammalian auditory brain stem [175]. Mel et al. [176] highlighted the dendrites’ impact
on neuronal plasticity, which is caused by the wide variation of numerous parameters:
plasticity rules applied to different dendritic subtrees or dendritic subregions, local pas-
sive cable properties, distance travelled by remote dendritic inputs, branching structures,
dendritic diameters, the relative timing of back-propagating somatic action potentials, etc.
Dendritic spiking involvement in synaptic potentiation following active backpropagation
into dendrites was experimentally uncovered using calcium imaging to highlight dendritic
calcium entry allowing for long-tem potentiation [177]. Branco et al. [100] demonstrated
the dendritic sensitivity to a sequence of synaptic activation in cortical pyramid neurons,
encoded by “both local dendritic calcium signals and somatic depolarization, leading to
sequence-selective spike output”. The dendritic mechanism described can identify patterns
delivered to a single dendrite or randomly distributed across the dendritic tree and relies
on the dendritic calcium influx moderation by NMDA receptors.

All in all, learning spike motifs requires significantly complex pathways and biological
mechanisms, whether in the dendrites or the axon of the neuron. More and more is
becoming known about the non-trivial research topic that is biological delay learning, and
extensive experimental data help develop ANNs, whose learning rules would be more
neuromorphic.

5. Modeling Precise Spiking Motifs in Theoretical and Computational Neuroscience

Now that we have reviewed biological foundations for the role of delays in neural
computations, we review, in the following section, theoretical models which directly take
advantage of using precise spiking motifs. Spiking neural networks (SNNs) [178] are
natural candidates to use these precise temporal patterns in the brain. The approach which
is currently most prominent in the SNN community is to use existing algorithms from
machine learning and to adapt them to the specificity of spiking architectures [46]. One
such example is to adapt the successes of deep learning algorithms and to transfer the
back-propagation algorithm to SNNs, as it is the most widely used to tune the weights
of a classical (non-spiking) neural network. In a nutshell, it considers the system as
implementing an input/output function and iteratively updates the weights according
to the direction and magnitude of the error’s gradient. In deep learning, the gradient is
computed on the activation function and since spikes are not differentiable, a recent popular
approach consists in using a surrogate gradient [179] to “cross-compile” a classical neural
network to a spiking architecture [180]. SNNs reach in some case a similar performance as
their non-spiking equivalent, for instance on the MNIST dataset for categorizing digits in
a stream of events [181]. So far, this approach does not outperform classical architectures
both in term of training efficiency and performances [182]. However, they remain the
best candidates to reproduce biological neural systems and their capacities in terms of
accuracy, speed and energy consumption. There is, therefore, an immense gap in the way
we understand biology to translate it to the efficiency of SNNs. To go beyond the state-of-
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the-art, we will focus here on one core computation of a spiking neuron, that is, its ability
to switch from the classical integrator mode (summing analog currents on its dendrites) to
a detector of precise spiking motifs [55]. In particular, we will explore different existing
architectures which are able to overcome the diversity of input presynaptic patterns and
learn to detect stable spiking motifs, that is, volleys of spikes which are stable up to a
certain onset time (see Figure 7). These models will be compared in light of neuroscientific
and computational perspectives.

5.1. Izhikevich’s Polychronization Model

As we saw, most SNN, and in particular those adapted from analogous deep-learning-
like architectures, rely on an encoding of information based on a continuously varying
firing rate. Notable exceptions of SNNs using precise spike timings are the time-encoding
machine by Lazar [183] and polychronization model of Izhikevich [111]. In this section,
we focus on the polychronization model based on a random recurrent model of spiking
neurons, including synaptic delays chosen from a range of biologically realistic delays
(from 0 to 20 ms) and whose weights evolved with a spike-time-dependent plasticity
(STDP) learning rule [184]. It was shown that spike timing (STDP) has an impact on the
development of synaptic efficacy for many kinds of neurons [185]. Delays are defined as
the total time taken for a spike to be conducted from one presynaptic neuron’s soma to
the efferent postsynaptic neuron’s soma. It is worth mentioning that only the weights are
changed using the STDP rule and that the set of delays is set randomly at initialization and
that delays are then “frozen” for the rest of the simulation. Due to the interplay between
the delays and STDP, the spiking neurons spontaneously self-organize into groups and
generate patterns of stereotypical polychronous activity, i.e., exhibit reproducible time-
locked firing patterns which the author defined as “polychronous groups” (PGs). One core
ingredient of this model is the fact that the neurons composing a group fire at different
times, but due to the heterogeneous delays, the spikes reach the postsynaptic neuron at the
same time. This synchrony of arrival at the soma of the neuron leads to the summation of
the excitatory post-synaptic potentials evoked by each spike, and thus to the crossing of
the voltage threshold and to the discharge of a spike (see Figure 6). According to the STDP
rule, the group of neurons involved in this polychronous activity will see their synaptic
weight increase and, thus, may consolidate the formation of a polychronous group.

Interestingly, the paper by [111] stirred a lively debate in the field of computational
neuroscience, with a general positive acceptance, but relatively few works extended this
seminal paper. Indeed, there were already existing models of synaptic delay learning in
spiking neural networks, see for instance [186] or [187], yet they had not shown potential
applications to the detection of spiking motifs. A popular model for the detection of
latency patterns is the tempotron [188], particularly reviewed in [189]. The tempotron is a
supervised synaptic learning algorithm, which classifies a distractor from a target motif,
in order to extend the perceptron, which does not incorporate a spike timing framework.
The tempotron learning rule is derived by an optimization process and takes the form of
a supervised STDP rule. The limits of this model are that its output is only binary and
that its storage capacities are limited. An extension of [111] was made in a very detailed
work aiming at reproducing the polychronization model [190]. Indeed, while the original
paper contained material within the text to reproduce the whole model (using MATLAB),
it was not complete such as to allow for the reproduction of all results presented in that
manuscript. This more recent work details how this code could be slightly corrected. It
comes with a Python code and a version control system detailing the whole process used to
give provenance to the different steps in this scientific process. Another recent work gives
a Bayesian account in a similar model [191]. In that work, based on the fact that previous
methods for studying polychronous groups’ activation response to stimuli have been
limited by the template-based methods used to identify PG activation, the authors outline a
new method that overcomes these difficulties by establishing a probabilistic interpretation
of PG activation. They demonstrate the use of this method by investigating the claim that
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PGs might provide the foundation of a representational system. Stimulation of the trained
network produces the activation of a PG, i.e., the propagation of firing activity through
multiple layers due to convergent patterns of firing. While extending the original method,
these methods reveal shortcomings that we will try to analyze in the rest of this section.

Strikingly, thanks to the fact that a neuron can be involved in different polychronous
groups, the number of coexisting polychronous groups far exceeds the number of neurons
in the network, resulting in an unprecedented memory capacity of the system (see Figure 7).
In other neuronal models, an efficient use or detection of these spatio-temporal patterns
embedded in the spike train comes with the integration of heterogeneous delays [191,192].
The recent “multi-neuronal spike sequence detector” architecture integrates the weight- and
delay-adjustment methods by combining plasticity with the modulation of spike latency
emission [181]. Additional models for the detection of latency patterns are presented in the
extensive (graph-centric) review on synchronization in time-varying networks [193,194].
This representation has potentially a much greater information capacity in comparison to
other neural coding approaches through their connectivity and the possible coexistence of
numerous superposed PGs [195]. Recently, by using a logistic regression model coupled
with a temporal convolution, a model with heterogeneous delays was implemented to test
the detection of the spiking motifs embedded in an event stream [196]. This allowed to
detect a high number of superposed polychronous motifs in synthetic data, illustrating
the computational benefit of such representations compared to that with a unique delay
(see Figure 7). As such, these models use the neural dynamics to handle input signals with
different delays but do not explicitly take full advantage of the representation capacity
offered by heterogeneous delays.
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Figure 6. Core mechanism of polychrony detection [111]. (Left) In this example, three presynaptic
neurons denoted b, c and, d are fully connected to two post-synaptic neurons a and e, with different
delays of respectively 1, 5, and 9 ms for a and 8, 5, and 1 ms for e. (Middle) If three synchronous
pulses are emitted from presynaptic neurons, this will generate post-synaptic potentials that will
reach a and e asynchronously because of the heterogeneous delays, and they may not be sufficient
to reach the membrane threshold in either of the post-synaptic neurons; therefore, no spike will be
emitted, as this is not sufficient to reach the membrane threshold of the post synaptic neuron, so no
output spike is emitted. (Right) If the pulses are emitted from presynaptic neurons such that, taking
into account the delays, they reach the post-synaptic neuron a at the same time (here, at t = 10 ms),
the post-synaptic potentials evoked by the three pre-synaptic neurons sum up, causing the voltage
threshold to be crossed and thus to the emission of an output spike (red color), while none is emitted
from post-synaptic neuron e.
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Figure 7. Detecting event-based motifs using spiking neurons with heterogeneous delays. (a) Given
a generic raster plot defined by a set of spikes occurring on specific neuron addresses and at specific
times, one may consider that this information consists of the repeated occurrence of groups of precise
spiking motifs. (b) The generative model is defined by this set of motifs (here 4 of them) each defined
by different weights at heterogeneous delays (red for excitatory, blue for inhibitory). (c) Generalizing
the core polychrony detection model (see Figure 6), one can define a layer of neurons that detect the
identity and timing of these spiking motifs [196]. (d) Knowing the results of this detection, one may
for illustration purposes highlight them by different colors in the raster plots, showing that in this
synthetic example, all spikes are now associated with a motif.

5.2. Learning Synaptic Delays

First, the original model by Izhikevich uses a simple STDP rule while a whole range of
STDP-based learning rules may implement precise spiking motifs detection. For instance, to
address how transmission delays and STDP can jointly determine these emergent pairwise
activity–connectivity patterns, a recent study analyzed phase synchronization properties
and coupling symmetry between two bidirectionally coupled neurons using both phase
oscillator and conductance-based neuron models [197]. Moreover, modified STDP rules
have been used for synchronous coherence detection [198], for the learning of specific
receptive fields [199]. They were also extended to recurrent neuronal networks [200] or
delay selection [201]. In particular, this has been applied for recurrent networks of spiking
neurons receiving oscillatory inputs [202] which targets for the selective potentiation of
recurrent connections with different axonal and dendritic delays during oscillatory activity.
More generally, our ability to track and respond to rapidly changing visual stimuli, such as
a fast-moving tennis ball, indicates that the brain is capable of extrapolating the trajectory
of a moving object to predict its current position, despite the delays that result from neural
transmission. Specifically, the neural circuits underlying this ability can be learned through
spike-timing-dependent synaptic plasticity, and these circuits emerge spontaneously and
without supervision, demonstrating how the neural transmission delays can, in part, be
compensated to implement the extrapolation mechanisms required to predict where a
moving object is at the present moment [203].

At the implementation level, a recent work proposed a bio-plausible unsupervised
delay learning for extracting temporal features in spiking neural networks [204]. The
authors provided some mathematical proofs to show that their learning rule gives the
ability to learn repeating spatio-temporal patterns. Applying this STDP-based rule on
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delays to the spiking neural network, the experimental results were validated on a simple
motion detection task, but were prone to convergence issues. Another model of synaptic
delay-weight plasticity integrates synaptic delay plasticity into supervised learning and
proposes a novel learning method that adjusts both the synaptic delays and weights of the
learning neurons to make them fire precisely timed spikes [192]. This was also presented
by [205], who proposed a supervised delay learning algorithm for spiking neurons with
temporal encoding, in which both the weight and delay of a synaptic connection can be
adjusted to enhance the learning performance. Other models, such as that of [206], propose
a weightless spiking neural networks that can perform a simple classification task which is
applied to MNIST. In a recent paper [207], the authors proposed a gradient descent-based
learning algorithm for synaptic delays to enhance the sequential learning performance of
a single spiking neuron. In this algorithm, information is encoded in the relative timing
of individual neuronal spikes, and learning is performed based on the exact derivatives
of the postsynaptic spike times with respect to presynaptic spike times. In yet another
computational model, Sun et al. [208] showed that the frequently activated polychronous
neural groups can be learned efficiently by readout neurons with joint weight-delay spike-
timing-dependent plasticity.

5.3. Real-World Applications

A second shortcoming of models derived from the polychronization model is their
lack of applications in real-world scenarios. Indeed, most of these theoretical models are
trying to reproduce neurobiological observations, while applications to machine learning
methods, such as image processing, would further prove their plausibility. For instance, in
a recent work, Ghosh et al. [209] proposed a two-stage unsupervised–supervised system for
the categorization of spatio-temporal actions from an event-based stream. The first stage
learns spatio-temporal convolutional filters targeted to minimize event-removal-related
changes to a local spatio-temporal spike-event pattern. The second stage takes the output
of the spatio-temporal filters as an input example containing multiple feature channels,
and proceeds to train a classifier for recognition of spatio-temporal activity. For testing the
system, two datasets are considered: DVS gesture and a new action recognition dataset
recorded for this work. Results demonstrate the ability of the system to outperform the
state-of-the-art in event-based gesture recognition, along with demonstrating superior
performance to other alternative ways of obtaining the first stage filters, thus showing the
potential of such representation.

There are more applications to image processing using spiking neural networks. For
instance, a set of models are based on the design of micro-circuits with specific lateral inter-
actions embedded with spatially anisotropic connections. Using this core computational
unit, and extending it to computations on a topographic representation similar to that ob-
served in the primary visual cortex of mammals, the anisotropic rules implemented a form
of delayed activation. This result was based on a predictive model defined in the Bayesian
framework (the so-called free-energy principle) which was able to account for temporal
delays in the system, both at the sensory and motor levels [210], and in particular that “the
application of delay operators just means changing synaptic connection strengths to take
different mixtures of generalized sensations and their prediction errors.” Such a model
was implemented at the network level and applied to various motion detection tasks. In
essence, two neurons, which were selective to specific motions, were connected if the delay
was coherent with the change in the position of their respective receptive fields [211]. This
was also implemented in a neural mass model, showing that such anisotropic connectivity
may explain the emergence of tracking [212], and further explored in a spiking neural
network which reproduced the observation that neural activity was maintained during
the trajectory of a smoothly moving dot, even if it was momentarily blanked [213]. This
led in particular to the proposal that such delay-based computations could explain diverse
perceptual mechanisms, such as the so-called flash–lag illusion [214]. However, these latter
models used parametric rules for defining the weights. Extending such mechanisms with



Brain Sci. 2023, 13, 68 21 of 34

the ability of learning delays in a SNN will provide a breakthrough in the efficiency of these
networks, and we will explore some exemplar results from neuromorphic engineering to
obtain better insights on that aspect.

6. Applications of Precise Spiking Motifs in Neuromorphic Engineering

Artificial intelligence has made huge advances in the past decades. Deep learning
algorithms, nowadays, outperform humans at complex tasks such as natural image recog-
nition or abstract strategy board games. Yet, machine learning algorithms suffer from
adversarial attacks or a lack of generalization capacity. However, their main weakness,
compared to biological neural networks, is their poor energy efficiency. Neuromorphic
engineering intends to mimic the neural bases of communication with a wide variety of
technics, from strictly analog circuits to software-based neuromorphic systems, and to
develop tools improving the capacities of current artificial intelligence [15,215]. Because
the reduced energy consumption of biological networks can be explained in part by the use
of spikes and asynchronous responses to exchange information [178], neuromorphic chips
use this parallel and event-based representation to perform energy-efficient computations.
Another important distinction with classical von Neumann architectures is the localized
memory of this new type of chips. It can be materialized by the capacity of the physical
connections between the processing units to store information [216]. An example of such
a connection, directly inspired by synaptic plasticity, is the memristor [217] for which the
resistance value can be dynamically adjusted. Using these event-based computations as
a building brick, neuromorphic engineering proposes new hardware designs perfect to
simulate SNNs and use the full power of asynchronous computations observed in biological
systems. Even if some useful SNNs simulators run on GPUs [218–220], such event-based
computing techniques show their advantages in terms of frugality and rapidity only on
neuromorphic chips.

This field of research is inspired by neuroscientific advances and a computational
formalism to design innovative architectures and, by artificially reproducing such mecha-
nisms, it is interesting to study neural circuitry. Many connections can be drawn between
neuromorphic engineering and computational neuroscience to aim at solving both research
and technology challenges [221]. In this section, we give a description of the different
neuromorphic hardware that have been developed and see how they can be used to deal
with precise temporal motifs.

6.1. The Emergence of Novel Computational Architectures

To our knowledge, the first neuromorphic circuit is the pulsed current-source synapse
proposed by Carver Mead in 1989 [222]. It was implemented with transistors operating
in the sub-threshold domain and responded to asynchronous events, but was not capable
of discriminating two different spiking sequences with the same firing rate. Indeed, the
postsynaptic membrane potential was increased by a step proportional to the input current
but did not decrease in time, as it can be observed in biological neurons. Then, electronics
circuits became more and more bio-realistic and, two decades later, [223] released the Diff-
Pair Integrator (DPI) synapse that could reproduce the global dynamics of the biological
neurons. The DPI circuit could multiplex in time spikes from different sources and became
a potential “silicon coincidence detector”. Today, many devices are good candidates for
implementing event-based algorithms and use the address event representation (AER).
They can be divided intro three major categories: digital, analog and mixed analog/digital
platforms. For a more complete review, the reader can refer to [224], where we site the most
popular ones. SpiNNaker [225,226], Loihi [182] and TrueNorth [227] chips are widely used
examples of digital hardware implementations. Compared to TrueNorth, which exclusively
implements a LIF neuron, SpiNNaker and Loihi offer some flexibility in terms of neuron
model and allow for on-chip learning. This flexibility in the implementation comes at the
cost of an increased energy consumption. Mixed analog–digital systems were developed
at Stanford University: Neurogrid and Braindrop [228,229]. They are mostly used by
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computational neuroscientists to model brain activity with different levels of abstraction.
BrainScaleS [230] is another mixed analog–digital system developed, just like SpiNNaker,
for the Human Brain Project [231]. It is a wafer-scale neuromorphic hardware with analog
components. Analog arrays (i.e., field programmable analog arrays (FPAA)) refer to the
initial idea of neuromorphic hardware aiming at building strictly analog devices. The
pulsed current source synapse and the DPI are examples of such devices; we can also
mention the field programmable neural array [232] and the NeuroFPAA [233] specifically
designed for neuromorphic systems. Due to their lack of generality and some issues specific
to analog circuits, these fully analog devices are not yet widely used for neuromorphic
computing.

Neuromorphic sensors have also been developed with the idea to capture external
stimuli more efficiently and closer to biological systems. A widely used example is the
dynamic vision sensors (DVSs) which provide a stream of binary asynchronous events
signaling detectable changes in luminance. These devices, also named “silicon retinas” (see
Figure 8), show great improvements in terms of memory allocation, or power consumption,
for the recording of a visual scene. We also report other event-based sensing devices for
sound [234] and touch [235] but will focus on DVS for the next subsection about the use of
dynamics embedded in event-based signals.

Figure 8. A miniature, event-based ATIS sensor. Contrary to a classical frame-based camera for
which a full dense image representation is given at discrete, regularly spaced timings, the event-
based camera provides events at the micro-second resolution. These are sparse, as they represent
luminance increments or decrements (ON and OFF events, respectively). Figure courtesy of Sio-Hoi
Ieng (Sorbonne Université/UPMC, Institut de la Vision).

6.2. On the Importance of Spatio-Temporal Information in Silicon Retinas

With the AER specification and their sub-millisecond temporal precision, DVSs bring
a new approach to the storage and processing of visual information. From their generative
model, these sparse events are markers of the dynamics of the visual scene captured
by the sensor. The dynamics of the event streams have to be used to make sense of the
recorded information, and new algorithms are needed to solve efficiently classical computer
vision tasks.

In [236], time surfaces were introduced as an event-driven 2D image of the delay be-
tween the last event recorded at the address of a pixel and the current time. An exponential
decay is applied on this delay to obtain the analog values of the time surfaces. It gives more
precision to represent recent events and offers an analogy with the LIF spiking neuron.
It is a way to represent the local dynamics embedded in the event-based recordings, and
with unsupervised learning on the event stream based on the cosine similarity, they can
capture repeating motifs within the input signals. Learned time surfaces can be used for
object recognition [236–240] and show that this method could be efficiently applied to
state-of-the-art benchmarks.

More generally, three-dimensional convolutions in both space and time are another
representation of the spiking motifs embedded in the event stream [196,209,241]. With
their additional temporal dimension, their kernels can capture multiple events on the same
pixel address, as long as they belong to the local temporal window (see Figure 9). This
representation is only limited by the time step used for the discretization of the signal; this
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factor defines the temporal precision of the representation. Other methods make direct use
of the precise timing of events captured by the DVS to solve optical flow and time-to-contact
challenges [242–244], inferring depth [245], feature detection and tracking [246], motion
segmentation [247] or the simultaneous localization and mapping problem [248]. This
non-exhaustive list of complex task solving is not directly linked to biological processes,
but shows the potential of the precise temporal resolution of neuromorphic retina-like
cameras. By essence, these sensors offer a novel view of visual information processing
due to the asynchronous responses of the different pixels. With this type of signal, the use
of spatio-temporal motifs embedded in the event streams is essential to solve high-level
visual tasks.

Figure 9. Detecting visual motion in an event stream with heterogeneous delays. Extending the
polychrony detection model to the spatial domain, Grimaldi and Perrinet [196] have applied a
supervised learning scheme to the detection of motion. The models’ parameters are represented by
different spatio-temporal kernels, and we show three examples as pairs of rows, one targeting ON
spikes, the other OFF spikes, the first column representing the corresponding motion detected. When
trained on a set of natural images, it shows the emergence of localized, oriented kernels organized in
a so-called push–pull organization for which weights to an ON spike are negatively proportional
to that to an OFF cell [72]. Global weight is globally decreasing from the lowest delay (right) to less
recent information (left).

6.3. Computations with Delays in Neuromorphic Hardware

For the rest of this section, we report examples of implementations of event-based
algorithms using precise spatio-temporal motifs on neuromorphic hardware. [249] imple-
mented a delay-learning algorithm on an analog chip. Online learning on neuromorphic
chips is still a challenge today and for this work, only the detection of spiking motifs was
performed on the analog architecture; training was performed digitally and based on the
tempotron learning rule [188]. In addition to delay learning, a group at the University of
West Sydney developed a neuromorphic implementation of multiple synaptic plasticity
learning rules [250]. They showed that STDP and spike-timing-dependent delay plastic-
ity rules could be implemented in both a digital and an analog chip. From the network
parameters and the physical limitations to store it on-chip, they proved that the digital
implementation is way easier to scale up and that an external memory would be needed
for a larger network. The same group presented a FPGA hardware implementation of
polychronous networks in which propagation delays are learned in a supervised manner,
based on the expected firing time of the post-synaptic neuron [251]. Pfeil et al. [252] imple-
mented STDP on a mixed analog–digital chip to simulate the sound localization processes
observed on the barn owl auditory system [154]. Coherence detection on input spikes
coming from two sources was obtained with a 50 ns precision. They claimed that this



Brain Sci. 2023, 13, 68 24 of 34

unsupervised learning denoises the input and compensates for variations between neural
components. The variability of response of the analog components can be compensated by
population coding for responses robust to noise, and this phenomenon is also observed in
biological neural networks [253]. A recent work performed the implementation of a sparse
vector symbol architecture binding operation on the Loihi chip, delay lines and coincidence
detection, used to compute the binding operation [254]. They highlighted the fact that
using delays can be expensive notably in memory bandwidth because incoming spikes
have to be stored in blocks with a temporal dimension equivalent to the maximal delay.
Note that this problem is also due to the algorithm used in this paper and that the analog
chips must not suffer from this type of limitation.

Online on-chip learning and computations with delays are still emerging in neuro-
morphic engineering. The technical challenges linked to the development of this type of
implementation and the growing interest in delay learning make advances in this field
interesting for the future of computations with precise spatio-temporal motifs. While
improvements are still to be made, neuromorphic chips seem to be a good candidate to
efficiently make use of these particular features.

7. Discussion
7.1. Summary

In this review paper, we presented recent evidence for the role of precise spiking motifs
in neuroscience. In particular, we showed that such particular motifs may play a crucial
role in neurobiology, that they may be understood at the theoretical and computational
levels, and that they may have numerous applications in neuromorphic engineering. In
particular, we showed the following:

• The efficiency of neural systems, and in particular the visual system, imposes strong
constraints on the structure of neural activity which highlights the importance of
precise spike times;

• Growing evidence from neurobiology proves that neural systems are more than inte-
grators and may use synchrony detection in different forms: synfire chains, travelling
waves on arbitrary spiking motifs, and notably that an encoding based on precise
spiking motifs may provide huge computational benefits;

• Many theoretical models already exist, taking into account the specificity of spiking
motifs, notably by using heterogeneous delays;

• Using precise spiking motifs could ultimately be a key ingredient in neuromorphic
systems to reach similar efficiencies as biological neural systems.

Overall, our reviewing effort has shown that a growing community is focusing on
that aspect. This community is based on solid and validated evidence, which is breaking
novel grounds thanks to the current technical advances. Moreover, we also showed that
this community is highly diverse, operating in biology, computational neuroscience or
neuromorphic engineering. As a consequence, the global effort is still largely scattered,
which limits its larger acceptance in neuroscience.

7.2. Limits

Additionally, the different models of spike motif detection and learning that we
have presented at these different levels (neurobiological, theoretical, and neuromorphic)
individually present limitations that prevent their widespread application in neuroscience.

First, many models are based on a discretization of time. This assumption is important
to allow for a useful representation of neuronal information in order to be processed in
computers. This treatment amounts to transforming spike trains into a matrix form for
processing in classical machine learning algorithms. This assumption therefore implies an
ineffective use of the memory, as this representation transforms the sparse representation
of a spike sequence into dense matrices. In addition, this representation can induce errors
due to the discretization and the scale of temporal sampling. Finally, this representation
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encourages the use of classical methods, which are not adapted to disruptive applications,
such as event-driven representations.

Moreover, the learning of patterns is often done in a supervised way. Indeed, the
problem of detecting polychronous groups implies to infer both the address and the precise
time of the occurrence of these motifs. Most of the models we have presented are based on
the assumption that at least one of its variables is known: either the pattern, its identity, or its
time of occurrence. This constraint is to be put in parallel with the way a biological nervous
system works in which learning is performed autonomously, i.e., without supervision.
However, we can note that some models can perform such learning, but only in the case of
data for which the motifs are easily separable. More generally, to reproduce the efficiency
of biological systems, one should account for the different temporal scales of adaptation,
from seconds to years. For instance, the scaffolding of neural assemblies seems to follow
critical periods during development [255].

A final limitation of the models we have presented is that they consist of a single
processing layer that links an input to an output. However, we saw that the neurobiological
system uses processing loops within hierarchical graphs. In general, these systems are
bidirectionally connected across different layers (for instance cortical areas), but also within
a layer, as was for instance used by Izhikevich [111]. The whole system forms a dynamical
model which may be considered globally during the learning phase, yet while taking
account the constraints of the system, for instance, the lack of a global clock, or the cost
of fully connected topologies. Moreover, these processes have to be distinguished from
judgements on timing, such as temporal order processing (judging when one event happens
relative to another) or duration estimation (measuring how long an event lasts) [256].

7.3. Perspectives

The limits that we have presented can be treated individually in each model, as ev-
idenced by individual efforts, which try to overcome them. However, to propose a real
breakthrough, we believe that future venues should provide with a unified, interdisci-
plinary approach, with applications to real-world, ecological scenarios and with open and
reproducible methods.

First, as we already noted, the effort is still largely scattered. This is in part due to the
fact that interaction between neurobiology, theoretical and computational neuroscience
and neuromorphic engineering are still scarce as of today. It was largely demonstrated
that close, bidirectional interactions are essential to foster breakthroughs. For instance,
the design of model-driven protocols has proven to be essential in modern neuroscience.
Additionally, if neural networks were essential in shaping modern-day machine learning,
e.g., computer vision using deep learning, spiking neural networks should prove essential
in future emerging technologies.

In that perspective, it is essential that such models are tested on ecologically relevant,
real-world scenarios. Indeed, classic convolutional neural networks have emerged as
optimal solutions, for example, to classify static images into categories, yet they are not
well-adapted for processing dynamic, multimodal sensory flows. The emerging necessity
to be able to process more complex flows, such as the multiple flows of information in a car
designed for autonomous driving, necessitates modifying such modelling paradigms, and
in particular, to take into account that the generated actions may modify the sensory inputs.
Notably, the protocols used as well in neurobiology, theory or engineering should take into
account these novel levels of complexity.

Ultimately, the community should encourage the adoption of open, reproducible
science. Indeed, the different models that we have displayed often come with the tools
necessary to reproduce the results obtained. This is true in neurobiology [115], in theoretical
neuroscience [111] or in engineering [240]. This aspect is essential to foster the emergence of
interdisciplinary projects, such as model-driven neurobiological experiments or biologically
inspired neuromorphic engineering. Solutions exist to optimize these collaborations [257]
and suggest the emergence of a novel paradigm for scientific advances in neuroscience [258],
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i.e., by using data exploration in which the scientific models are fit to the data by learning
algorithms. As such, this review aims at paving the way to openly share the variety of
resources and to offer a unified view on the role of precise spiking motifs in neuroscience.
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