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Abstract: Recent studies have demonstrated that the brain activity of a group of people can be used
to forecast choices at the population level. In this study, we attempted to neuroforecast aggregate
consumer behavior of Internet users. During our electroencephalography (EEG) and eye-tracking
study, participants were exposed to 10 banners that were also used in the real digital marketing
campaign. In the separate online study, we additionally collected self-reported preferences for the
same banners. We explored the relationship between the EEG, eye-tracking, and behavioral indexes
obtained in our studies and the banners’ aggregate efficiency provided by the large food retailer based
on the decisions of 291,301 Internet users. An EEG-based engagement index (central beta/alpha ratio)
significantly correlated with the aggregate efficiency of banners. Furthermore, our multiple linear
regression models showed that a combination of eye-tracking, EEG and behavioral measurements
better explained the market-level efficiency of banner advertisements than each measurement alone.
Overall, our results confirm that neural signals of a relatively small number of individuals can forecast
aggregate behavior at the population level.
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1. Introduction

Recent neuroimaging studies have suggested that the brain activity of a group of par-
ticipants can forecast the behavior of a separate and independent group of individuals [1–9].
In the current study, we further tested whether behavioral and neural correlates of adver-
tisements, which had been measured in a relatively small group of participants, can predict
the real (aggregated, market-level) effect of the advertisement.

A growing number of studies have indicated the ability to use the brain activity of a
group of participants to forecast the aggregate behavior of an independent and larger group
of people, an approach known as neuroforecasting. In neuroforcasting literature, aggregate
behavior refers to economy- or population-wide sums of individual behavior. The majority
of such studies used functional magnetic resonance neuroimaging (fMRI) due to its sensi-
tivity to the activities of deep brain areas [10]. Previous fMRI studies (neuro)forecasted the
popularity of songs [1], microlending success [6], the effectiveness of advertisements [9,11],
point-of-sales materials efficiency [8], viral marketing success [12], article virality [13], and
funding success [14]. Despite the growth in the field, the overall number and scope of
neuroforecasting studies remain limited (for a review, see [10]). Moreover, the number of
studies in which electroencephalography (EEG) was used is even lower. The advantages
of EEG include direct measurement of brain electrophysiological signals, relatively low
cost of studies, high temporal resolution, and non-invasiveness. To date, EEG neurofore-
casting studies have successfully predicted aggregated preferences of TV content [4], the
popularity of YouTube videos [7,15,16], commercial success of movie trailers [2], and the

Brain Sci. 2023, 13, 57. https://doi.org/10.3390/brainsci13010057 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci13010057
https://doi.org/10.3390/brainsci13010057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0001-9722-3347
https://orcid.org/0000-0002-1707-7456
https://orcid.org/0000-0002-8802-8125
https://orcid.org/0000-0002-5257-3789
https://doi.org/10.3390/brainsci13010057
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci13010057?type=check_update&version=3


Brain Sci. 2023, 13, 57 2 of 13

notability of ads [3]. Additionally, neuroforecasting studies in addition to neural data
often collect participant’s behavior (for example, choices to fund projects in [14], ranking of
the effectiveness of the ad campaign in [5], or liking, excitability, and familiarity ratings
in [11], etc.) and include it to the neuroforecasting data analysis. However, little is known
about the relative accuracy of EEG, eye-tracking, and behavioral methods in forecasting
aggregated (market-level) behavior. Furthermore, no neuroimaging study has examined
the neuroforecasting of advertisement efficiency in digital media campaigns. In the current
study, we aimed to forecast the effectiveness of 10 real banner ads using a set of behavioral
(a single likability measure), eye-tracking, and neuroimaging measurements.

Previous EEG studies have demonstrated that EEG-based metrics can predict ad recall,
purchase decisions, and attitudes toward a brand at the population level (for a review,
see [15]). Behavioral measurements, such as implicit reaction time (IRT), reflect attitudes
toward a brand, brand images, and ad recall [17–19]. Furthermore, eye-tracking data also
can forecast ad recall, brand recognition, and purchase intention (for a review, see [20]).
By now, many consumer neuroscience studies focused on the various forms of consumer
behavior (for a review, see [21]). To date, only one study [11] used a large variety of
methods, such as traditional self-reports, implicit measures, eye-tracking, biometrics, EEG,
and fMRI, to predict aggregate market-level effects of ads. However, that study focused
on TV campaigns, but not on digital media campaigns, which are growing annually [22],
making them the largest advertising medium in industrialized countries.

Since the early 1990s, a set of EEG-based indexes was developed to track attentional
engagement [23]. Beta band frequency showed up to be a reliable marker of active visual
attention, being more pronounced when participants demonstrate better performance in vi-
sual attention tasks [24]. It has been suggested that stronger beta oscillations are associated
with activity of the visual system, action planning, and the attentive state of the brain in
general [25]. Moreover, some studies have associated medial-frontal beta oscillations with
reward processing [26,27]. Such beta oscillations have been implicated in the experience
of pleasure associated with a favorite brand [27]. Some evidence has suggested that beta
oscillations are modulated by the brain regions connected with reward processing, includ-
ing the orbitofrontal cortex [28–30]. On the contrary, alpha oscillations desynchronize,
when participants reorient attention toward a new stimulus [31] or watch a video with
frequent scene change [32]. The engagement or arousal are often evaluated as a balance
between alpha and beta rhythms in gaming tasks [33], sustained attention tasks [34], and
alarm-detection tasks [35]. Thus, based on prior studies, we calculated an EEG attentional
engagement index as β/α-ratio to track participants’ attention during the digital media
campaigns. Previous studies suggested that frontal asymmetry of alpha oscillations reflects
the valence of emotion and the direction of the motivation [36,37]. Moreover, frontal alpha
band asymmetry is widely used to monitor the success of advertising campaigns [11,16].
Therefore, to monitor the valence of emotion, we calculated valence index as a difference
between the alpha oscillations at the left and right frontal electrodes.

The main objective of the study is to use EEG, eye-tracking, and behavioral measure
of likability to predict aggregate behaviour of a separate independent group of Internet
users. Below we report two studies, where participants were exposed to 10 banners, that
were also used in the digital marketing campaign of a large food retailer. The principle
results demonstrated that the β/α-ratio and total time the participant fixated at the image,
that were recorded in the lab, significantly correlated with the aggregate behaviour of a
separate independent group of Internet users. Overall, we concluded that a combination
of EEG, eye-tracking, and behavioral measurements better explained the variation in the
aggregate behaviour than each measurement alone.

2. Materials and Methods

To neuroforecast the aggregate behaviour, we used EEG as one of the most popu-
lar neuroscientific techniques for marketing studies [38]. EEG is a safe and noninvasive
method. Many EEG systems are portable and can be combined with eye-tracking. Fur-
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thermore, EEG has the high temporal resolution that makes it suitable for further studies
of dynamic marketing stimuli. In addition, we used eye tracking that allows to identify
which items capture visual attention [39]. In order to collect (a) neuroscientific measures
and (b) behavioral data, which cannot be collected in the one study due to some differences
in study designs, two consecutive studies been performed. Thus, in Study 1 we collected
EEG and eye-tracking data; in Study 2 we collected behavioral data to forecast the outcome
of the real digital marketing campaign of a large food retailer.

2.1. Study 1: EEG and Eye-Tracking Study
2.1.1. Participants

We recruited 26 participants via a panel service. All participants reported no history of
neurological disorders, no history of psychotropic drugs, and no substance abuse in the past
month; all had normal or corrected-to-normal vision and no colorblindness. Participants
represented the target audience for the digital marketing campaign of a premium food
retailer: they declared upper-middle or high-income, age range of 21–35 years, and at least
one visit per week to a premium retailer (median = 3). All participants provided written
informed consent and were naïve to the main purpose of the study. At the beginning of
the experiment, each participant was informed about the experimental procedure, the eye-
tracking, and EEG methods, and was instructed to look at the screen during the experiment
without an explicit behavioral task. One participant was excluded from the data analysis
because of extensive eye movements. Thus, the final data set included 25 participants
(16 females, median age = 29 years). The study protocol was approved by the ethics
committee of the local university.

2.1.2. Stimuli

To make our study more ecologically valid, we used the original stimuli used in the
marketing campaign. Importantly, all banners had the same structure (a similar organi-
zation of the elements and the same size of the elements), that made them comparable to
each other. The stimuli consisted of 10 colored banner ads designed by a premium food
retailer for a digital media campaign. The stimuli were presented on a 17” LED monitor
(screen resolution = 1920–1080 pixels) using the SMI Experiment Centre (SensoMotoric
Instruments GmbH, Teltow, Germany). At the beginning of each trial, a banner ad was
presented for 5 s (Figure 1A). Next, the participant answered a short filler question using
a 5-point Likert scale. Filler questions probed attitudes toward the brand and banner ad;
filler questions were not analyzed in the current study.

During Study 1 (A), participants observed a banner ad (5 s) and answered a filler
question. At the end of the trial, the participants rated the posters. During Study 2 (B),
participants observed a banner ad (5 s) and statement (e.g., “I like it”) (500 ms). At the end
of the trial, participants indicated whether they agreed or disagreed with the statement. In
both studies, the intertrial interval (ITI) was 2–6 s.

During each trial, EEG and eye-tracking data were recorded simultaneously. Each trial
lasted approximately 30 s, including a variable intertrial interval (2–6 s). Overall, 30 trials
were presented in a random order during each study with 3 repetitions per banner. Each
study lasted approximately 15 min. Each banner ad consisted of pictorial, textual, and
brand elements; elements were similarly spatially arranged in all banner ads (Figure 3).
Importantly, all banners differed in their pictorial and textual elements.
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Figure 1. Experiment design: Trial structure of Study 1 (A) and Study 2 (B). During Study 1 (A),
participants observed a banner ad (5 s) and answered a filler question. At the end of the trial, the
participants rated the banners. During Study 2 (B), participants observed a banner ad (5 s) and
statement (e.g., “I like it”) (500 ms). At the end of the trial, participants indicated whether they agreed
or disagreed with the statement. In both studies, the intertrial interval (ITI) was 2–6 s.

2.1.3. Aggregated Market-Level Effects of Ads

In the current study, we aimed to neuroforecast the market-level outcome of the real
digital marketing media campaign of the large food retailer. This media campaign aimed to
motivate consumers to visit the retailer’s webpage and spend longer time. Therefore, the
effect of the media campaign was measured as time (mean session duration) that Internet
users spent at the retailer’s webpage after clicking the banner ad. For two months, 10 banner
ads were randomly aired on various websites (4 h each day) using a programmatic platform
Hybrid (https://hybrid.ai/, accessed on 20 February 2020): each banner was randomly
presented at the different websites with equal probability to the preselected pool of Internet
users with higher-than-average income. Online statistics indicated that 291,301 Internet
users (age: 20–45) were exposed to banner ads 1,456,182 times. Overall, during the digital
campaign, each Internet user was exposed approximately 5 times to the banner ads, which
had been chosen randomly for each exposure. To compare the relative effectiveness of
each banner ad, we calculated a session duration index (SD-index) that indicated how
much time on average users spent on a retailer’s webpage after clicking a certain banner
ad, which is a proxy of the market-level interest, which this banner has evoked. Figure 2
illustrates the distribution of the SD index across 10 banner ads.

https://hybrid.ai/
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10 banner ads.

2.1.4. Eye-Tracking Recordings and Analysis

To study whether the attention to the banners can predict aggregate efficiency of
banners, we used the eye-tracking technique. Eye-tracking data were recorded using SMI
RED-m (SensoMotoric Instruments GmbH, Teltow, Germany) with a sampling frequency of
60 Hz and an accuracy level of 0.5 degrees. The participants were seated at a table in front
of a computer screen, and their seating position was adjusted to ensure that they remained
centered in front of the monitor at a distance less than 65 cm. Standard methods (velocity-
and acceleration-based) were used to segment the gaze trajectories into a sequence of
fixations and saccades. All fixations outside the range of 50–600 ms were removed as
outliers (less than 5%).

Each stimulus/banner ad depicted three areas of interest (AOIs): pictorial, textual, and
brand elements (Figure 3). To compare the eye-movement characteristics of participants for
each banner ad, we calculated the dwell time index (DT index) for each AOI that indicated
the total time the participant fixated at the specific element (for a similar approach, see [40]).
Thus, for each banner, the following three DT indexes were calculated: DT picture index,
DT text index, and DT brand index. Eye-tracking data were analyzed using SMI BeGaze
3.7.59 software (SensoMotoric Instruments GmbH, Teltow, Germany).

2.1.5. EEG Recording

To study whether an EEG-based engagement index can predict the aggregate efficiency
of banners we recorded the EEG from 28 scalp electrodes. The EEG data were collected
using the NVX36 amplifier (Medical Computer System) with a 500 Hz sampling rate.
The following 28 Ag/AgCl electrodes were positioned according to the international
10–20 system: Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, Pz, Oz,
FC1, FC2, CP1, CP2, FC5, FC6, CP5, and CP6. EEG signals were referenced to arithmetically
linked mastoids. Impedance was kept below 5 kΩ. The electrooculogram was recorded
with electrodes placed at the left outer canthi and below the right eye. To synchronize EEG
and eye-tracking data EEG amplifier collected event markers from the stimulation software
(SMI Experiment Centre, SensoMotoric Instruments GmbH, Teltow, Germany).
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Figure 3. Each banner ad consisted of three key elements: pictorial, textual, and brand elements.
Three areas of interest (AOI) were selected for eye-tracking analysis: pictorial element (AOI-1)
consisting of the picture of the product, textual element (AOI-2) consisting of the endorsing text, and
brand element (AOI-3) containing the logo of the brand. The size AOI-3 was exactly the same across
all banners, whereas the sizes of AOI-1 and AOI-2 differed across banners by less than 5%.

2.1.6. EEG Analysis

We performed EEG preprocessing using the Brainstorm toolbox [41]. First, the raw
data were visually inspected for artifacts, and the noisy segments were removed. Second,
the EEG data were filtered with a 1 Hz high-pass filter (slope = 48 dB/oc) and a 40 Hz
low-pass filter. Third, to correct for eye-movement artifacts, we used JADE independent
components analysis (ICA): the eye-movement artifacts were removed according to their to-
pography and correlation with the EOG, as implemented in the Brainstorm toolbox. Fourth,
the data was re-referenced against the average activity at all electrodes and then filtered in
alpha (8–12 Hz) and beta (16–24 Hz) bands. Fifth, the continuous data were segmented
for each banner ad into 10 segments (−500 ms to 5000 ms). Lastly, the valence index and
engagement index for each segment were calculated, as described below. To analyze alpha
(8–12 Hz) and beta (16–24 Hz) oscillations, we applied fast Fourier transform (FFT) over
4000 ms of post stimulus intervals, acquiring mean power across time in alpha (8–12 Hz)
and beta (16–24 Hz) bands. Therefore, in the current study, for each banner, we calculated a
frontal asymmetry index—valence index (F4(α) minus F3(α))—as a difference between the
power levels of the alpha rhythm at the F4 and F3 electrodes and the engagement index
(Beta (Cz + Pz + P3 + P4)) / (Alpha (Cz + Pz + P3 + P4) as a sum of beta/alpha ratio at the
central electrodes. The resulting data has been averaged across trials (type of the banners),
and to obtain the cumulative index, across the subjects.

2.2. Study 2: Behavioral Study

To collect additional behavioral data, we conducted Study 2. The experimental proto-
col was largely identical to Study 1, except for minor modifications to the trial structure
(Figure 1B).

2.2.1. Participants

We recruited 48 participants (25 females, median age = 31) via a panel service. Partici-
pants had socioeconomic characteristics similar to those recruited in Study 1.
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2.2.2. Study Design

In behavioral Study 2, we used the same 10 banner ads as in Study 1. Figure 1 shows
that each trial started with a 5000 ms presentation of a banner followed by the statement, “I
like this ad” in order to measure ‘likeability’ since its wide use in practice. Next, after the
statement, two response options (“yes” and “no”) appeared on the screen, with a delay of
500 ms (to avoid responses of participants, who intend to just to click through and finish as
fast as possible). At the end of the trial, the participants indicated their choice using the
keyboard. A total of 20 trials (10 banner ads × 2 repetitions) were randomly presented
for approximately 5 min. The study was conducted online using FasTest (FasTest Neuro
Solutions, Inc., version 2021, Lewes, DE, USA) software.

2.2.3. Behavioral Data Analysis

First, all reaction times longer than 2500 ms were removed as outliers [42].
Furthermore, the likeability index was calculated as the proportion of participants

who agreed with the statement (“I like this ad”).

2.2.4. Multiple Regression Models

Using multiple linear regression models, we further examined whether behavioral
(Study 2), eye-tracking and/or EEG data (Study 1) could predict behavior at the population
level. We used the aggregate SD index of the banners’ efficiency (for 291,301 Internet
users) as the dependent variable and up to four independent variables. The following
three models were tested to explore the various predictors of the SD index that indicated
how much time on average users spent on a retailer’s webpage after clicking a certain
banner ad:

(1) Model I (null model) included only the behavioral likeability index as a predictor.
(2) Model II included the EEG-based valence index and engagement index as predictors.
(3) Model III included eye-tracking-based DT picture index, DT text index, and DT brand

index as predictors.
(4) Model IV included all psychophysiological independent variables (valence index,

engagement index, DT-picture index, DT-text index, DT-brand index) as predictors.

Similar to the seminal neuroforecasting study [6], we also used Pearson’s correlation
analysis to study the relationship of the engagement index (β/α ratio), valence index
(α asymmetry), DT-indexes (dwell time for picture, text, or brand elements of banners),
and likeability index with the population-level session duration index in more detail. The
results are presented in Appendix A. Visual summary of the investigated variables, together
with their connection to the AIDA framework, widely used in advertising, is presented in
Figure A1.

3. Results

Separate linear regression models estimated whether (a) a behavioral likeability index,
(b) an EEG-based valence index (α asymmetry), engagement index (β/α ratio), and (c)
eye-tracking-based DT indexes (DT picture index, DT text index, and DT brand index) were
predictive of behavior at the population level (see Table 1 and Figure 4). The adjusted R2, the
coefficient of determination, and Akaike Information Criterion (AIC) indicated the better fit
of Model IV that combined all the psychophysiological independent variables (adj R2 = 0.79,
p = 0.03, AIC = 86) compared to Model I (adj R2 = 0.09, p = 0.2, AIC = 99), Model II
(adj R2 = 0.45, p = 0.04, AIC = 95), and Model III (adj R2 = −0.05, p = 0.5, AIC = 102), despite
penalties for additional predictors. Overall, a combination of EEG and eye-tacking indexes
(Model IV) explained 79% of the variance in aggregate population behavior indicated by
the SD-index, whereas the EEG-based engagement index alone explained only 43% of the
variance in the population-level behavior.
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Table 1. Results of the linear regression models predicting population effects of banner ads—session
duration index—using behavioral, electroencephalography (EEG), and eye-tracking data (Dwell Time
Indexes, DTI). Confidence interval values are presented in the square brackets.

Model I Model II Model III Model IV

Likeability index
(behavioral) 15 (−10 40)

Engagement
index (EEG) 25 * (5 45) 30 ** (13 47)

Valence index
(EEG) −6 (−26 13) −3.5 (−20 13)

DT picture index
(eye-tracking) 17 (−38 72) 34 * (4 65)

DT text index
(eye-tracking) −2 (−52 48) 20 (−10 51)

DT brand index
(eye-tracking) 1 (−33 36) 3 (−15 21)

Adjusted R2 0.09 0.45 −0.05 0.79

AIC 99 95 102 86

p-value 0.2 0.04 0.5 0.03
* indicates p < 0.05, ** indicates p < 0.01.
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Figure 4. Relationship between population-level effects of banner ads—session duration (SD) index
and behavioral likability index, EEG, eye-tracking data. (A) The scatterplot indicates the session
duration (SD) index as a function of the averaged engagement index (β/α ratio). The line represents
a linear trend estimate. (B) The diagrams show key results of linear regression models that estimated
whether survey-based explicit likeability index, EEG-based valence and engagement indexes, eye-
tracking-based DT picture, DT text, and DT brand indexes were predictive of the session duration
index. The adjusted R2 value is given in parentheses; asterisks indicate significant coefficients
(* p < 0.05, ** p < 0.01).

4. Discussion

Our findings further support the view that the neural activity of a limited number
of people can predict decisions at the population level. In Study 1, we analyzed the EEG
activity and eye movements of 26 participants while they observed 10 banner ads from
the real digital marketing campaigns of a large food retailer. In a separate behavioral
study, Study 2, another 48 participants observed the same ads and took a behavioral test.
As a principal result we can report that linear regression modeling indicated that the
combination of the EEG-based valence index (α asymmetry), engagement index (β/α
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ratio), and eye-tracking-based DT indexes (DT picture index, DT text index, and DT brand
index) could explain the variance of the aggregated (population level) effect of banners
better than each predictor separately.

Advertising might influence consumers’ emotions, memory or behavior. The effects
of advertising can be hierarchical [43,44]: the lower-order effects could be necessary pre-
conditions for the later higher-order effects. Therefore, measuring the effectiveness of
an advertising campaign is a challenge for practitioners and scientists [45]. Capturing
customers’ attention is critical to marketing success [46–49], particularly in the visually
overloaded online environment. In the current study, the effect of the media campaign
was measured as time (mean session duration) that Internet users spent at the retailer’s
webpage after clicking the banner ad. Importantly, a marketing campaign, that was used
in our study, aimed to increase time spend during website visit, after clicking the banner.
As global media spends rise over the years [22], marketers are calling for accurate assess-
ments of advertising effectiveness [39], because traditional non-physiological measures
of advertising effectiveness have strong limitations. For example, consumers often state
their preferences incorrectly [50]. Thus, in recent decades, consumer neuroscience has
developed not only as an academic field but also as a marketing research practice. In
particular, neuroforecasting studies have demonstrated that the results of neuroimaging
lab studies can be translated into real-life aggregated behavior. Thus, neuroimaging may
provide marketeers with additional information that supplements conventional marketing
research methods [39,51].

In the current study, statistically significant regression models used either EEG-based
indexes (adj r2 = 0.45) or EEG- and eye-tracking-based indexes (adj r2 = 0.79) as indepen-
dent variables. However, regression models that used only eye-tracking data or behavioral
measures were not significant. The coefficient of multiple determination for multiple re-
gression (r2) in the current study was consistent with previous EEG-based neuroforecasting
studies [2,7,16,52], in which the percentage of the dependent variable variation that a linear
model explained ranged from 30% to 70% (for review, see [15]). Overall, our findings sup-
port the idea that neurophysiological measures can better account for aggregated behavior
than traditional behavioral measures [5,6,9–11,14,15].

Our multiple regression modeling (Model IV) showed that the engagement index
(EEG-based frontal beta/alpha ratio) and DT-picture index (total time the participant fixated
at the picture AOI) were particularly predictive for the aggregated effect of advertising. This
is in line with previous studies that showed a connection between measures of engagement
or arousal and consumers’ responses to advertising [53], ad notability [3], and click-through
rate [52] at the population level. Interestingly, EEG beta activity has been previously
implicated in positive brand experience [27], reward processing [26,54], and population-
wide movie preference [2].

In the current study, the valence index, measured as frontal EEG alpha asymmetry,
was not significantly predictive of the population-level effect of advertising. The affect–
integration–motivation (AIM) framework suggests that the “affective” responses, which
underlie consumers’ choices, might broadly generalize across individuals, and thereby
may reveal “hidden information” regarding mass preferences and aggregated choices (40,
50). Many previous neuroforecasting fMRI studies have focused on the ventral striatum,
whose role in reward processing is strongly dependent on the saliency associated with
reward [55,56]. Thus, we can speculate that the EEG-based engagement index—frontal
beta/alpha ratio—may depict the saliency associated with the product/banner that could
correlate with aggregated market-level preferences.

We also showed that eye-tracking-based DTI-picture index (with product picture), but
not DTI-text and DTI-brand (logo) indexes, significantly predicted the aggregated effect
of advertising. Similarly, in a previous study [57], gaze fixations on product elements (i.e.,
phone) were positively correlated, whereas gaze fixations on brand elements (i.e., logo)
showed a negative correlation. Furthermore, a positive connection between fixations on
the packaging design elements and consumers’ choices has been previously reported [58].
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Our study also makes practical implications for the field of consumer research. We
showed that eye-tracking in combination with EEG is particularly effective in predicting the
effects of advertisements. We also confirmed that a combination of eye-tracking and EEG
better explained the market-level effects of advertisements than each measurement alone.

The current study has several important limitations; most of them were determined
by the neuroforcasting study design, and by commercial information disclosure limitations.
For example, we had a limited access to the banner’s efficiency data. The restricted timing
of psychophysiological data acquisition also limited the number of stimulus repetitions
during Study 1. We invited participants who matched an average customer profile. Thus,
the generalization of our results to the total population must be approached with caution.
We also presented advertising banners in lab settings outside the native context of digital
media. Therefore, the ecological validity of our findings should be further verified using
other study designs. Notably, due to the limitation of the real digital marketing campaign,
we used only 10 banners provided by the food retailer. Thus, our statistical analysis was
limited by the relatively small dataset. Importantly, in real practice, marketers rarely run
digital marketing campaigns with more than 10 different banner ads. Therefore, real-life
practice often limits the datasets of aggregated behavior available for neuroforecasting
studies. Nevertheless, we believe this study may extend our knowledge in the field
of neuroforecasting.

To conclude, we fulfilled the main objective of the study and confirmed that EEG,
eye tracking, and behavioral measure of likability can predict aggregate behaviour of
a separate independent group of Internet users. The multiple linear regression models
demonstrated a significant association of psychophysiological measures (especially the
beta/alpha ratio) with ad efficiency at the population level. Importantly, a combination
of EEG and eye-tracking data better explained ad efficiency than the behavioral likability
measure. Thus, our results provide an additional step in verifying the neuroforecasting
approach in the context of online digital media campaigns.

Author Contributions: Conceptualization, A.K., A.G. and V.K. (Vasily Klucharev); Data curation,
N.K., V.K. (Valery Klyuchnikov) and B.B.; Formal analysis, A.K., A.G., N.K. and V.K. (Valery Klyuch-
nikov); Funding acquisition, A.K. and V.K. (Vasily Klucharev); Investigation, A.K., A.G., B.B. and V.K.
(Vasily Klucharev); Methodology, A.K., A.G., V.K. (Valery Klyuchnikov) and V.K. (Vasily Klucharev);
Project administration, A.K.; Software, N.K., V.K. (Valery Klyuchnikov) and B.B.; Supervision, V.K.
(Vasily Klucharev); Validation, A.G. and B.B.; Visualization, A.K.; Writing—original draft, A.K. and
A.G.; Writing—review and editing, V.K. (Vasily Klucharev). All authors have read and agreed to the
published version of the manuscript.

Funding: This work has been supported by the International Laboratory of Social Neurobiology,
Institute for Cognitive Neuroscience, Higher School of Economics, Russian Federation (grant 075-15-
2022-1037).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Ethics Committee on Interuniversity Surveys and
Ethical Assessment of Empirical Research of HSE University 14.01.2019.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data supporting reported results can be found at https://docs.google.
com/spreadsheets/d/1wSjsmgMQZtn_ajUynRD1CSD2sDTzX5Vm/edit#gid=861306597 (accessed
on 22 December 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Correlation analysis. Following the previous seminal neuroforecasting study [6], we
calculated the correlations between the aggregated session duration (SD) index and EEG-
based engagement index (β/α ratio), valence index (α asymmetry), eye-tracking-based
DTI-indexes (DTI-picture index, DTI-text index, DTI-brand index), and behavioral index
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(likeability). The SD-index significantly correlated only with the engagement index (β/α
ratio) (r = 0.73; p = 0.016). The results are summarized in Table A1 and Figure 4A.

Table A1. Correlation of the indexes with population-level ad efficiency (session duration index).

Index R p-Value

Study 1
EEG-based Engagement index 0.73 0.016 *
EEG-based Valence index −0.16 0.65

Eye-tracker-based DTI text index −0.46 0.19
Eye-tracker-based DTI picture index 0.54 0.1
Eye-tracker-based DTI brand index −0.19 0.59

Study 2
Behavior-based Likeability index 0.41 0.23

* indicates p < 0.05.
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The popular AIDA model refers to Attention, Interest, Desire and Action, respectively,
to highlight the set of cognitive processes that may occur during exposure to an advertise-
ment. According to the AIDA, the aim of marketing is to attract the attention of consumers,
and stimulate their interest and desire for the final buying action. In the AIDA model
framework, eye-tracking data in our study may correspond to the “Attention” stage of the
model. EEG-based engagement index might correspond to both “Attention” and “Interest”
stages of the model. EEG-based valence index might correspond to both the “Interest” and
the “Desire” stages, whereas behavioral likeability data might correspond to the “Desire”
stage of the AIDA model. Finally, a session duration index (SD index) that indicated how
much time on average users spent on a retailer’s webpage after clicking a certain banner ad,
and retailer sales (not measured in the current study) might correspond to the “Desire” and
“Action” stages, correspondingly. Altogether, variables in our study were able to forecast
aggregate consumers’ actions.

Please note that this visual model was made for illustrative purposes only.
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