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Abstract: Accurately identifying tumors from MRI scans is of the utmost importance for clinical diag-
nostics and when making plans regarding brain tumor treatment. However, manual segmentation is a
challenging and time-consuming process in practice and exhibits a high degree of variability between
doctors. Therefore, an axial attention brain tumor segmentation network was established in this
paper, automatically segmenting tumor subregions from multi-modality MRIs. The axial attention
mechanism was employed to capture richer semantic information, which makes it easier for models to
provide local–global contextual information by incorporating local and global feature representations
while simplifying the computational complexity. The deep supervision mechanism is employed to
avoid vanishing gradients and guide the AABTS-Net to generate better feature representations. The
hybrid loss is employed in the model to handle the class imbalance of the dataset. Furthermore, we
conduct comprehensive experiments on the BraTS 2019 and 2020 datasets. The proposed AABTS-Net
shows greater robustness and accuracy, which signifies that the model can be employed in clinical
practice and provides a new avenue for medical image segmentation systems.

Keywords: MRI; brain tumor segmentation; attention mechanism; deep learning; deep supervision

1. Introduction

Brain tumors, defined as abnormal cells that grow and multiply uncontrollably inside
the brain, are not only dangerous to health but also lead to death as the tumor spreads
malignantly. Brain tumors can be grouped into secondary and primary forms [1]. The
former refers to tumors that grow elsewhere in the body and metastasize to the brain; the
latter refers to tumors that originate from the brain tissues or the immediate surroundings
of the brain and have a higher incidence. Glioma, the most prevalent primary cancer, ac-
counting for 78 percent of malignant brain tumors, is usually treated with surgical resection,
radiotherapy, and chemotherapy. The World Health Organization (WHO) classifies gliomas
into two categories: low-grade gliomas (LGG) and high-grade gliomas (HGG), including
grades I to IV [2]. Grade I refers to benign tumors that can be resected from the skull and
are curable. Grades II and III gradually become malignant, while grade IV refers to highly
malignant tumors with the worst prognosis. Early detection and diagnosis of gliomas can
help experts to develop accurate treatment plans to prolong survival. Magnetic resonance
imaging (MRI) [3] is the examination method of choice for the diagnosis and treatment of
gliomas, mainly due to its presenting detailed brain structural information by enabling
tomography in any direction and generating non-invasive multi-modality images [4]. Four
MRI modalities (Figure 1) are most commonly used to label brain tumors. Brain tumor
segmentation aims to mark the tumor regions using an MRI of the brain, playing an essen-
tial role in clinical diagnostics. Accurately identifying tumors from MRI images relies on
professional skills [5] and the experience level of radiologists [6]. Furthermore, the manual
diagnosis of massive MRI images by radiologists is a time-consuming task. Therefore, an
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efficient and accurate automatic method is crucial for assisting doctors in segmenting brain
tumors from a mass of MRI data.
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increasing the sensitivity of segmenting tumors, including a batch-based Dice loss for 
improving training stability on the imbalanced samples and a binary cross-entropy loss 
for handling issues arising from varying tumor sizes. The proposed hybrid loss function 
can direct our model toward paying more attention to the tumor region and achieving 
ideal segmentation results, overcoming the problem of tumors of different sizes and even 
in the case of small target tumors. Regarding segmentation performance, the proposed 
AABTS-Net can make reliable results on the BraTS 2021 validation dataset for segmenting 
three subregions (ET, TC, and WT), achieving 0.830, 0.861, and 0.922 in DSC, respectively. 
Furthermore, we conducted comparative experiments involving other state-of-the-art 
methods on the BraTS 2019 and 2021 validation datasets, showing that our method had 
greater robustness and accuracy. 

Specifically, the main contributions of this study include: 
(1) Applying AAM to improve segmentation accuracy makes full use of the 
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different tumor types. Whole Tumors (WTs) are shown in blue, purple, and green, Tumor Cores (TCs)
are shown in blue and purple and Enhanced Tumors (ETs) are shown in blue.)

Taking the above into consideration, we propose an axial attention brain tumor seg-
mentation network (AABTS-Net) with a hybrid loss function, automatically segmenting
tumor subregions based on multi-modality MRI. An axial attention mechanism (AAM)
has been employed, enhancing the ability to model global dependencies. It considers
the relationships of pixels to each other on different dimensions, using long-range cues
to guide the segmentation while having fewer parameters and taking less GPU memory.
The AAM consists of a depth self-attention module, a height self-attention module, and a
width self-attention module. The depth self-attention module enhances the relationships of
pixels to each other on the depth dimension. The height self-attention module and width
self-attention module capture the relationships of pixels to each other on the height and
width dimensions. A deep supervision (DS) mechanism is employed in the AABTS-Net,
addressing the gradient vanishing, and guiding the generation of better feature representa-
tions at each layer of the network. The training loss of the network is the weighted sum
of the loss of the intermediate and last outputs. The hybrid loss function is applied for
the purposes of increasing the sensitivity of segmenting tumors, including a batch-based
Dice loss for improving training stability on the imbalanced samples and a binary cross-
entropy loss for handling issues arising from varying tumor sizes. The proposed hybrid
loss function can direct our model toward paying more attention to the tumor region
and achieving ideal segmentation results, overcoming the problem of tumors of different
sizes and even in the case of small target tumors. Regarding segmentation performance,
the proposed AABTS-Net can make reliable results on the BraTS 2021 validation dataset
for segmenting three subregions (ET, TC, and WT), achieving 0.830, 0.861, and 0.922 in
DSC, respectively. Furthermore, we conducted comparative experiments involving other
state-of-the-art methods on the BraTS 2019 and 2021 validation datasets, showing that our
method had greater robustness and accuracy.

Specifically, the main contributions of this study include:
(1) Applying AAM to improve segmentation accuracy makes full use of the rela-

tionships of pixels on different dimensions and enhances the ability to model global
dependencies. Notably, an axial attention mechanism, presenting a novel method to solve
computational complexity, is employed to capture plenty of the semantic information
that is essential for segmenting the boundary of the tumor and retaining more detailed
tumor information.

(2) Handling the vanishing gradient and improving the feature expression ability of
the model by applying the deep supervision mechanism on the decoder to guide the model
to generate better feature representations.

(3) Suppressing the effect of the dataset class imbalance by introducing a hybrid loss
function to emphasize the lesion area. The hybrid loss function can guide our model to pay
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closer attention to the tumor region to achieve ideal segmentation results, overcoming the
problem of tumors of different sizes and even small target tumors.

2. Related Work
2.1. DL-Based Methods for Brain Tumor Segmentation

The convolutional neural network (CNN), an effective deep learning (DL)-based
architecture, has attracted more and more attention from researchers for image-processing
tasks, such as image classification and semantic image segmentation. Compared with
ML-based methods, the most significant advantage of a CNN is that it automatically learns
representative and complex feature representations from the raw images, forming a feature-
learning model with high robustness and adaptability. A dual-path architecture, combining
local and global information, was designed by Kamnitsas et al. [7] to process multi-scale
images simultaneously and extend the fully connected CRF to three dimensions (3D) for
handling arbitrarily large neighborhoods. The disadvantage of this method is that the
post-processing process is complicated, and the accuracy will decrease after removing the
post-processing operation. Havaei et al. [8] proposed a two-channel CNN for segmentation,
which includes convolutional and fully connected layers. However, the method has more
parameters, and the complex structure of the model makes the network hard to train.
Pereira et al. [9] adopted a deeper CNN structure and multiple 3 × 3 convolution kernels
to replace the 7 × 7 and 5 × 5 convolution kernels. The 3 × 3 convolution kernel was
applied to improve the operation speed of CNN and enhance the ability to extract features,
making the segmentation accuracy reach about 87%. Although the method simplifies the
network structure, it misses a massive quantity of local–global information, leading to
low segmentation accuracy. Zhao et al. [10] used image slices with FCNN parameters
to train three models and adopted a voting-based strategy to fuse the three models for
final segmentation. Chen et al. [11] introduced an FCNN-based multi-scale receptive field
and a densely connected blocks-based hierarchical architecture to consider the different
types of brain tumors, using a block-level training strategy to alleviate the class imbalance.
The two-stage method alleviates the class imbalance, while the segmentation accuracy
shows no significant improvement. CNN, a widely adopted architecture for segmentation,
only obtained limited accuracy improvement due to the smaller training dataset available.
To address this problem, Ronneberger et al. [12] proposed the U-Net via modifying and
extending the FCN, enabling it to use fewer training images and produce more accurate
segmentation. Wang et al. established a 3D U-Net-based model using the strategy of
brain normalization and patching [13], achieving 0.737, 0.807, and 0.894 in terms of DSC,
respectively. To reduce computational complexity and enhance feature representation,
Cheng et al. [14] further proposed MECU-Net by applying multi-scale feature fusion
modules, fewer down-sampling channels, and cascaded architecture to 3D U-Net. Chen
et al. proposed a separable 3D U-Net architecture using separable 3D convolutions [15].
Jiang et al. [16] proposed an end-to-end two-stage cascaded U-Net architecture to segment
brain tumor substructures from coarse to fine and won the first prize in the BraTS2019.
These methods show the effectiveness of the U-shaped structure; therefore, we chose the
U-shaped structure as our network framework.

2.2. The Attention-Based Module for Brain Tumor Segmentation

Various attention-based modules have been proposed by researchers, facilitating
segmentation accuracy by enhancing the ability to identify relevant feature representations.
Zhou et al. [17] applied an attention mechanism to the encoder–decoder structure to fuse
features from cross-modality to emphasize the most closely related features. Xu et al. [18]
proposed a CH-UNet for brain tumor segmentation by applying a corner attention module
(CAM) and high-dimensional perceptual loss (HDPL) to U-Net. The CAM can capture
rich contextual dependencies and extract complementary inter- and intra-slice information.
The HDPL preserves local consistency and explores perceptual similarities to fine the
predicted boundary. These two methods show that the attention mechanism plays an
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important role in focusing on task-related features. Zhang et al. combined the residual
module and attention gate with the original U-Net architecture [19] to extract rich semantic
information. However, this method ignores the local–global information and leads to
poor performance. Mazumdar et al. proposed an efficient spatial attention (ESA) block
containing a depth-wise separable convolutional layer and a lightweight spatial attention
module, using it to build an efficient spatial attention network (ESA-Net) [20], an improved
variant of the popular U-Net. Kong et al. proposed a 3D, fully convolutional network
(FCN) with a dual attention mechanism [21], segmenting different gliomas simultaneously.
The multi-inception residual attention U-Net (MIRAU-Net), developed by AboElenein
et al. [22], is based on an encoder–decoder architecture. Inception Residual is applied to
connect the encoder–decoder, to reduce the distance between their feature maps for further
enhancing segmentation performance. However, due to the limitations of convolution
operations, CNN-based attention has a weak ability to learn global dependencies, resulting
in poor performance in the context of brain tumor segmentation. To solve the problem,
Wang et al. proposed a novel TransBTS, based on the encoder–decoder structure [23],
applying a transformer to 3D CNN, improving the performance by combining the CNN
and transformer while exploiting and modeling local–global information. In addition,
Jia et al. proposed a combined CNN-transformer model called BiTr-UNet, with specific
modifications [24] for multi-modality MRI segmentation. Although transformer-based
models can capture global correlation, transformer-based models are not kind to GPU
memory. Moreover, the computational complexity of using transformers is relatively high
when handling 3D medical images. Hence, we propose an efficient AABTS-Net, which
combines axial attention and CNN to automatically segment tumor subregions by taking
into account the required computational complexity.

3. Methodology
3.1. The Structure of the AABTS-Net

The suggested U-shaped encoder–decoder structure with fewer parameters shows
good segmentation performance in many image segmentation tasks. Similar to the 3D
U-Net (39), three-dimensional operations were employed in the AABTS-Net (Figure 2),
focusing on detailed and local feature representations that are suitable for brain tumor
(small object) segmentation. In detail, AABTS-Net consists of an encoding path, a decod-
ing path, and skip connections. The encoding path, including five basic convolutional
blocks and five down-samplings, is used to extract feature representations at different
resolution levels and reduce the resolution of feature representations, respectively. The
basic convolutional block contains two consecutive convolution layers, applying Leaky
ReLU (LReLU) with a slope of 0.01 as the activation function after each convolution oper-
ation. Stridden convolution operations have been considered a popular method applied
in the encoding path for down-sampling. The initial size of the feature representation is
128 × 128 × 128, and the resolution of the feature representation doubles for each down-
sampling operation, with a minimum of 4 × 4 × 4. The initial number of filters is 32, and
the number of filters doubles with each down-sampling operation, up to a maximum of 320.
A skip connection is employed to fuse feature representations from the same resolution
levels of the encoding and decoding paths. Similar to the encoding path, the decoding path
consists of five basic convolutional blocks and five up-samplings that employ transposed
convolutions to restore the resolution of the feature representation. The sigmoid activation
has replaced the softmax nonlinearity of the last layer. The input requires four-channel
3D images (4 × 128 × 128 × 128) merged by four modalities, while the output comprises
three-channel predicted segmentation maps (3 × 128 × 128 × 128).
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3.2. The Axial Attention Mechanism

As an effective modeling method for capturing global context information, global
feature interaction is one of the greatest advantages of self-attention [25]. The self-attention
module captures global context information, resulting in a large memory capacity and
high computational complexity. When the self-attention mechanism is applied to three-
dimensional data, it shows higher computational complexity. Most previous attention
modules reduce the ability to model position-dependent interactions without considering
the positional information that is crucial for capturing spatial structure or shape. Axial
attention [26], applying self-attention to each axis of the input independently, has been
proposed to reduce the computational complexity. Therefore, we employed the axial
attention mechanism for three-dimensional medical image segmentation, capturing the
long-term dependencies of the brain MRI and computing a representation of the local–
global information. In detail, axial attention is applied independently on each axis (depth,
height, and width). The AAM receives two inputs; one is the feature representation (with
all contextual and spatial information) of the same resolution level, passed from the skip
connection, and the other is the feature representation from the previous resolution level.

Figure 3 shows the AAM. Specifically, the features of the skip connection are represented
as Fsc ∈ RD∗C∗H∗W , where D, C, H, and W denote the depth, channel number, height, and
width of the feature map, respectively. The feature of the previous layer is represented as
Fpre ∈ RD

2 ∗C∗
H
2 ∗

W
2 . We first perform a transposed convolution on the Fpre to obtain the feature

F ∈ RD∗C∗H∗W . With respect to self-attention, it performs the attention process with each
input pixel without considering the input position information, which will lose the original
position information. Therefore, we perform axial position embedding on the feature map
to ensure position information. The depth self-attention module (Figure 3) is first applied
to compute the attention maps representing the relationships of pixels to each other on the
different slices, which calculates a similarity matrix along the depth dimension. In detail, we
obtain three feature spaces q( f ) ∈ RD∗Ĉ∗H∗W ,k( f ) ∈ RD∗Ĉ∗H∗W ,and v( f ) ∈ RD∗C∗H∗W by
conducting linear operations to transform the input feature map F, which can be represented
by Equations (1)–(3).

q( f ) = Linear(F) = FWq (1)

k( f ) = Linear(F) = FWk (2)

v( f ) = Linear(F) = FWv (3)
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Here, the Wq, Wk, and Wv are matrixes to improve the fitting ability, which can be
obtained by training.

Then, q( f ) and k( f ) are transposed from D ∗ Ĉ ∗ H ∗W to (H ∗W) ∗ D ∗ Ĉ. The inner
product is employed to compute the correlation matrix, which is shown in Equation (4). The
depth correlation matrix δj,i is normalized by the softmax function shown in Equation (5).

δj,i = q( fi)
Tk

(
f j
)

(4)

rj,i = So f tmax
(
δj,i

)
=

eδj,i

∑N
i=1 eδj,i

(5)

The deep value of δj,i, with a dimension of RD∗D, denotes the depth correlation matrix.
Finally, the depth correlation matrix rj,i and the v( f ) were performed by the inner

product to obtain the depth self-attention feature maps, which can be formulated as in
Equation (6). To restore the original feature space, FD

sa is performed by a linear operation.

FD
sa =

N

∑
i=1

v( fi)× rj,i (6)

Similarity, the height self-attention is obtained by a height self-attention module and
is present as FDH

sa , while the width self-attention is present as FDHW
sa . The attention features
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output by the axis attention fusion module are denoted as Equation (7) and the output of
the axial attention mechanism is represented in Equation (8):

Fatt = FDHW
sa + F (7)

Fout = Fatt + Fsc (8)

Since the method cannot be applied at the highest resolution feature representation
(128× 128× 128), the AAM is employed at four lower resolutions. The number of attention
heads and the dimension of each head, initially set to 4 and 16, were doubled as the
resolution decreased.

3.3. The Deep Supervision (DS) Mechanism

A deep supervised learning scheme [27–30] is beneficial when training a CNN, en-
abling the network to collect gradients from the last and intermediate layers and propagate
the error information layer by layer during the training process. DS, including three auxil-
iary output branches, is employed in the AABTS-Net, addressing the gradient’s vanishing
and guiding the generation of better feature representations at each layer of the network.
In detail, the auxiliary branch, achieved by three sigmoid outputs, is added in the middle
three resolution levels (Figure 2). Notably, AABTS-Net contains four sigmoid outputs. Only
the last output is the predicted segmentation image. The intermediate output, after being
restored to the highest resolution level by up-sampling, is calculated in the auxiliary loss
branch. The training loss of the network is the weighted sum of the loss of the intermediate
and last outputs, giving each output a weight that decreases exponentially (divided by
2) with lower resolution, which makes higher-resolution outputs more weighted in the
loss. The proposed deep supervision mechanism enables the network to generate better
feature representation by collecting error information from more layers and by propagating
misinformation to earlier layers, improving the expressiveness of the network and its
segmentation performance.

3.4. The Hybrid Loss Function

The ratio between tumor area and background varies widely in the BraTS2021 training
dataset, representing the imbalance of samples, making it difficult to precisely segment
the lesion area [20,31]. The objective loss function, which also affects the segmentation
performance of the network, is widely employed for handling the severe class imbalance
of the datasets. A reasonable loss function should be designed for network optimization
while retaining the complete information of the image, achieving the purpose of accurately
segmenting small tumors. Many loss functions, such as Dice loss, cross-entropy loss,
and focal loss, have been proposed for employment in segmentation, handling the class
imbalance of samples. In this paper, a suitable hybrid loss function, combining the Dice and
binary cross-entropy losses, is employed for solving class imbalance during the training
process; it is computed at the lower-resolution auxiliary branch output and the final output
(Equation (11)). Notably, the Dice loss (Equation (9)), referring to the batch-based Dice used
here, is calculated by treating all samples in a batch as one larger sample. The common
Dice loss, exhibiting gradient instability on highly imbalanced samples, is modified to the
batch-based Dice to improve training stability. The cross-entropy (CE) loss function, aiming
to handle issues arising from varying tumor sizes, is widely applied for increasing the
sensitivity of segmenting tumor images. Since the activation function of the last layer is
sigmoid, the corresponding output is the binary classification label. Then, a binary cross-
entropy (BCE) loss function is employed (Equation (10)). Overall, the proposed hybrid loss
function can guide our model to pay more attention to the tumor region to achieve ideal
segmentation results, overcoming the problem of mapping tumors of different sizes and
even small target tumors. These metrics are defined as follows:

LDice = 1− 2
∑ ypyt

∑ yp + yt
(9)
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LBCE = −λyt log
(
yp

)
− (1− yt) log

(
1− yp

)
(10)

LTotal = LH1 + αLH2 + βLH3 + γLH4 (11)

where yt represents the ground truth and yp represents the prediction result. α, β, and γ

are the weight coefficient of the three auxiliary branches, and they are set to 0.5, 0.25, and
0.125, respectively (the higher the resolution, the greater the weight coefficient).

3.5. Experiments
3.5.1. Datasets and Pre-Processing

In this work, the BraTS benchmark dataset [32–34] is applied to evaluate the proposed
AABTS-Net. The BraTS dataset (Table 1) includes two sub-datasets, which comprise the
training dataset and the validation dataset. In detail, the BraTS 2019 training dataset
includes 335 cases, while the validation dataset includes 125 cases. The BraTS 2021 training
dataset includes 1251 cases, and the validation dataset includes 219 cases. Each case of the
dataset includes four MRI modalities, while a ground truth model included three different
tumor classes (non-enhanced and necrotic tumor cores—label 1, peritumoral edema—label
2, and GD-enhanced tumors—label 4). The ground truth annotations of the training dataset
are publicly available and are created by expert neuroradiologists. Since the annotations
of the validation dataset are unavailable, we tested the performance by uploading the
predicted segmentation results to the official platform provided by the organizer.

Table 1. A description of the datasets in this work.

Dataset Training Dataset Validation Dataset *

BraTS 2019 335 cases 125 cases

BraTS 2021 1251 cases 219 cases
* Without ground truth.

All cases in the datasets, having undergone basic preprocessing by the organizers,
were interpolated to 1× 1× 1 mm 3, co-registered, and skull-stripped. On this basis, we only
performed relatively simple data preprocessing. First, the 3D raw data were cropped to a
nonzero region. One case in the BraTS dataset showed relatively more black background
(gray value 0). Since this area has no information, cropping these areas did not affect
the final segmentation result. However, the process can significantly reduce the image
size, avoid useless calculations, and improve computational efficiency. Specifically, it is
necessary to find a minimum three-dimensional bounding box in the image, assign the
value outside the bounding box area as 0, and use this bounding box to crop the raw data.
Moreover, we used normalization in a standard space for each case in the dataset. In detail,
employing a z-score (Xz−score =

X−µ
σ , where µ and σ are mean and standard deviation) for

the normalization operation accelerates the training. Notably, under the conditions that the
image size is reduced by more than 1/4, the normalization operation is only performed
on the non-zero regions. Dynamic data augmentation, a technique intended to prevent
overfitting while training a CNN, is also employed, improving the robustness and the
generalization ability of the AABTS-Net. Specifically, five types of data augmentation,
comprising random rotation, random scaling, elastic deformation, gamma augmentation,
and additional brightness enhancement, with a probability of 0.3, were applied during the
training. The random scaling factor is (0.65, 1.6), using a single scaling factor for each axis.

3.5.2. Evaluation Metrics

Three evaluation metrics, including Dice similarity coefficients (DSC), the Hausdorff
distance (HD), and Sensitivity, were employed to evaluate the performance of the mod-
els. The DSC is a widely considered criterion, quantitatively assessing the 3D predicted
segmentation of the model. It provides the similarity or overlap of two samples, with a
value in the range [0–1], and is defined as in Equation (12). The higher the value, the more
similar the two samples are, indicating more accurate performance between the predicted
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segmentation and manual segmentation. Additionally, when affected by uncertain factors,
such as shape, location, and size, the model performance also depends on the accuracy
of segmenting tumor boundaries. Considering the fact that the DSC is sensitive to the
inner filling of the mask, the HD, computing the distance between the surface of the pre-
diction regions and the ground truth, is employed for assessing the performance of the
boundary segmentation. The HD is defined as follows (Equation (13)). Sensitivity measures
the ability of the model to segment the region of interest by calculating the proportions
of true positives in the predicted segmentation results and ground truth and is given
by Equation (14).

SC =
2TP

2TP + FP + FN
(12)

HD(G, P) = max {supsεSin frεRd(s, r), suprεRin fsεSd(s, r)} (13)

Sensitivity =
TP

TP + FN
(14)

where FN, FP, and TP are the number of false negative voxels, false positive voxels and
true positive voxels. Here, d(·, ·) is the function that computes the distance between
points s and r, while sup represents the supremum and in f denotes the infimum; s and r
denote the points on surface S of the ground-truth regions and surface R of the predicted
regions, respectively.

3.5.3. The Training Details

The model, established on the Pytorch framework, was implemented using a single
NVIDIA Tesla P100 GPU, with 16 GB of memory. The Adam optimizer [35], an essential
optimization algorithm, was employed for gradient descent. The initial learning rate of

10−4 is progressively multiplied by
(

1−epoch
maxepoch

)0.9
during the training. The k-fold cross-

validation procedure was used to estimate the performance of the model on new data.
In our experiments, five-fold cross-validation is set up during the training of the model.
Specifically, the training dataset was divided (randomly) into five parts, training for four
parts and testing for one part. Each epoch consisted of 250 mini-batches, and training did
not end until the maximum epoch (300) was achieved (Table 2).

Table 2. The training parameter of the proposed AABTS-Net.

Name Parameter

Batch_size 2
Epoch 300

Learning rate 0.0001
GPU memory 16 GB

Patch size 128 × 128 × 128
Optimizer Adam

Framework Pytorch

4. Results
4.1. Comparison with State-of-the-Art Methods
4.1.1. The Experiment Results on the BraTS 2019 Dataset

The BraTS 2019 dataset was applied to evaluate the effectiveness and robustness of the
proposed AABTS-Net. The qualitative comparison is shown in Figure 4, from left to right:
four MRI modalities, corresponding ground truth, 3D-UNet, Attention-UNet, and our
method. From Figure 4, it can be seen that these methods can roughly segment the tumor
region. However, detailed information on the tumor boundary is missing. In detail, the
segmentation results generated by 3D-UNet have an obviously inaccurate tumor boundary.
The segmentation results generated by Attention-UNet improved the segmentation, but the
tumor boundary still demonstrates the problem of missing information. The segmentation
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results produced by our proposed AABTS-Net are more accurate and are similar to the
ground truth results, effectively refining the boundaries of brain tumors and enhancing the
detailed features.
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result segmented by 3D-UNet, the result segmented by Attention-UNet, and the result segmented by
our model.

In addition, we evaluated the model on the BraTS 2019 validation dataset. The BraTS
2019 validation dataset contains 125 cases. It is worth noting that the BraTS 2019 training
dataset and the BraTS 2019 validation dataset are two independent datasets provided by
the organizer. Since the ground truth of the BraTS 2019 validation dataset is unavailable,
we uploaded the segmentation results to the official website and obtained the quantitative
results from the platform. We also performed comparative experiments (Table 3) between
our method and other state-of-the-art methods. From Table 3, it is clear that our method
achieves DSC values of 0.777, 0.838, and 0.911, at ET, TC, and WT, respectively, which
values are higher than those of other methods. The DSC increased by 3.7% to 24.7% in
ET, and the DSC increased by 0.8% to 15.6% and 1% to 6.9% in TC and WT, respectively.
Compared with the other methods, our method shows great superiority in both metrics,
with significant improvements. The comparison results show that our method achieves
superior performance.
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Table 3. Objective performance comparison with the state-of-the-art methods on the BraTS2019
validation dataset, in terms of their DSC and HD values. (Bold font indicates best results.)

Methods
DSC HD

ET TC WT AVG ET TC WT AVG

3D UNet [36] 0.709 0.725 0.874 0.769 5.062 8.719 9.432 7.738

Attention UNet [37] 0.760 0.772 0.888 0.807 5.202 7.756 8.258 7.072

Shi et al. [38] 0.691 0.770 0.887 0.783 5.888 12.192 21.190 13.090

Zhao et al. [39] 0.702 0.800 0.893 0.798 4.766 6.472 5.078 5.439

Lorenzo et al. [40] 0.663 0.751 0.890 0.768 / / / /

Ahmad et al. [41] 0.623 0.758 0.852 0.744 8.468 10.674 9.008 9.383

Our Method 0.777 0.838 0.911 0.842 3.246 6.028 3.988 4.421

4.1.2. The Experiment Results on the Brats 2021 Dataset

Comparison of the segmentation performance between our method and other state-
of-the-art methods is conducive to analyzing the advantages and disadvantages of the
model and achieving improvements in segmentation performance. The predicted results
(see Table 4) on the BraTS 2021 validation dataset, showing the three tumor subregions,
were analyzed by employing two evaluation metrics for assessing the performance of the
model. As shown in Table 4, the DSC at three tumor sub-regions was significantly distinct
for the DSC 0.830, 0.861, and 0.922 at ET, TC, and WT, showing a clear upward trend that
represents an accurate segmentation: the larger the value, the more precise the segmen-
tation. The HD, being different from the DSC, posed a downward trend at three tumor
sub-regions, with the maximum value of 17.728 observed at ET and the minimum value
of 3.996 observed at WT, indicating that the AABTS-Net method can precisely segment
the boundary of the tumor. Compared with other methods [20,42–46], the DSC increased
by 0.4% to 5.9% in WT. The DSC increased by 1.3% to 13.7% and 1% to 14.6% in ET and
TC, respectively. This demonstrates that our method achieved a promotive performance in
terms of tumor sub-region segmentation. In addition, compared with other state-of-the-art
UNet-based models [24,47,48], our model still achieved promising segmentation perfor-
mance by analyzing the different metrics. Our model has fewer parameters and refines the
boundaries of the tumor subregions by enhancing the local and global feature information.

Table 4. Objective performance comparison with the state-of-the-art methods on the BraTS2021
validation dataset, in terms of their DSC and HD values. (Bold font indicates best results.)

Methods
DSC HD

ET TC WT AVG ET TC WT AVG

ESA-Net [20] 0.812 0.852 0.907 0.857 26.470 13.830 5.940 15.413

3D CMM-Net [42] 0.732 0.751 0.874 0.786 35.001 24.638 10.161 23.267

SwinBTS [43] 0.832 0.848 0.918 0.866 16.030 14.510 3.650 11.397

Singh et al. [44] 0.730 0.760 0.870 0.787 30.500 14.700 6.290 17.163

Akbar et al. [45] 0.780 0.807 0.891 0.826 25.820 21.170 11.780 19.590

Singh et al. [46] 0.753 0.808 0.899 0.820 21.800 12.500 6.450 13.583

Extending nn-UNet [47] 0.845 0.878 0.928 0.884 20.730 7.623 3.470 10.608

E1D3-UNet [48] 0.818 0.863 0.923 0.868 18.240 9.620 4.340 10.733

Bitr-UNet [24] 0.819 0.843 0.910 0.857 17.847 16.689 4.508 13.015

Our Method 0.830 0.861 0.922 0.871 17.728 11.178 3.996 10.967
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Furthermore, we segmented the cases (shown in Figure 5) selected from the BraTS 2021
dataset, visualizing the predicted segmentation results. Specifically, the first case segmented
by our model retained detailed information and showed many similarities with the GT. The
predicted segmentation results of AABTS-Net were not significantly affected, as the input
MRI modality is blurred, as shown in Figure 5 (the fourth row). In conclusion, the results
predicted by AABTS-Net, effectively refining the boundaries of the tumor subregions and
enhancing the local and global feature information, are not significantly different from those
of the GT. This phenomenon suggests that the AABTS-Net model can learn better feature
representations to localize tumors and guide the model to produce accurate segmentation
results. In general, the AABTS-Net model achieved accurate brain tumor segmentation and
can be employed to assist doctors in diagnosis.
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4.2. The Analysis of Key Components
4.2.1. Analysis of the Axial Attention Mechanism

To verify the effectiveness of the AAM, we conducted ablation experiments (see Table 5)
to compare the proposed AABTS-Net with the same network without employing the AAM.
The DSC of subregions ET, TC, and WT exhibited an upward trend. The reason for this
may be that the structural distribution of the ET region is complex, and the model found it
difficult to distinguish between the edema region and the tumor core and the surrounding
area, enhancing the tumors. Segmentation of the different tumor subregions improved
as the AAM was added to the network. The network with the AAM improved DSC by
4.6%, 2.6%, and 3.9% in the WT, TC, and ET regions, respectively. According to the results
(Figure 6 of the two models on the three metrics, the corresponding DSC and Sensitivity



Brain Sci. 2023, 13, 12 13 of 20

values were increased significantly by applying the AAM to the model. Furthermore, we
visualized the segmentation results generated by AABTS-Net and AABTS-Net, removing
the AAM. From the predicted segmentation results (Figure 7) of the two cases, it can be
seen that both models can segment the WT region. However, the AABTS-Net’s removal of
the AAM, segmenting the ET and TC, obtained a rough edge (red arrows). By removing the
AAM, the model’s ability to recognize fuzzy boundaries was weakened, thereby reducing
the segmentation accuracy of ET and TC. The segmentation results predicted by AABTS-
Net were similar to ground truth, which shows that the proposed AAM improved the
segmentation performance. In addition, we have drawn a DSC boxplot to analyze the
contribution of the AAM. From Figure 8, we observed that the AAM improved the result
significantly in terms of the different tumor regions. In general, the values of the three
metrics and the visualized result, showing the better values of the tumor subregions
and the predicted result with more detailed information, indicated that the segmentation
performance was improved by employing the AAM. This can be attributed to AAM’s
ability to model local–global feature information and the resulting enhanced capability of
boundary recognition.

Table 5. The ablation studies of the different methods on the BraTS 2021 training dataset (1251 cases).
All experiments were performed via 5-fold cross-validation on the training cases (no external data
were used). (Bold font indicates best results.)

Methods
DSC HD Sensitivity

ET TC WT AVG ET TC WT AVG ET TC WT AVG

Baseline 0.828 0.859 0.901 0.863 19.703 11.310 5.743 12.252 0.840 0.865 0.912 0.872

Baseline + AAM 0.860 0.881 0.942 0.894 13.728 7.178 3.996 8.301 0.862 0.890 0.922 0.891

Baseline + DS 0.845 0.867 0.919 0.877 14.583 8.042 3.723 8.783 0.854 0.882 0.927 0.887

AABTS-Net 0.890 0.909 0.940 0.913 10.132 7.132 3.343 6.869 0.905 0.915 0.952 0.924
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4.2.2. Analysis of the Deep Supervision Mechanism

To evaluate the contribution of the DS to the AABTS-Net, we conducted compar-
ative experiments on the BraTS2021 dataset (Table 5). Specifically, Figure 9 shows the
experimental results of AABTS-Net with and without the DS on three metrics (DSC, HD,
and Sensitivity). It is clear that the DSC and Sensitivity are significantly increased in the
scenario where DS is applied to AABTS-Net, which indicates that DS assists the network,
to improve the segmentation performance. The DSC value increased by 2.0%, 0.9%, and
2.1% in the WT, TC, and ET regions, respectively. From the WT region, the DSC value
(see Table 5) after adding DS was smaller than that after adding AAM. This was mainly
due to the fact that the DS was employed for gradually refining the segmentation and
retaining more detailed tumor information. However, this detailed information has less
of a contribution than the tumor masses to the DSC value. The HD value (the smaller the
HD value, the better the performance) decreased by 35.2%, 28.9%, and 26.0% in the WT,
TC, and ET regions, respectively. This large reduction in the HD value also indicates that
more accurate edge segmentation and more detailed information can be obtained when
using DS. The Sensitivity value increased by 1.6%, 2.0%, and 1.7% in the WT, TC, and ET
regions, respectively. From Figure 8, it can be seen that the model with the DS showed
better segmentation results in the WT and ET regions. Figure 10 shows the segmentation
results produced by the AABTS-Net and the AABTS-Net without the DS. From Figure 10,
it can be seen that the tumor regions (red arrows) segmented by AABTS-Net have more
similarities with the ground truth. This demonstrates that the DS not only guides the model
to generate better feature representations from multi-modality but also makes full use of
the different feature representations.
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4.2.3. Analysis of the Different Loss Functions

Additionally, for class-imbalanced data, choosing an appropriate loss function fulfills
an important role in segmentation accuracy. The DSC variations of different loss functions
were observed. However, using Dice alone is not conducive to backpropagation, and it is
easy to cause parameter oscillation during training, which is not conducive to convergence.
Therefore, we considered applying a combined loss function for training. As shown in
Figure 6, the segmentation performance metrics at four loss functions (i.e., Focal, Dice,
Dice + CE, and Dice + BCE) fluctuated significantly, and three notable changes occurred
when segmenting the different tumor subregions. The DSC of the ET sub-region in four
loss functions was relatively low. However, the DSC values increased at the Focal, Dice,
Dice + CE, and Dice + BCE loss functions. In detail, the average DSC values increased from
0.819 to 0.863 at the Focal and the Dice + BCE loss functions, respectively. In addition, the
maximum DSC values of all loss functions are shown, with the DSC values of 0.828, 0.859,
and 0.901 in the ET, TC, and WT subregions, respectively. From the Dice + BCE loss function,
the DSC values at ET, TC, and WT sub-region also increased significantly. According to
the average DSC values (see Figure 11), the DSC values of all loss functions (Focal, Dice,
Dice + CE, and Dice + BCE) exhibited an upward trend, while the DSC value of the
Dice + BCE loss function was significantly higher than the other loss functions. Overall, the
combination of Dice and BCE, which achieved the best segmentation results, was employed
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for optimizing the network during the training process. The segmentation accuracy of
improvement can benefit from the BCE loss function and the modified batch-based Dice
loss function, as when handling the class imbalance from the BCE loss function and
improving the backpropagation from the combination loss function. Moreover, the hybrid
loss function, which played a vital role in segmentation performance, was an innovative
and effective strategy for solving the segmenting of tumors of different sizes.
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4.3. Analysis of the Bad Tumor Segmentation Results

To further analyze the segmentation performance, we selected five bad segmentation
cases and visualized the segmentation results of the proposed AABTS-Net. As shown
in Figure 12, each row contained four different modalities for a case, the ground truth,
and the segmentation result generated by the AABTS-Net. From the first two cases, we
observed that the ET and TC regions segmented by the AABTS-Net are similar to the
ground truth. However, the similar characteristics of normal and tumor regions led to the
WT region exhibiting over-segmentation. From the third and fourth cases, we observed
that the tumor regions generated by the AABTS-Net were significantly different from the
ground truth. This may be due to the ambiguity of the MRI modality, making it difficult for
the network to identify tumor regions from the MRI modality. In addition, we quantified
the cases of bad tumor segmentation in terms of the DSC (Table 6). By analyzing the
bad segmentation cases, we realized that the quality of the MRI modality can affect the
segmentation performance. Therefore, we considered the impact of data quality on network
performance when designing the model and must collect more clear data in a different way
to further improve the accuracy by optimizing the tumor margins.
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Figure 12. The visualized bad tumor segmentation cases of the proposed AABTS-Net. (a–e) represents
different visualized cases. From left to right: T1, T2, T1c, Flair, Ground truth, the result segmented
by AABTS-Net.

Table 6. The DSCs of the bad segmentation cases.

Cases
DSC

ET TC WT AVG

(a) BraTS2021_00493 0.885 0.924 0.270 0.693

(b) BraTS2021_00494 0.964 0.990 0.730 0.895

(c) BraTS2021_01666 0 0.738 0.916 0.551

(d) BraTS2021_01179 1.000 0 0.769 0.590

(e) BraTS2021_01293 0.541 0.929 0.874 0.781

5. Discussion

In this paper, AABTS-Net, an axial attention convolutional neural network, was estab-
lished for multi-modality MRI brain tumor segmentation. The axial attention mechanism,
employed to decrease the high computational complexity of applying the attention mech-
anism to three-dimensional medical images, capturing plenty of semantic information,
achieved accurate segmentation and improved segmentation performance. The deep su-
pervision mechanism guided the AABTS-Net to generate better feature representations,
handling the problem of the vanishing gradient easily and improving the stability of the
network. The hybrid loss model was employed for dealing with the class imbalance of
the data. The AABTS-Net exhibited superior performance on the BraTS 2021 validation
dataset, with DSC values of 0.830, 0.861, and 0.922, and HD values of 17.728, 11.178, and
3.996, respectively, at the three tumor subregions (ET, TC, and WT). Furthermore, the
quantitative and qualitative experiments demonstrated the accuracy of the AABTS-Net.
Experiments using two datasets demonstrated the effectiveness of our model compared
to previous work. Our model achieved better robustness and accuracy, which indicated
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that the AABTS-Net can be employed to assist doctors in diagnosis. However, we observed
that our model has some disadvantages in terms of TC region segmentation when we
compared our method with the Extending nn-UNet in the context of the HD metric. To
resolve this issue, we applied a simple feature extraction method that ignored the shallow
feature fusion. In the future, we will consider employing a deeper CNN to extract the
features and applying a more flexible feature fusion strategy to improve the accuracy by
fusing multi-modality feature representations.
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