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Abstract: The mainstays of glioblastoma treatment, maximal safe resection, radiotherapy preserving
neurological function, and temozolomide (TMZ) chemotherapy have not changed for the past
17 years despite significant advances in the understanding of the genetics and molecular biology
of glioblastoma. This review highlights the neurosurgical foundation for glioblastoma therapy.
Here, we review the neurosurgeon’s role in several new and clinically-approved treatments for
glioblastoma. We describe delivery techniques such as blood–brain barrier disruption and convection-
enhanced delivery (CED) that may be used to deliver therapeutic agents to tumor tissue in higher
concentrations than oral or intravenous delivery. We mention pivotal clinical trials of immunotherapy
for glioblastoma and explain their outcomes. Finally, we take a glimpse at ongoing clinical trials and
promising translational studies to predict ways that new therapies may improve the prognosis of
patients with glioblastoma.

Keywords: glioblastoma; brain mapping; temozolomide; radiotherapy; connection-enhanced delivery;
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1. Introduction

Standard neurosurgery for cerebral glioma requires maximal safe tumor resection.
For low-grade tumors (WHO Grade II–III), maximal safe resection of the tumor confers
an improved outcome without compromising functional outcomes [1,2]. In the case of
glioblastoma, the location of the bulk of the tumor relative to eloquent brain areas dictates
the safest and most effective surgical approach. Here, we define eloquent cortex as areas
with readily evident neurological function that if damaged results in “disabling neurological
deficit” such as corticospinal tracts or dominant receptive/language areas [3]. Jelsma and
Bucy reported in 1969 that with glioblastoma (WHO Grade IV glioma), extensive surgery
and postoperative radiation extended survival time to 7.5 months compared to 2.5 months
with limited resection and postoperative radiation [4]. Survival was 10.5 months in non-
central tumors in eloquent brain areas and 4 months with central tumors, those involving
the precentral gyrus, Broca’s area, or the Sylvian fissure of the dominant hemisphere. Before
surgery, the proportion of patients in excellent or good condition was 31% with non-central
and 26% with central tumors. At 3 months after surgery, 78% of patients in the patient
group with non-central tumors were in excellent or good condition compared to only 42%
of patients with central tumors. Extensive surgery improved function by removing tumors’
mass effect and reducing elevated intracranial pressure.

The role of radiotherapy in glioblastoma therapy was confirmed in 1979 by Walker,
Strike, and Sheline. At that time, survival time was 18 weeks without radiation, 28 weeks
with 50 Gy, 36 weeks with 55 Gy, and 42 weeks with 60 Gy [5]. Almost three decades
later, Stupp et al. verified the survival benefit of more extensive tumor resection results
in 2005 in their study of 573 patients with glioblastoma who were randomized to receive
radiotherapy (60 Gy) versus radiotherapy (60 Gy) plus temozolomide. Median survival
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in the temozolomide and radiotherapy arm was 15.8 months in the resection group and
9.4 months in the biopsy-only group. In patients who received radiotherapy (RT) alone,
surgical resection (S) improved survival by 12.9 months (S + RT) vs. 7.9 months in the RT
alone group [6].

Nevertheless, whole-brain radiotherapy has a greater chance of precipitating cognitive
dysfunction from bihemispheric injury than focal brain irradiation. Since tumor recur-
rences occur most often within 2 cm of the postoperative resection cavity, partial brain
irradiation to the volume of 60 Gy in 30 fractions is recommended in patients less than 70,
and 40 Gy in 15 fractions for patients over 70 years of age with good performance status [7].
Glioblastoma treatment with maximal safe surgical resection followed by concurrent radio-
therapy and temozolomide (TMZ) chemotherapy has been standard for glioblastoma since
the 2005 Stupp study. Although this study demonstrated that surgery, radiotherapy, and
chemotherapy extended survival in glioblastoma, their effects are limited, and the median
life expectancy was 14.6 months [6]. The rest of this review describes the subsequent efforts
to improve neurosurgical treatment of glioblastoma further.

2. Development and Refinement of Glioblastoma Treatments
2.1. Efforts to Improve the Completeness of Tumor Resection
2.1.1. Cortical and Subcortical Electrical Stimulation Mapping

Over the past decade, a consensus agreement was reached among authors in the
neurosurgical literature that more extensive tumor resection improves glioblastoma life
expectancy. Two separate studies from the UCSF and MD Anderson Cancer Center re-
ported that MRI-visible glioblastoma resection needed to reach a threshold of at least 78%,
preferably greater (98 to 100%), to provide a relevant survival benefit (Table 1) [8,9]. (There
is abundant evidence supporting maximal safe resection in non-eloquent brain regions.
Neurosurgeons have recently advocated for the supramaximal resection of a glioma when
feasible to improve overall survival further. Several groups advocate resecting a substantial
margin beyond the contrast-enhancing rim for non-eloquent-location high-grade gliomas
(~1–2 cm). In a series of reports on this subject, supramaximal resection resulted in patient
survival of 20.9–30.7 months [10–12]. However, supramaximal resection is impossible in all
patients because a bulk tumor invades into the adjacent eloquent cortical and subcortical
structures. The survival advantage of the complete resection of MRI-visible tumors in
glioblastoma was reported to be 2.9 months in one study and 6.4 months in another [6,8].
The survival advantage of complete tumor resection is much longer in lower-grade gliomas
than in glioblastoma (Table 1).

Table 1. Prognostic impact of extent of resection.

Brain Tumor Type and
WHO Grade Invasive Complete

Resection Possible
Life Expectancy
(Months) Biopsy

Life Expectancy
(Months) MR
Incomplete Resection

Life Expectancy
(Months) MR
Complete Resection

Survival Advantage
(Months) with MR
Complete Resection
Compared to
Incomplete Resection

I
Neuronal
DNET
Ganglioglioma
Pilocytic astrocytoma

No Yes; if outside
eloquent structures Prolonged Prolonged Prolonged

Uncertain:
residual tumors require
additional surgery

II
Low-grade astrocytoma
and oligodendroglioma

Yes No 61 90.5 29.5

III
Anaplastic astrocytoma
and oligodendroglioma

Yes No 64.9 75.2 10.3

IV
Glioblastoma multiforme Yes No

11.3 14.2 2.9
9.4 † 15.8 † 6.4 †

† [6].

The goal of maximal tumor cytoreduction from the non-eloquent brain depends
on accurate knowledge of the relationship between the margin of the eloquent brain
and the margin of the tumor. To maximize tumor removal from the non-eloquent brain,
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the neurosurgeon utilizes techniques to delineate the margin between the tumor and
eloquent cerebral cortex and subcortical white matter tracts. Intraoperative electrical
stimulation mapping techniques, perfected to identify the eloquent cortex during awake
epilepsy surgery procedures, were applied to patients with brain tumors [13]. Electrical
stimulation positively affects the motor cortex, evoking movement, and the somatosensory
cortex, producing localized paresthesias. Electrical stimulation has negative effects on the
completion of language and memory tasks. The margin width between a language site
and the resection margin was found to determine the risk of a temporary or permanent
language deficit after the resection. No deficits occurred with 20 mm or broader margins,
temporary deficits with margins between 20 and 7 mm, and permanent deficits with 7 mm
or less [13]. Sanai and colleagues used language mapping during glioma resection and
a margin of 1 cm from language areas. Only 1.6% of glioma patients had a persistent
language deficit at 6 months after awake tumor resection [8]. The avoidance of brain
injury outside the resection cavity depends on the preservation of the arteries of passage
and prominent cortical veins (veins of Labbé and Trolard) and recognition of adjacent
cortical/subcortical tracts. Modern anesthetic techniques allow patients to be awake for
electrical mapping and tumor resection but unaware of the rest of the surgical procedure.
Sedation or general anesthesia during the craniotomy’s opening and closing improves
patient comfort and cooperativeness and promotes the maximal extent of resection and
minimal morbidity [8,14,15]. Some neurosurgeons prefer their patients to stay awake
throughout the procedure and provide short-acting opioids like remifentanil for pain
uncontrolled by local anesthesia [16]. Electrical stimulation mapping establishes a border
that would result in neurological deficit if crossed. Glioblastoma cells always infiltrate
throughout the brain and into eloquent brain regions, and sound judgment prevents
straying into eloquent brain regions beyond the safe limit of neurosurgical resection [17].

2.1.2. Assessment of the Extent of Tumor Resection in the Intraoperative MRI Suite

Another surgical adjunct to enhance the extent of tumor resection is intraoperative
MRI. A randomized trial of patients with a high-grade glioma confirmed that patients with
a complete tumor resection had a longer PFS than patients with a residual tumor (median
226 [162–290] vs. 98 days [92–104], p = 0.003). This finding highlights the prognostic
significance of complete tumor resection. Although a significantly higher proportion of
patients in the intraoperative MRI group had a gross total resection (96% vs. 68%, p = 0.023),
progression-free survival showed only a trend toward significance (p = 0.083). In this study,
the patients most likely to benefit from intraoperative MRI were the 28% of patients in
the iMRI group who would not have received a gross total resection in the microsurgery
group. The other 68% percent of patients in either group had a gross total resection or
would not be expected to have different outcomes in terms of progression-free survival [18].
Cortical mapping can also be performed in the intraoperative MRI suite for tumors near
eloquent regions. After initial tumor resection, MRI scans are performed, and if residual is
detected in a surgically accessible area, more tumor is subsequently removed. Therefore,
at most, two intraoperative MRI scanning sessions, one after the initial resection and one
after the subsequent resection of the residual MRI-visible tumor, are required to confirm
tumor resection from non-eloquent regions [19]. Over the last decade, iMRI has become a
mainstay of surgical neuro-oncology and has directly impacted onco-functional outcomes
for glioma patients [20].

Comparison of Craniotomy for Glioblastoma in the Intraoperative MRI (iMRI) Suite versus
Neuronavigation in a Conventional Operating Room

1. Advantage of iMRI suite vs. Standard Neurosurgical operating room (OR)

− Intraoperative evaluation of completeness of resection of tumors is possible in
the iMRI suite but not in the conventional OR

• Allows recognition and removal of residual tumor during the same procedure
• More substantial resections may improve the prognosis
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2. Disadvantages of iMRI suite vs. Standard Neurosurgical OR

− The duration of surgery is increased by intraoperative MRI scan time and transi-
tions from the operating position to the MRI scanner bore

• neuronavigation based on preoperative MRI and frameless stereotaxy can
reduce this time by providing guidance for centering incisions and locating
the tumor, eliminating initial iMRI scans immediately before surgery

• reducing iMRI scan to immediately after resection with and without contrast
also saves time and allows iMRI’s quality control function of detecting
residual tumor

− Head holders are less adjustable; positioning is less flexible
− The operating table in the iMRI suite is firmer than the standard OR table
− Special safety considerations are required

• MR compatible instruments
• Must avoid the receiving coil contacting the body and looping wires

2.1.3. Use of Fluorescent Labeling and Resection of Fluorescent Labeled Tumor Tissue

Another surgical adjunct to increase the volume of malignant glioma resection is
oral 5-aminolevulinic acid (5-ALA). 5-ALA penetrates the blood–brain barrier of the MRI-
enhancing tumor volume and highlights the extent of the tumor intraoperatively. 5-ALA is
a natural precursor molecule in heme synthesis that is selectively converted to fluorescent
porphyrins in malignant or highly metabolic tissue. In a randomized controlled multicenter
phase III trial by Stummer and colleagues, the rate of gross total resection was 65% in the
5-ALA group compared to 36% in the white-light microscopy alone group [21]. The gross
total resection rate of 65% was slightly less than in the microsurgery control group in the
intraoperative MRI study of Senft et al. in 2011 [18]. After surgery, temporary neurologic
deficits occurred more frequently after 5-ALA use, consistent with more extensive resec-
tions, but, longer term, the 5-ALA group had improved progression-free survival at six
months (PFS6), better function, and less need for repeat surgical resection [22]. Stummer’s
and other studies of 5-ALA led the FDA to approve the drug as an intraoperative optical
imaging agent in patients with suspected high-grade glioma in 2017 [23].

* Randomized clinical trial.

Using 5-Aminolevulinic acid (5-ALA) to Highlight Glioblastoma

1. 5-ALA is an adjunct measure for identifying high-grade glioma tissue during a craniotomy

a. 5-ALA is taken up by GBM cells and metabolized to protoporphyrin, which accumu-
lates in tumor tissue Peak uptake 6 hours after preoperative oral administration

b. Glioma visualized using a filter on the operating microscope Violet light visual-
izes protoporphyrin IX

c. Does not identify low-grade glioma
d. The brain surrounding the tumor does not enhance with 5-ALA.

2. Improves removal of the tumor from the non-eloquent brain

a. Phase III clinical trial of malignant glioma—322 patients *
Microsurgery 5-ALA guided

Gross total resection 36% 65%
6 m PFS 21% 41%

b. 5-ALA does not affect neurological function
c. Preserves survival quality

No difference in serious adverse events and adverse events between the micro-
surgery and 5-ALA groups

In some centers, other known fluorescent labeling technologies have been proposed
such as sodium fluorescein and indocyanine green. Although indocyanine green and
fluorescein have lower specificity for gliomas than 5-ALA, both fluorophores may be useful
intraoperatively. Sodium fluorescein accumulates in areas of blood–brain barrier disruption,



Brain Sci. 2022, 12, 787 5 of 13

particularly in the contrast-enhancing tumor wall of high-grade gliomas. Fluorescein-
guided glioma surgery has been well-described and has been associated with an improved
PFS in small retrospective studies [24]. However, because sodium fluorescein is found
in the tumor extracellular space, non-specific labelling has been reported after surgical
manipulation. The overall sensitivity and specificity of fluorescein for gliomas remains
approximately 85% and 90%, respectively [25]. Similarly, indocyanine green has been
proposed as an alternative for fluorescent-guided glioma surgery. Although primarily used
in cerebrovascular surgery, indocyanine green accumulates within a few minutes after
administration due to peritumoral vascular permeability [26]. However, its low half-life,
rapid excretion, and non-specific uptake limit its overall applicability to glioma surgery.

2.1.4. Improving Extent of Resection of Gliomas Using Intraoperative Raman Histology

Over the last five years, Raman Histology has been proposed as an important surgical
adjunct to improve the extent of the resection of gliomas by identifying tumor infiltration
in situ. Raman Histology is capable of rapidly generating histological images of specimens
in a label-free manner by detecting molecular vibrations of scattered light. Using this
stimulated Raman scattering approach, multicolor images are generated that are com-
parable to conventional Hematoxylin and Eosin staining [27,28]. As such, serial tumor
sampling around the tumor margin is feasible and can permit rapid intraoperative tumor
diagnoses [29–31]. Similar techniques are also being developed using a hand-held device
capable of delineating glioma Raman spectra intraoperatively [32,33]. Overall, these tech-
niques may facilitate the detection of glioma infiltration and, ultimately, improve outcomes
for patients by improving the extent of resection.

2.2. Efforts to Prevent Neurological Deficits Resulting from Tumor Resection

Protecting quality of life and onco-functional status is critical for patients with malig-
nant gliomas [34–36]. The decision to opt for aggressive surgical resection must be coun-
terbalanced by the risks of diminishing the patient’s neuropsychological and functional
status. McGirt and colleagues highlighted the effect of a surgically-induced neurologic
deficit on survival after surgical treatment of glioblastoma. They retrospectively reviewed
306 consecutive patients, 18 to 70 years of age, with newly diagnosed glioblastoma and
good performance documented by Karnofsky performance scores (80–100). Although the
89% of patients who were deficit free after surgery had a 12.8-month median survival, the
5% of patients with a new language deficit had a 9.6-month median survival, and the 6% of
patients with a new motor deficit had a 9.0-month median survival. After glioblastoma
surgery, a permanent neurological deficit shortened survival by 3 to 4 months and reduced
quality of life [37].

Mapping techniques identify eloquent cortex and subcortical tracts involved in ex-
pressive and receptive language, motor function, and tactile sensation that are avoided to
prevent a neurological deficit. Resections with less than a 1 cm margin from these eloquent
cortical areas risk temporary or permanent neurological deficits, with temporary deficits
from procedural edema and permanent deficits due to microvascular disruption and resec-
tion margin infarcts. Recent research shows that some patients with preserved language,
motor, and somatosensory function experience disabling cognitive losses after surgical
resections. Cognitive deficits arise from the disruption of cortical networks involved in
executive function, attention, default state non-goal oriented tasks, limbic function, salience,
and sensorimotor and visual function [38]. The recent integration of MR-based connec-
tomics and diffuse tensor imaging has facilitated the detection of vital subcortical tracts
and can help with operative planning [39–41]. Operative approaches may be tailored to
avoid some of these networks, and judgment is required to assess if the cognitive deficit
risk justifies tumor resection interrupting one or more networks.
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2.3. Less Invasive Glioblastoma Surgical Treatments
Laser Interstitial Thermal Therapy

For some deep-seated inoperable glioblastomas, tailored surgical approaches to min-
imize adjacent white matter disruption while maximizing cytoreduction should be con-
sidered. Over the past several years, laser interstitial thermal therapy (LITT) has been
popularized for gliomas. Using stereotactic navigation through a 3 mm incision, a laser
catheter can be inserted into a target lesion, which can then be coagulated with real-time
MR thermography. Although restricted to smaller lesions (<2.4 cm), LITT is particularly
suited for treating deep, surgically inaccessible tumors [42,43]. Initial experiences using
LITT for gliomas suggest that adequate cytoreduction (>70%) can improve overall survival.
Overall survival in newly diagnosed glioblastomas was reported as between 14–24 months
in some series. Survival increased more in patients with smaller lesions and there was a
greater extent of ablation [44–46]. For patients with deep lesions who would otherwise
receive a biopsy without tumor resection, LITT can provide cytoreduction that facilitates
subsequent chemoradiation. Clinical studies also suggest that LITT may incite or potentiate
a local immune response and transiently open the blood–brain barrier to systemic immune
cells [44,47,48]. Since the LITT incision is tiny and blood flaps are unnecessary, chemoradia-
tion can be started within 7–10 days of LITT, allowing patients receiving LITT to be treated
sooner after the cytoreduction procedure than patients undergoing conventional resections
through much larger surgical openings.

2.4. Non-Surgical Glioblastoma Treatments
2.4.1. Tumor-Treating Electric Fields

Tumor-treating electric fields disrupt cancer cell division. A randomized trial in GBM
patients previously treated with chemoradiotherapy showed that patients treated with
the tumor-treating fields (TTFs) and temozolomide (TMZ) had a median progression-free
survival of 7.1 months compared to 4.0 months with TMZ alone (p = 0.001). Median survival
was 20.5 months in the TMZ plus tumor-treating fields and 15.6 months in the TMZ alone
group (p = 0.004). There was a 43% incidence of mild to moderate skin reactions and a 2%
incidence of severe skin reactions (medical device site reactions beneath the transducer
arrays) in patients treated with tumor-treating fields plus temozolomide [49]. Seizures and
headaches were more frequent in the group treated with tumor-treating fields. In 2011,
the FDA approved, under the Premarket Authorization (PMA), a pathway treatment of
recurrent or progressive glioblastoma (GBM) using a TTF delivery system. In 2015, the
FDA expanded the device’s approval to include the treatment of newly diagnosed GBM
when combined with TMZ. This new treatment extends the survival of GBM patients for
several months, although skin reactions, prolonged machine use, and other side effects can
deter its use.

2.4.2. Immunotherapy and Virotherapy

Immunotherapy using immune checkpoint inhibitors is FDA-approved for treating
metastatic melanoma and other cancers. Thus far, clinical trials of immune checkpoint
inhibitors in patients with GBM have been unsuccessful. However, there is enthusiasm
about developing immunotherapy for GBM because of the limited effectiveness of the
current standard therapy of surgical resection of the primary tumor mass and chemora-
diation of the residual tumor. Immunotherapy depends on the established capacity of
activated lymphocytes to freely enter and exit the central nervous system (CNS) through
the blood–brain barrier. Immune checkpoint inhibitors suppress the immune activation
of tumors. Checkpoint inhibitors include cytotoxic T-lymphocyte antigen 4 (CTLA-4) and
programmed death 1 (PD-1). Ipilimumab, a monoclonal antibody against CTLA-4, received
FDA approval in 2011 to treat metastatic melanoma. Nivolumab and pembrolizumab are
monoclonal antibodies inhibiting the PD1 receptor that received FDA approval in 2014,
and also for the treatment of malignant melanoma. The Phase III trial of nivolumab ver-
sus bevacizumab (anti-vascular endothelial growth factor A (anti-VEGF-A) humanized
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monoclonal antibody) in 369 randomized patients with glioblastoma at first recurrence
following standard radiation and temozolomide therapy demonstrated a higher objective
response with bevacizumab (23.1%) than with nivolumab (7.8%). The 12-month overall
survival (OS) was 42% in both groups [50]. A single immune checkpoint inhibitor such as
nivolumab was ineffective. Additional clinical trials using Chimeric Antigen Receptor-T-
Cells (CAR-T) have been proposed for glioblastoma. Phase 1 clinical trials targeting the
EGFR-VIII mutation have been conducted with modest results (median overall survival
6.9–8 months) [51,52]. Other clinical trials focusing on several epitopes such as GD2, CD147,
and B7-H3 are currently being conducted [53]. However, CAR-T cell therapy is restricted
by several important factors including the limited penetration of solid tumors, immuno-
suppressive tumor microenvironment, and heterogenous expression of tumor antigens.
Future immunotherapy trials for glioblastoma must employ strategies that enable stronger
immune reactions to tumor cells. Immunotherapy may be enhanced by other treatments
such as LITT and tumor-treating fields and be more effective as a treatment adjuvant than as
a sole treatment. Combination immunotherapeutics that utilize antisense oligonucleotides
have also been proposed to target IGF type 1 receptors. The recent IGV-001 trial treated
autologous tumor cells with antisense oligonucleotides against IGF-001 ex vivo, irradiated
the tumor cells, and reimplanted the cells intraperitoneally using biodiffusion chambers.
In the highest dose cohort, overall survival and PFS were 38.2 months and 17.1 months,
respectively, for newly diagnosed gliomas [54].

Other efforts to improve outcomes for glioblastoma have relied on viral-based gene
therapy and oncolytic virotherapy. Initial studies focusing on viral-based gene therapy have
relied on replication-defective adenoviral vectors, which did not demonstrate significant
tumor transduction beyond the injection site [55]. However, with the advent of replication-
competent viruses, virotherapy may adapt to the evolving tumor microenvironment. Newer
generation viral-based gene therapies used replication-competent retroviruses (Maloney
murine leukemia virus) and herpes simplex virus to transduce host cancer cells [56,57].
Prodrug activating viral-based gene therapy facilitates tumor selective viral transduction
and introduces a “suicide” transgene that converts a non-toxic prodrug into a intracellular
chemotherapeutic. The recent Toca511 Phase III clinical trial evaluated the efficacy of a
retroviral-mediated gene therapy for recurrent glioblastoma and did not reach its study
endpoints [58]. However, there was a significant survival benefit in IDH-mutant and
anaplastic astrocytoma. Therefore, selecting the proper patient/subgroup for gene therapy
trials remains essential.

Novel oncolytic virotherapies that exploit immunotherapy have recently been de-
scribed, suggesting that certain virotherapies can induce the adaptative and innate immune
response. Of these, oncolytic herpes simplex viruses such as RQNestin have demonstrated
increased natural killer cells and tumor-infiltrating macrophages and lymphocytes shortly
after viral injection [59–61]. Other viral vectors utilizing replication-competent adenoviral
vectors (Delta24-RGD) are also being investigated in recurrent gliomas. A recent Phase
I clinical trial in current gliomas demonstrated that nearly 20% of patients had tumor
responses after treatment with Delta24-RGD with increased peritumoral cytokine levels
and tumor-infiltrating lymphocytes [62]. Additionally, other oncolytic virotherapies such
as Delta-24-ACT that co-express immunostimulatory ligands are also being investigated in
preclinical models to stimulate a robust antitumor immune response [63].

2.4.3. Methods to Improve the Delivery of Therapeutic Agents to Glioblastoma

Clinical trials have tested methods enhancing the delivery of hydrophilic, high molec-
ular weight compounds to brain tumors. These methods include convection-enhanced
delivery, blood–brain barrier opening, chemotherapeutic modifications and conjugations
that improve the transport of the active antitumor moiety, and osmotic or receptor-mediated
opening of the blood–brain barrier [64–68]. Still, the new agents remain less effective than
systemic chemotherapy using the hydrophobic agent temozolomide (Table 2).
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Table 2. Comparison of methods to deliver therapeutic agents to glioblastoma.

Convection-Enhanced Delivery BBB Opening Systemic Chemotherapy

Drug delivery into brain tissue
or esion During tissue infusion During the opening of the BBB Limited by the intact BBB

MW of therapeutic agent Large or small Large or small Small
Brain–Blood Concentration >100 × systemic concentration ≤1 × systemic concentration <1 × systemic concentration
Hydrophilic compounds Enters CNS Enters CNS <<<1 × systemic concentration
Hydrophobic compounds Enters CNS Enters CNS <1 × systemic concentration

Distribution of Compound
within CNS

Volume spreads radially from the
infusion site

The volume of distribution rests
in the arterial distributions
injected with mannitol

Entire CNS

The volume of the brain that can
be treated Large (4–8 cm3) Large (4–8 cm3) Large (entire brain)

Intratumoral drug delivery allows the use of drugs that would not be able to pen-
etrate the blood–brain barrier due to their hydrophilic nature or high molecular weight.
Convection-enhanced delivery can spread the therapeutic agent more widely throughout
the tumor and brain than other methods of intratumoral drug delivery such as intracerebral
bolus injection and slow-release polymers. Several modifications of convection-enhanced
delivery catheters have been developed recently including a multi-port catheter capable of
infusing several reagents simultaneously. A small phase 1 trial using this system demon-
strated adequate tumor penetration, minimal back-flow, and a reasonable safety profile [69].
However, intratumoral drug delivery has had limited antitumor effects, either because the
agents used were insufficiently tumoricidal or could not be delivered to the entire tumor
volume (Table 3).

Table 3. Comparison of intracerebral drug delivery techniques.

Convection-Enhanced Delivery Bolus Intralesional Therapy Slow-Release Polymer

Speed of drug delivery into
brain tissue or lesion Hours to days Seconds Days to weeks

Means of the spread of drug Drug moves by bulk flow through
the interstitial space

Drug moves by diffusion
along concentration gradients

Drug moves by
diffusion along
concentration gradients

Spread by MW Small = Large MW Small > Large MW Small > Large MW

Variability in
drug concentration

Homogeneous drug levels
(1–100% of infused) within a
brain volume

High concentration at infusion
point with a steep fall-off in
concentration throughout the
surrounding brain

High concentration
around polymer with a
steep fall-off in
concentration throughout
the surrounding brain

Depth of penetration of drug 15–20 mm 1–4 mm 1–4 mm
The volume of the brain that
can be treated Large (4–8 cm3) Small (mm3) Small (mm3)

2.4.4. A Better Understanding of Tumor Components, Therapeutic Susceptibilities, and
Mechanisms of Therapeutic Benefit May Lead to Improved Therapeutic Strategies
for Glioblastoma

Small (1 cm3) and medium (50 cm3) glioblastomas follow radial linear, exponential,
and Gompertzian growth curves, whereas tumor growth decelerates in large (125 cm3)
glioblastomas, following a Gompertzian curve. In a recent study, 85% of glioblastomas
with central non-contrast-enhancing areas were significantly larger (23.7 cm3) than the
15% of tumors (1.2 cm3) without central non-enhancing areas. Surprisingly, the non-
contrast-enhancing component of the glioblastoma tumor grows at a faster rate than the
contrast-enhancing tumor [70].

Cancer is a cellular disease whose cure requires the lethal treatment of every tumor cell.
Substantially prolonged survival in glioblastoma depends on preventing tumor recurrence
by eradicating tumor cells in the primary tumor mass and the surrounding and distant
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brain regions. Conventional surgery and chemoradiation of glioblastoma effectively slow
the growth of the tumor by eradicating the fastest dividing tumor cells that create the
central mass of the tumor. Chemoradiation targets the fastest dividing cells most amenable
to DNA damage, which cannot be repaired between rapid cell divisions. These therapies
leave slower-dividing tumor clones to maintain glioblastoma growth. If this theory is
correct, the present glioblastoma treatment essentially lengthens survival by eradicating
the most rapidly dividing tumor clones. Life expectancy increases after the first wave of
therapy because the glioblastoma growth rate falls when slower-dividing tumor clones
drive it. If a tumor cure is presently unattainable and radio- and chemotherapy extend
life by eliminating the fastest-growing tumor cell clones, therapies that slow the tumor
cell cycle through non-DNA toxic treatments may be logical choices for treating recurrent
glioblastoma. Future therapies may slow tumor growth by changing the tumor environ-
ment, providing time and a more conducive milieu for treatments such as immunotherapy
to eradicate glioblastoma.

3. Conclusions

The improvement in glioblastoma prognosis and the development of effective thera-
pies have not kept up with the tremendous advances in understanding the genetics, biology,
and pathology of glioblastoma. Surgical treatment advances are limited because surgical
resection cannot breach eloquent functional cortex and white matter tracts, preventing cu-
rative resections. Potentially curative radiotherapy doses are unsafe, causing radionecrosis
of critical brain structures involved in the brain’s cognitive and other essential functions.
Chemotherapy is often initially partially effective, but glioblastoma becomes progressively
resistant to it. As a result, new and better treatments are sorely needed. Ongoing research
into the mechanisms of the proliferation, invasion, and immune evasion of glioblastoma
will identify new targets for glioblastoma therapy. Proven treatments, unique surgical tools,
and novel molecularly-guided treatments provide a foundation for neurosurgeons to build
more effective strategies for improving the care and extending the survival of patients with
glioblastoma (Figure 1).
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