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Abstract: Suicidality is increased in autism spectrum disorder (ASD), yet effective interventions
are lacking. Developing biologically based approaches for preventing and treating suicidality in
ASD hinges on the identification of biomarkers of suicidal ideation (SI). Here, we assessed magnetic
resonance spectroscopy (MRS) markers of glutamatergic neurotransmission in ASD youth and young
adults. Twenty-eight ASD participants (16–33 years) underwent 1H-MRS, and metabolites were
quantified using LCModel. N-acetylaspartate (NAA), glutamate (Glu), and the NAA/Glu ratio from
the left dorsolateral prefrontal cortex were compared between ASD SI+ (n = 13) and ASD SI− (n = 15)
participants. We found that ASD SI+ participants had a higher NAA/Glu ratio compared ASD SI−
participants. The NAA/Glu ratio also predicted SI and significantly discriminated between ASD
SI+/SI− participants. All analyses including NAA and Glu alone were non-significant. Here, we
provide preliminary evidence for the importance of NAA/Glu in ASD with SI, with implications for
biomarker discovery. Further mechanistic research into risk and interventional approaches to address
SI in ASD are needed.

Keywords: autism spectrum disorder; suicidality; magnetic resonance spectroscopy

1. Introduction

Suicidality in individuals diagnosed with autism spectrum disorder (ASD) is a global
health concern. Recent meta-analytic evidence derived from North American, European,
and Asian samples revealed children and adults with ASD are at increased risk of sui-
cide [1]. While suicide is a leading cause of youth death in the general population [2,3],
the even higher rates in ASD youth are a growing concern. Despite the urgent need to
address this public health problem, studies that describe the phenomenology and biological
associations of suicidality in ASD youth and young adults are currently lacking. Identifying
neurobiological markers of suicidal ideation (SI) in ASD youth and young adults is also a
critical first step for the development of biologically informed targeted interventions.
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Disruptions in glutamate (Glu) excitatory neurotransmission and metabolism have
been implicated in suicidality [4]. Evidence in this regard, however, is mixed [5]. Localized
primarily to neurons, N-acetylaspartate (NAA) concentration is thought to reflect neuronal
density [6]. Preliminary findings suggest NAA concentrations in the right dorsolateral
prefrontal cortex (DLPFC) of depressed adults with suicidal behavior may be lower than
that in a group of controls [7]. Notably, NAA can be converted to Glu [8]. Given this shared
metabolic pathway, it may be valuable to consider NAA and Glu together as a dynamic
metabolic measure when examining complex symptom dimensions such as suicidality.

Preliminary evidence suggests that glutamatergic markers may also be promising
targets for identifying adolescents with SI. Lewis and colleagues [9] found that proton mag-
netic resonance spectroscopy (1H-MRS) measures of the NAA to Glx
(Glx = glutamate + glutamine) ratio (NAA/Glx) in the anterior cingulate cortex (ACC)
discriminated between depressed adolescents with and without SI. Imbalanced excitatory–
inhibitory neurotransmission is a hypothesized etiological factor in ASD [10–12]. Thus,
1H-MRS derived glutamatergic markers could prove useful in understanding mechanisms
and perhaps as a marker of treatment response for future studies of SI and its treatment in
ASD youth and young adults.

Here, we undertook a preliminary evaluation of 1H-MRS-measured glutamatergic
markers from the left DLPFC (MRS data were not collected from the right DLPFC), in a
small convenience sample of ASD youth and young adults. We hypothesized that ASD
participants with SI, compared to those without SI, would have higher NAA/Glu levels.
We further hypothesized that NAA/Glu would predict SI, and discriminate between
participants with and without SI.

2. Results

Thirteen participants in our sample endorsed suicidal thinking (SI+ group), and
fifteen participants did not (SI− group), as characterized in Table 1. The SI+/SI− groups
did not differ on demographic characteristics. The SI+ group contained more depressed
participants (classified using the Mini International Neuropsychiatric Interview [MINI])
than the SI− group (p = 0.03, Fisher’s exact). The SI+ group also had more participants with
additional co-occurring mental health conditions compared to the SI− group (p = 0.002,
Fisher’s exact). Of note, a single participant with depression was in the SI− group.

Table 1. Sample demographic and clinical characteristics.

Suicidal Ideation (SI+) No Suicidal Ideation (SI−)
(n = 13) (n = 15) U

Age
Mean (SD) 23.4 (5.19) 23.1 (4.39)
Median [Min, Max] 25.0 [16.0, 33.0] 21.0 [17.0, 31.0] 0.98
Sex

Number of males (%) 8 (61.5%) 13 (86.7%) 0.20
Psychotropic Medication *

Number of participants (%) 7 (53.8%) 10 (66.7%) 0.70
MINI

Comorbidity—other than suicide **
Number of participants (%) 11 (84.6%) 3 (20.0%) 0.002

Suicide risk level ***
Low 7 (53.8%) -
Moderate 5 (38.5%) -
High 1 (7.7%) -

Depression, current (2 weeks)
Number of participants (%) 6 (46.2%) 1 (6.7%) 0.03

Depression, recurrent
Number of participants (%) 2 (15.4%) 0 (0%) 0.21
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Table 1. Cont.

Years of Education
Mean (SD) 13.4 (2.40) 14.9 (3.37) 0.24
Median [Min, Max] 13.0 [10.0, 17.0] 14.0 [11.0, 22.0]
IQ—General Abilities Index

Mean (SD) 113 (17.9) 111 (18.3)
Median [Min, Max] 113 [77.0, 140] 104 [79.0, 141] 0.70
BRIEF Metacognition Index

Mean (SD) 70.2 (7.76) 71.0 (8.83)
Median [Min, Max] 69.0 [59.0, 84.0] 68.0 [59.0, 84.0] 0.89
BRIEF Global Composite

Mean (SD) 67.3 (8.64) 68.7 (8.00) 0.70
Median [Min, Max] 67.0 [52.0, 82.0] 66.0 [60.0, 86.0]
Adaptive Functioning Composite

Mean (SD) 75.9 (12.3) 75.2 (7.61) 0.87
Median [Min, Max] 79.0 [58.0, 104] 73.0 [61.0, 89.0]

* Psychotropic medications were comparable across SI−/SI+ groups, which included: selective serotonin reuptake
inhibitors (SSRI) (SI− n = 5/SI+ n = 5), selective norepinephrine reuptake inhibitors (SNRI) (SI+ n = 1), tetracyclic
antidepressants (TCA) (SI− n = 1), norepinephrine dopamine reuptake inhibitors (NDRI) (SI− n = 1/SI+ n = 1),
atypical antipsychotics (SI− n = 2/SI+ n = 2), amphetamines (SI− n = 1), methylphenidate (SI− n = 4), benzodi-
azepines (SI− n = 1/SI+ n = 1), and medical marijuana (SI− n = 1). ** Comorbidities include: major depressive
episode, hypomanic episode, panic disorder, agoraphobia, generalized social phobia, obsessive compulsive
disorder, psychotic disorders, mood disorder with psychotic features, generalized anxiety disorder, anorexia
nervosa, and antisocial personality disorder. Suicide was excluded on the basis of it being used as our SI+/SI−
grouping variable. *** Suicide risk level corresponds to risk categories from the MINI suicidality module
(low risk = 1–8 points; moderate risk = 9–16 points; high risk ≥ 17 points). Age, years of education, IQ, BRIEF and
Adaptive Function scores were compared between groups using Mann–Whitney U tests. All other (categorical)
measures were compared using Fisher’s exact tests, given the small cell counts. BRIEF: Behavior Rating Inventory
of Executive Function; MINI: Mini International Neuropsychiatric Interview; adaptive functioning composite
from the Vineland Adaptive Behavior Scale-II (VABS-II).

Participants in the SI+ group had higher NAA/Glu ratio than participants in the SI−
group (F (2,25) = 6.19, p = 0.02, Cohen’s f = 0.50; Figure 1a). In contrast, the SI+ and SI−
groups did not differ in NAA (F (2,25) = 0.28, p = 0.60, Cohen’s f = 0.11; Figure 1b) or Glu
(F (2,25) = 0.89, p = 0.36, Cohen’s f = 0.19; Figure 1c).

Logistic regression revealed the NAA/Glu ratio significantly predicted SI, b = 0.56,
SE = 0.27, z (25) = 2.11, p = 0.04, odds ratio = 1.76:1 (Figure 1d), implying that every 0.1-unit
increase in NAA/Glu ratio predicted a 1.76 fold increase in the odds of SI. NAA did not
predict SI, b = 0.02, SE = 0.04, z (25) = 0.49, p = 0.63, odds ratio = 1.02:1 (Figure 1e), nor did
Glu b = −0.06, SE = 0.06, z (25) = −1.02, p = 0.31, odds ratio = 0.94:1 (Figure 1f).

Sensitivity and specificity estimates for separating ASD SI+ from SI− participants
were obtained with ROC analyses. AUC analyses indicated that NAA/Glu in the left
DLPFC discriminated between ASD SI+ and ASD SI− participants (AUC = 0.8; SE = 0.09;
95% confidence interval [CI] = 0.63–0.97; Figure 1g); neither NAA (AUC = 0.54; SE = 0.12;
95% CI = 0.32–0.77; Figure 1h), nor Glu alone (AUC = 0.43; SE = 0.11; 95% CI = 0.20–0.65;
Figure 1i) discriminated ASD SI+ from ASD SI− participants. A cutoff point of 1.78 for
NAA/Glu yielded a sensitivity of 0.85 and a specificity of 0.80 for discriminating between
the presence/absence of SI in ASD.
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Figure 1. (a–c) Left dorsolateral prefrontal cortex (L-DLPFC) metabolites measured with proton magnetic
resonance spectroscopy (1H-MRS) in ASD participants with suicidal ideation (SI+; n = 13) and without
(SI−; n = 15): (a) NAA/Glu: SI+ mean (SD) = 1.94 (0.17), SI− mean (SD) = 1.76 (0.20), * p < 0.05; (b) NAA:
SI+ mean (SD) = 6.65 (1.24), SI− mean (SD) = 6.43 (1.12); (c) Glu: SI+ mean (SD) = 3.44 (0.68), SI− mean
(SD) = 3.69 (0.77); (d–f) logistic regression models for the prediction of SI+ as a function of L-DLPFC
metabolites, * p < 0.05; (g–i) receiver operating characteristic (ROC) curves of the discriminatory
capacity for L-DLPFC metabolites to predict SI+. Area under the curve (AUC) prediction accuracy;
a value of 1 indicates perfect accuracy whereas a value of 0.5 (grey diagonal line) indicates chance
accuracy.

3. Discussion

Here, we assessed 1H-MRS-measured markers of glutamatergic neurotransmission
from the left DLPFC in a sample of ASD youth and young adults. Our findings provide
preliminary evidence for the potential importance of NAA/Glu in ASD with SI. We found
that ASD SI+ participants had a higher NAA/Glu ratio compared to ASD SI− participants.
NAA/Glu also predicted SI and significantly discriminated between ASD SI+ and ASD
SI− participants.

Our findings are partially consistent with Lewis et al. (2020), where NAA/Glx was
found to discriminate SI+ from SI− adolescents with depression. Though broadly similar,
the direction of our results differ from Lewis et al. (2020) in that NAA/Glu was higher
in ASD SI+ participants in our sample, whereas NAA/Glx was lower in SI+ adolescents
with depression in their sample. Several key sample and methodological differences
may contribute to the discrepant finding. We included ASD youth and young adults
with and without depression, whereas participants reported on in Lewis et al. (2020)
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were adolescents with depression without ASD. Given the emerging evidence for altered
excitatory–inhibitory neurotransmission in ASD [10–12]), combined with neurometabolite
alterations documented in depression [13], it is perhaps unsurprising that our findings do
not perfectly align. We also examined MRS-measured metabolites from a left DLPFC voxel,
whereas an ACC voxel was used in Lewis et al. (2020). Moreover, owing to acquisition
sequence differences (MEGA-PRESS vs. J-PRESS), we assessed the NAA/Glu ratio, whereas
Lewis et al. (2020) assessed the NAA/Glx ratio. Glu and Glx are not identical markers,
given that Glx encompasses both Glu and glutamine signals [6]. Nonetheless, our collective
findings suggest that NAA/Glu and NAA/Glx warrant further investigation as candidate
biomarkers associated with SI.

Prior work has suggested that the ratio of NAA to glutamatergic metabolites may be
more sensitive for capturing metabolic alterations than either metabolite alone [9,14]. It is
notable that we found ASD SI+ participants to have a higher NAA/Glu ratio in the absence
of detectable differences in NAA or Glu between ASD SI+/SI− groups. Though speculative,
this finding may reflect dysregulated NAA to Glu metabolism in ASD SI+ youth and young
adults. Given that NAA can be converted to Glu, especially under conditions of metabolic
stress [8], disrupted conversion of NAA to Glu could conceivably result in higher NAA
and lower Glu concentrations that are indetectable across ASD SI+/SI− groups, but that
manifest as detectable differences in their ratio across groups.

Reliable biomarkers of SI in ASD youth and young adults may help identify at-risk
individuals, with plausible utility for treatment planning (i.e., predicting potential for
treatment response) and tracking neurobiological responses to interventions. We recently
found that bilateral rTMS to DLPFC modulates Glx levels in the left DLPFC (MRS data were
not collected from the right DLPFC) and that baseline Glx predicted change in Glx from pre-
to post-rTMS in the same ASD sample included here [15]. There is evidence that excitatory
rTMS alters the glutamatergic system [16–18] and may normalize NAA levels in treatment-
resistant depression [19]. Consequently, rTMS intervention studies that track changes to
glutamatergic markers and suicidality symptoms concurrently may help establish whether
rTMS yields clinical improvement by altering glutamatergic neurotransmission.

The present study has a number of limitations. The convenience sample reported on
here was small (n = 28), thus we did not evaluate the potential role of key demographic and
clinical characteristics (e.g., sex, medication use) on our NAA/Glu findings. Studies with
larger sample sizes that are designed and powered to examine the relationship between SI
and NAA/Glu are required to replicate the preliminary results reported here. Further, as
our sample included depressed and non-depressed participants, future studies conducted
with an exclusively depressed sample of ASD youth and young adults are needed to clarify
the unique and/or shared role of neurometabolites in depression +/− suicidality. Given
we excluded participants with active suicidal intent, our findings are not representative
of the entire spectrum of suicidality. Additionally, MRS data were collected from the left
DLPFC despite bilateral stimulation. MRS data should be acquired bilaterally in future
rTMS studies. Finally, there are a number of limitations inherent to 1H-MRS, which we
have detailed extensively in Moxon–Emre et al. (2021).

4. Materials and Methods

Participants: Twenty-eight ASD youth and young adults (mean (SD) = 23.3 (4.69) years,
range 16–33 years, 21 male/7 female assigned at birth) underwent 1H-MRS scans during a
baseline assessment of our recently completed repetitive transcranial magnetic stimulation
(rTMS) clinical trial (Clinicaltrials.gov; ID: NCT02311751) [15,20,21]. The present sample is
identical to the baseline ASD sample from Moxon–Emre et al. (2021), wherein we detail
specifics pertaining to final sample selection, including quality control (QC) of 1H-MRS data
used here. Full clinical trial details, including complete inclusion/exclusion criteria, have
also been reported previously [20]. Briefly, participants aged 16–35 years with a prior DSM-
5 diagnosis of ASD and confirmed using the Autism Diagnostic Observation Schedule-2
(ADOS-2) [22], with clinically significant executive dysfunction (based on any Behavior
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Rating Inventory of Executive Function-Adult [BRIEF-A] [23] subscale T score > 65) and
without intellectual impairment (IQ ≥ 70 on the General Abilities Index (GAI) from the
Wechsler Adult Intelligence Scale—Fourth Edition (WAIS-IV) [24], were recruited either
from mental health clinics at the Centre for Addiction and Mental Health (CAMH, Toronto,
Canada), community clinics, or through local advertisements. Participants were excluded if
they had prior major medical or neurological illnesses, were taking anticonvulsants or ben-
zodiazepines (≥2 mg lorazepam equivalent), or had a history of substance abuse/positive
toxicology screen. Participants with active suicidal ideation (e.g., with a suicidal plan
and/or intent) that were deemed to be clinically unstable (based on clinical assessment by
a study psychiatrist SHA, MCL, or PD) were also excluded. This study was approved by
the research ethics board at CAMH, and all participants provided written informed consent
prior to clinical trial enrollment.

Measures: Co-occurring mental health conditions were assessed using the Mini In-
ternational Neuropsychiatric Interview (MINI) for participants aged ≥ 18 years [25], and
the MINI for children and adolescents (MINI-KID) for participants aged 16–17 [26]. The
MINI is a structured interview for diagnosing DSM-IV disorders and suicide risk was
assessed using the suicidal tendency module. Participants who answered “yes” to any of
the module’s nine questions were included in the SI+ group, and all others were included
in the SI− group. All other measures administered as part of this clinical trial are detailed
in Ameis et al., (2017).

Magnetic Resonance Spectroscopy: 1H-MRS data were acquired on a 3 Tesla GE MR750
(General Electric, Milwaukee, WI) scanner using a MEshcher–Garwood Point RESolved
Spectroscopy (MEGA-PRESS) sequence (TE = 68 ms, TR = 1500 ms, 512 averages), from
a 20 × 40 × 30 mm3 voxel in the left DLPFC. The left DLPFC was selected for MRS
voxel placement as imaging time constraints in our clinical trial prevented bilateral MRS
data acquisition, and rTMS studies that include MRS data have mainly acquired data
from a left hemisphere voxel [16,18,27–31]. Complete MRS data acquisition, processing,
and structural imaging details for our sample are provided in Moxon–Emre et al., (2021).
Briefly, the GANNET 3.0 [32] processing pipeline was used, the editing-OFF raw data was
separated out using the FID-A toolkit [33], and metabolites were quantified using LCModel
version 6.3–0E [34]. The linewidth (full width at half maximum [FWHM]) of the water
reference was measured, and <10 Hz was required for inclusion. For our MRS sequences,
the mean (SD) signal-to-noise ratio (SNR) was 41.5 (6.58), and the mean (SD) linewidth was
8.71 (0.94). Quality of spectral fitting was assessed using the standard Cramer–Rao lower
bound (CRLB) values, and fitted spectra with CRLB < 20% were included (%SD for Glu:
mean = 7.18 ± 2.23 and %SD for NAA: mean = 2.29 ± 0.54). We corrected water-scaled
metabolite concentrations for voxel tissue composition.

Statistical analyses: Demographic and clinical characteristics of the SI+ and SI− groups
were compared using Mann–Whitney U tests for continuous variables, and Fisher’s exact
tests for categorical variables. To test our first hypothesis, NAA/Glu, NAA, and Glu levels
were compared between SI+/SI− groups, using ANCOVAs covarying for age. To test our
second hypothesis, three separate logistic regressions were used to model SI as a function
of NAA/Glu, NAA, and Glu levels, controlling for age. Receiver operating characteristic
(ROC) analyses were conducted to assess the discriminatory capacity of NAA/Glu, NAA,
and Glu levels for predicting SI. The area under the curve (AUC) was tested against an AUC
of 0.5. ROC analyses were conducted using the pROC package in R, version 1.16.2 [35].
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the manuscript.
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