
����������
�������

Citation: Deters, J.R.; Fietsam, A.C.;

Workman, C.D.; Rudroff, T. High

Estrogen Levels Cause Greater Leg

Muscle Fatigability in Eumenorrheic

Young Women after 4 mA

Transcranial Direct Current

Stimulation. Brain Sci. 2022, 12, 506.

https://doi.org/10.3390/

brainsci12040506

Academic Editor: Moussa

Antoine Chalah

Received: 20 March 2022

Accepted: 14 April 2022

Published: 15 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

brain
sciences

Article

High Estrogen Levels Cause Greater Leg Muscle Fatigability in
Eumenorrheic Young Women after 4 mA Transcranial Direct
Current Stimulation
Justin R. Deters 1, Alexandra C. Fietsam 1, Craig D. Workman 1 and Thorsten Rudroff 1,2,*

1 Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA;
justin-deters@uiowa.edu (J.R.D.); alexandra-fietsam@uiowa.edu (A.C.F.);
craig-workman@uiowa.edu (C.D.W.)

2 Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
* Correspondence: thorsten-rudroff@uiowa.edu

Abstract: Transcranial direct current stimulation (tDCS) research has shown great outcome variability
in motor performance tasks, with one possible source being sex differences. The goal of this study
was to evaluate the effects of estrogen levels on leg muscle fatigability during a fatigue task (FT) after
4 mA tDCS over the left motor cortex (M1). Ten young, healthy eumenorrheic women received 4 mA
anodal active or sham stimulation over the left M1 during periods of high and low estrogen levels. A
fatigue index (FI) was calculated to quantify fatigability, and the electromyography (EMG) of the knee
extensors and flexors was recorded during the FT. The findings showed that tDCS applied during
high estrogen levels resulted in greater leg muscle fatigability. Furthermore, a significant increase
in EMG activity of the right knee extensors was observed during periods of active stimulation,
independent of estrogen level. These results suggest that estrogen levels should be considered in
tDCS studies with young healthy women.

Keywords: tDCS; menstrual cycle; estrogen; fatigue; electromyography

1. Introduction

Hormonal differences between women and men have been shown to independently
affect brain stimulation-induced changes in cortical excitability [1–3], and previous stud-
ies have investigated these effects using repetitive transcranial magnetic stimulation
(rTMS) [4,5]. Furthermore, a multivariate meta-regression of transcranial direct current
stimulation (tDCS) targeting the frontal brain regions [6] revealed that biological sex mod-
erated the effects of the applied stimulation dose (i.e., current density and density charge)
on cognitive outcomes; specifically, a higher proportion of females in a given study led to
larger effect sizes that significantly contributed to the regression model [6]. The authors
suggested a few reasons for this finding and noted sex hormones, which can modulate
endogenous cortical excitability, as the most plausible explanation. However, most tDCS
studies have not considered sex differences as an outcome-modifying factor [7]. This
neglect might be slowing advances in the tDCS field, and could partially explain the high
inconsistency rates [8–14] and inter-subject variability (e.g., approximately 50% of subjects
might not respond to tDCS [15]) common in tDCS investigations.

Increased levels of estrogen, one of the two primary female sex hormones, has been
associated with increases in cortical excitability [4,5,16], which suggests that estrogen may
reinforce endogenous excitatory mechanisms in the cortex. However, because anodal tDCS
also enhances cortical excitability when targeted [17,18], excessive excitability [19] when
estrogen levels are high is also possible. In theory, one possible product of anodal tDCS
application while estrogen levels are high is cortical overexcitation in the target area. This
momentary disruption of neurophysiological homeostasis might result in non-optimal or
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decreased motor performance. This is consistent with recent findings that anodal M1 tDCS
resulted in increased leg muscle fatigability in young women when compared to young
men [20]; sex-specific biological variations (e.g., skull characteristics, sex hormones) were
speculated to have caused these findings. Specifically, modeling studies have reported that
sex-specific differences in skull characteristics, which are different between women and
men, modulate the amount of current that reaches the cortex [21,22]. However, no study
has examined if and how fluctuating estrogen levels alter the effects of tDCS on human
performance (e.g., fatigue outcomes).

Fatigue has been defined as “the decrease in physical and/or mental performance
that results from changes in central, psychological, and/or peripheral factors” [23] and
is commonly examined in tDCS studies. Specifically, performance fatigability might be
influenced by changes in corticospinal excitability [24] and/or alterations in motor unit
recruitment strategies [25], either of which may be altered by tDCS. However, the results of
such studies are conflicting. Some have reported reduced performance fatigability from
tDCS (see [26] for a review), while others have found that tDCS increases muscle fatigability,
especially in young, healthy subjects [19,20,27]. Given the potential for hormones (specifi-
cally estrogen) to modulate tDCS efficacy, there is a surprising lack of knowledge regarding
how estrogen might affect tDCS performance outcomes (e.g., leg muscle fatigability) in
healthy young women.

Therefore, research assessing the influence of sex hormones on stimulation-related
functional outcomes is vital to fully understand the underlying mechanisms of tDCS
and maximize test results. The purpose of this study was to examine the influence of
endogenous estrogen levels on leg muscle fatigability after 4 mA tDCS in eumenorrheic
young women. It was hypothesized that high estrogen levels would result in increased leg
muscle fatigability in active tDCS compared to sham, based upon our previous work [20]
and the known effects of estrogen in the cortex [5,16]. This work is vital because determining
the influence of fluctuating hormones in women on stimulation outcomes may be an
especially important factor to reduce response variability in tDCS research.

2. Materials and Methods
2.1. Subjects

A power analysis was performed based on our previous study (η2 = 0.18) [20], and
it was found that 8 subjects were needed to achieve 80% power at α = 0.05. Thus, to ac-
count for 20% attrition, a total of 10 healthy, tDCS-naïve young eumenorrheic women
were recruited for this study. The inclusion criteria were: (1) biological woman be-
tween the ages of 18 and 35; (2) right-side dominant (as brain morphology differences
may exist between right- and left-side-dominant people [28]); (3) physically active (had
performed at least 30 min of moderate-intensity physical activity on 3 or more days of
the week, during the last 3 months) [29]; (4) without other chronic medical conditions
(e.g., neurological or psychiatric); and (5) not using psychoactive medications. The exclu-
sion criteria included: (1) pregnancy or currently trying to become pregnant; (2) hormonal
contraceptives/supplement use; (3) no contraindications to tDCS based on previous studies
(e.g., fissures, holes, or implanted devices in the skull [30]). The study was performed in
accordance with the Declaration of Helsinki and was approved by the Institutional Review
Board at the University of Iowa. All subjects provided written consent before participation.

2.2. Study Design

This study employed a double-blind, randomized, crossover design, wherein all
subjects received both active and sham stimulation during each phase of their menstrual
cycle. Each of the 10 subjects completed a total of 6 visits to the lab. The first visit
was a familiarization visit where maximal strength testing was performed to confirm
leg dominance, and an isokinetic fatigue task (FT) was completed to familiarize each
subject with the FT performed during the evaluation sessions. Additionally, subjects were
asked about the start of their previous menstrual cycle, along with the projected start of
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their next menstrual cycle. The start of the menstrual cycle was deemed the first day of
menstruation. Sessions were then scheduled to correspond with high and low points of
estrogen level throughout the cycle. The early follicular phase (days 3–4) was targeted for
low estrogen levels. The late follicular phase (days 9–10) and mid-luteal phase (days 18–20)
were targeted for high estrogen levels. Sessions were scheduled so that each subject had
both active (4 mA) and sham tDCS during each phase (early follicular, late follicular, and
mid-luteal) of their menstrual cycle to fully assess the effects of stimulation. Due to the
diurnal nature of estrogen, visits 2–6 were scheduled at the same time of day for each
individual subject (i.e., ±2 h for each session) [31]. Testing sessions began with a blood
draw and assay to assess serum estrogen levels, followed by tDCS administration (active
or sham), and right and left leg FTs.

2.3. Isokinetic/Isometric Strength Testing

Strength testing was performed on a HUMAC NORM isokinetic dynamometer (CSMi,
Stoughton, MA, USA). Before beginning the strength testing, subjects completed a warm-up
exercise which consisted of 15 repetitions of knee extension and knee flexion (60◦/s, con-
centric/concentric). After resting for ≥30 s, three repetitions of maximal strength isometric
knee extension and flexion were completed at 65◦ and 30◦, respectively, with ≥30 s of
rest between each repetition. Then, five repetitions of maximal strength isokinetic knee
extension and flexion were completed at 60◦/s (concentric/concentric) with ≥30 s of rest
between each set. The right leg was always tested first, followed by the left. Strong verbal
encouragement was provided during each repetition to ensure maximal effort from the
participants. The greatest torque value acquired during either of the strength testing tasks
(isometric or isokinetic) was utilized to objectively confirm right-side dominance.

2.4. Isokinetic Fatigue Task (FT)

This FT protocol was identical to protocols assessing the effects of tDCS on fatigability
previously performed in this lab [19,20,32]. The FT comprised 40 consecutive repetitions of
maximal effort isokinetic knee extension and flexion (120◦/s, concentric/concentric) [27,33].
In visits 2–5, a 15-repetition warm-up exercise was completed before the FT, as detailed
above. The FT was performed on the dominant (right) leg first and ≥5 min rest was
provided to allow for adequate heart rate and respiratory recovery before starting the left
leg FT. Vigorous verbal encouragement and visual feedback (i.e., per rep work bars) were
given to ensure the participants were performing maximal effort contractions throughout
the fatigue tasks. The largest torque from each repetition was included in the analysis.

2.5. Electromyography (EMG)

Muscle activity throughout the strength and fatigue tasks was recorded via a wireless
EMG system (Ultium-EMG, Noraxon, USA Inc., Scottsdale, AZ, USA). EMG electrodes (3M
Red Dot Monitoring Electrode, Model 2560; 3M Corp., St. Paul, MN, USA; 2 cm between
each 1.3 cm effective area) were secured bilaterally over the rectus femoris, vastus medialis,
vastus lateralis, and semitendinosus corresponding to a 3D muscle map which followed
SENIAM guidelines, and was provided by the EMG software (MR 3.14, myoMUSCLE,
Noraxon USA Inc., Scottsdale, AZ, USA). To increase electrode placement consistency, the
same researchers placed the electrodes on the subjects during each visit. The electrode
sites were prepared by shaving and cleaning the electrode site with an alcohol wipe before
placing the electrodes. The electrodes and wireless transmitters were secured in place with
elastic bandages and EMG data were collected at 2000 Hz.

2.6. Transcranial Direct Current Stimulation (tDCS)

A tDCS device (Soterix Medical Inc, New York, NY, USA) delivered a small direct
current to the scalp through two carbon electrodes which were situated inside two saline-
soaked 5 cm × 7 cm sponge electrodes (area = 35 cm2; EASYpad, Soterix Medical Inc., New
York, NY, USA). The anode was secured over the left M1 (C3 according to the 10–20 EEG
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convention) to stimulate the motor cortex representation of the dominant (right) leg, and the
cathode was secured over the contralateral (left) supraorbital area (just inferior to Fp2). The
medial edge of the anode always abutted or slightly covered Cz, which ensured that this
electrode was unilaterally targeting the M1 area in the longitudinal fissure that represents
the leg [34]. The sponge electrodes were secured by an EASYstrap (Soterix Medical Inc,
New York, NY, USA), which had ruler-like markings to allow for consistent electrode place-
ment between sessions. Previous work in our lab has demonstrated increased fatigability
in healthy subjects after 2 and 4 mA active stimulation over the motor cortex compared to
sham [19]. Further analysis of this dataset revealed sex-specific differences in the FT when
subjects were further stratified by biological sex. Women were more fatigued than men
after 4 mA tDCS, but not after 2 mA [20]. Therefore, because we observed sex differences
when using 4 mA only, and not 2 mA stimulation, 4 mA (current density = 0.11 mA/cm2)
was used as the stimulation intensity in this study to further elucidate the effects of estro-
gen on fatigability. Active stimulation began with a 30 s ramp-up, was held constant at
4 mA for 20 min, and then slowly ramped back down to 0 mA over 30 s. During sham
stimulation, the device ramped up to 4 mA over 30 s, then promptly ramped down to
0 mA over 30 s. The stimulation intensity was then held at 0 mA for 20 min before the
ramp-up/down process was repeated. After stimulation, the subjects sat quietly for 10 min
to provide adequate time for the stimulation effects to peak [35,36] before beginning the
FT. tDCS tolerability was evaluated by asking subjects to describe the sensations they
experienced and to rate those sensations on a 10-point Likert scale (1 = “barely perceptible”,
10 = “worst sensation I could possibly stand” [37]. The subjects were informed that they
would randomly receive either sham or active stimulation during each of the five exper-
imental sessions. After each session, they were asked what stimulation condition they
thought they received and to determine their confidence in their guess on a 10-point Likert
scale (1 = “not confident at all”; 10 = “extremely confident” [37]. The same researcher
scheduled participants according to their menstrual cycle phase and administered tDCS.
The subjects and other study personnel were blinded to the stimulation conditions of each
testing session until after the final session of each subject was completed.

2.7. Blood Draw

Sessions 2–6 began with a blood draw in the Clinical Research Unit at the University
of Iowa Hospital and Clinics (UIHC). Staff nurses collected 4.5 mL blood from the median
cubital vein of the left arm (total volume collected per subject = 9 mL) for the estrogen assay.
Samples were immediately analyzed for serum estrogen levels after the blood draws by
UIHC Pathology technicians using an Electrochemiluminescence Assay (Roche Diagnostics,
Basel, Switzerland). The estrogen assay had a lower limit of detection of 5 pg/mL and a
coefficient of variation of 8%. Because menstrual cycles have great inter-and intrasubject
variability, and current menstrual cycle evaluation methods are inefficient [38], the peak
estrogen levels of the subjects were not consistently found in the late-follicular phase, which
is a common failing of menstrual cycle phase calendar estimation [39]. Thus, estrogen
levels were grouped as high or low according to each individual subject’s estrogen serum
levels, irrespective of the anticipated/targeted phase. This ranged from 22–432 pg/mL for
high values and 9–183 pg/mL for low values. For example, subject 8 had a high value of
432 pg/mL and a low value of 44, while subject 4 had a high value of 168 pg/mL and a low
value of 39 pg/mL.

2.8. Data Analysis

A torque-derived fatigue index (FI-T) was computed to assess the effect of tDCS and
sex hormones on leg muscle fatiguability. The FI-T was calculated using the greatest torque
from the relevant repetitions of the FT as follows: ([mean of reps 3 through 7—mean of last
five reps]/mean of reps 3 through 7) × 100 [33,40,41]. Higher FI-T values indicate increased
muscle fatigability (i.e., a greater difference in torque production between the beginning and
the end of the FT) and were interpreted as a poorer FT performance. The EMG interference
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signals from each muscle were bandpass filtered (3.5 Hz–350 Hz) [27,32,42,43], rectified,
and smoothed (50 ms root mean square window). Peak EMG activity from the strength
testing was used as a normalization value for EMG during the FT. The muscle activity of
the knee extensors (rectus femoris, vastus medialis, and vastus lateralis) was averaged
to represent the cumulative activity of this muscle group. The first two repetitions of the
FT were considered adaptation repetitions and were removed. Therefore, the remaining
38 repetitions were used for the FI-T and average EMG (aEMG) analyses [19,20,33]. The
subsequent 38 repetitions were organized into 8 windows. The first seven windows
consisted of five consecutive and non-overlapping repetitions (e.g., window 2 = reps 8–12;
window 3 = reps 13–17, etc.) while the last (eighth) window was comprised of the final
three repetitions [33]. All EMG data were analyzed in the myoMUSCLE software (MR3
Version 3, Noraxon USA Inc., Scottsdale, AZ, USA) and torque data were calculated within
and exported from the HUMAC2015 software (CSMI, Stoughton, MA, USA).

2.9. Statistical Analysis

A stimulation condition (active vs. sham) by estrogen level (high vs. low) repeated
measures ANOVA was performed on the FI values and EMG activity for the right and
left extensors and flexors. Post hoc analyses (paired t-tests and Bonferroni correction)
and effect size (Cohen’s d) were calculated to clarify significant main effects and interac-
tions. Significance was accepted at p ≤ 0.05. Normality and sphericity assumptions were
evaluated with the Shapiro–Wilk test and Mauchly’s test of sphericity for the ANOVAs.
Greenhouse–Geisser corrections were used when the sphericity assumption was violated.
GraphPad Prism 9 (GraphPad Software, San Diego, CA, USA) was utilized to perform
the analyses.

3. Results
3.1. Subject Characteristics

All subjects (n = 10; age = 24.3 ± 5.5 years; height = 164.1 ± 6.5 cm; weight = 61.5 ± 10.8 kg)
completed all study visits. Data are reported as mean ± SD in the text and mean ± SEM in
the figures. All normality and sphericity assumptions for ANOVAs and paired t-tests were
evaluated a priori and were sufficiently met.

3.2. Muscle Fatigability

The results of the ANOVAs indicated a significant main effect of stimulation condition
for the right extensors (F (1,9) = 8.2, p = 0.02, η2 = 0.46) and a significant estrogen level x
stimulation condition interaction for both the right (F (1,9) = 5.2, p = 0.05, η2 = 0.37) and
left (F (1,9) = 10, p = 0.01, η2 = 0.53) extensors. Figure 1 displays the results of the post hoc
testing for the right extensors which revealed that FI was significantly higher (i.e., greater
fatigability) in the high-estrogen active condition compared to the high-estrogen sham
condition (p = 0.04, d = 0.94; 61.7 ± 10.6 vs. 46.7 ± 20.0). On the other hand, the difference
between low-estrogen active and low-estrogen sham was not significant (p > 0.99, d = 0.13,
57.28 ± 11.57 vs. 55.90 ± 8.67), indicating that only the combination of high estrogen and
active tDCS altered leg muscle fatigability. Post hoc testing for the left extensors revealed
similar results, with high FIs after active stimulation showing a similar pattern to sham
during high estrogen levels (p = 0.02, d = 1.05; 59.6 ± 8.4 vs. 50.9 ± 7.6), with only the
combination of high estrogen and active tDCS altering leg muscle fatigability. Similar to
the right extensors, the difference between low-estrogen active and low-estrogen sham in
the left extensors was not significant (p > 0.99, d = 0.12, 54.25 ± 13.99 vs. 55.78 ± 11.42).
Figure 2 displays the change in torque production of the right extensors over the eight
time windows of a representative subject during high estrogen levels, and highlights the
decreased torque production after active stimulation compared to sham. All other right
and left extensor post hoc comparisons were nonsignificant (0.99 ≤ p ≤ 0.2). Similarly, the
results of the ANOVAs for the FI of the right and left flexors revealed no significant main
effect of stimulation (right flexors: F (1,9) = 0.92, p = 0.36; left flexors: F (1,9) = 0.16, p = 0.70)
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or estrogen level (right flexors: F (1,9) = 1.5, p = 0.26; left flexors: F (1,9) = 0.65, p = 0.44), and
no significant stimulation x estrogen level interaction (right flexors: F (1,9) = 1.7, p = 0.23;
left flexors: F (1,9) = 0.42, p = 0.54).
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3.3. Muscle Activity

The ANOVA for EMG activity of the right extensors showed a significant main effect
of stimulation condition (F (1,9) = 7.4, p = 0.02, η2 = 0.28), but no significant main effect
of estrogen level (F (1,9) = 0.04, p = 0.85) or interaction (F (1,9) = 0.75, p = 0.41). Figure 3
depicts the results of the post hoc testing for the right extensors, which showed significantly
higher average EMG activity during active stimulation compared to sham, regardless of
estrogen level (91.8 ± 22.0 vs. 79.7 ± 19.0; p = 0.04, d = 0.59). The ANOVAs for the EMG
activity of the left extensors and right and left knee flexors revealed no significant main
effects of stimulation (F (1,9) ≤ 1.0; p ≥ 0.34) or estrogen level (F (1,9) ≤ 2.1; p ≥ 0.18) and
no interaction (F (1,9) ≤ 2.4; p ≥ 0.17).
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Sham (High) 137.2 ± 114.0 (3) 4.5 ± 2.1 (4) 5.3 ± 2.1 (3) 4.3 ± 1.5 (4) 4.0 ± 2.6
Sham (Low) 42.9 ± 25.1 (5) 3.4 ± 1.7 (4) 4.75 ± 1.9 (2) 3.4 ± 1.7 (2) 4.0 ± 0

Average levels (pg/mL) during the high and low estrogen conditions and the most common sensations and
severity reported during active and sham stimulation. Data are presented as mean ± SD. Sensations were
measured on a 10-point Likert scale (i.e., 1 = almost non-existent; 10 = almost unbearable). For each sensation, the
number of subjects reporting each sensation is shown in parentheses. X = no Itching reported.

4. Discussion

The purpose of this study was to evaluate the effects of estrogen level on a previously
established leg muscle fatigability response to M1 anodal tDCS [19,20]. The findings
revealed that only tDCS applied during high estrogen levels resulted in greater leg muscle
fatigability in eumenorrheic young women. Furthermore, a significant increase in the EMG
activity of the right knee extensors was observed during active stimulation, independent of
estrogen level.

4.1. High Estrogen and Active Stimulation in Performance Fatigability

Estrogen affects the brain by rapidly increasing the response of cortical neurons
to glutamate [44], which is the primary excitatory neurotransmitter in the cortex [45].
Additionally, high levels of estrogen in the cortex leads to the increased activity of sodium
channels and the recruitment of excitatory interneurons [25]. This is significant because
anodal tDCS has also been shown to independently increase cortical excitability [24].
However, a recent review by Choi and colleagues [46] concluded that anodal-tDCS-induced
cortical excitation may occur via a decrease in γ-aminobutyric acid (GABA) concentration
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(the primary inhibitory cortical neurotransmitter), rather than an increase in glutamate
levels. Thus, estrogen and tDCS might increase excitability via different mechanisms.

Interestingly, only two other studies have examined the effects of estrogen levels
(verified with serum measurements) on responses to tDCS [47] and excitatory repetitive
transcranial magnetic stimulation (rTMS) [48]. Both investigations found an increased
response to stimulation in women with high estrogen compared to women with low
estrogen and men. Furthermore, Rudroff and colleagues [7] postulated that administer-
ing tDCS during periods of high estrogen levels may lead to cortical overexcitation and
poorer fatigue performance (e.g., increased fatigability) in healthy, young subjects. If both
tDCS and estrogen increase cortical excitability (via different pathways), the combination
of the two might be additive and result in cortical overexcitation. The outcomes of the
present study, along with a previous study [20], support this notion and may represent
a possible explanation for the increases in muscle fatigability after anodal tDCS found
in both studies; however, more direct measures are required to confirm this hypothesis.
Nevertheless, overexcitation may be an issue unique to healthy subjects because their
excitability is likely already optimized. Therefore, any external induction of excitation
(e.g., tDCS, rTMS) in young, healthy female subjects might more easily result in overexcita-
tion and hinder performance. This might be contrasted in neuropathological populations
that are common targets for tDCS treatments, such as multiple sclerosis or Parkinson’s dis-
ease, because these populations tend to exhibit unique patterns of cortical excitation [49–52],
and the hypothetical risk of overexcitation may be different in these subjects. For example,
in a longitudinal study of patients with progressive MS, Ayache et al. [52] found that
disability progression was significantly associated with a decline in cortical excitability, as
measured by TMS motor-evoked potentials. Furthermore, Caramia et al. [51] suggested
that the inflammation and acute demyelination common during MS relapse may lead to
decreased M1 neuronal excitability. The resulting decreases in cortical excitability may be a
harmful effect from the local inflammatory environment, as it has been demonstrated that
various inflammatory cytokines (e.g., interleukins) can affect neuronal function and cortical
excitability in MS. Thus, 4 mA tDCS in subjects with decreased cortical excitability at
baseline might be beneficial rather than deleterious for MS patients and other neurological
populations [53].

4.2. Muscle Activity in Active Stimulation vs. Sham

EMG activity was greater during active stimulation compared to sham, independent of
estrogen levels, indicating that EMG activity was influenced by tDCS but not estrogen levels.
This is contradictory to several studies stating that estrogen influences neuromuscular
function [54–57]. Ansdell et al. [57] compared voluntary activation in eumenorrheic women
and women on oral contraceptives during different stages of the menstrual cycle, and found
the highest level of voluntary activation (TMS superimposed twitch) in eumenorrheic
women when estrogen was highest. However, in the current study, the effects of high
levels of estrogen on neuromuscular properties during the menstrual cycle appeared to
be negligible. This agrees with several other studies and a recent review that all found
no effects of fluctuating hormones throughout the menstrual cycle on muscle activity and
fatigability [38,58,59]. Importantly, the review by Janse de Jonge et al. [38] theorized that
the absence of effects of fluctuating hormone levels may be due to inconsistent menstrual
cycle evaluation methods across the literature. Thus, administering 4 mA active stimulation
might result in increased neural drive and/or altered motor unit recruitment strategies
independent of estrogen level, which may subsequently increase the EMG activity of the
muscles, as has been shown previously in our lab [27].

4.3. Crossover Effect

Interestingly, the results also showed effects on the fatigability and EMG activity of
the left knee extensors. Our previous study [33] and results from others [60,61] suggest
that tDCS over the dominant hemisphere may also influence motor performances origi-
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nating from the non-dominant hemisphere. Specifically, Mondini et al. [60] demonstrated
alterations in spectral EEG power on the side contralateral to stimulation after tDCS, and
Park et al. [61] showed the diffuse effects of tDCS on the right hemisphere areas after left
dorsolateral prefrontal cortex stimulation. Therefore, the findings of the current study are
in line with the notion that tDCS may increase interhemispheric cooperation, particularly
in the primary motor cortices, while performing motor tasks [62]. Moreover, it is suggested
that there may be a ceiling effect of stimulation in the targeted motor cortex, which might
increase fatigability in the ipsilateral limb and result in greater transcallosal inhibition [33].

4.4. Limitations and Future Studies

This study has several limitations to consider. The sample size was relatively small
(n = 10); however, our study was sufficiently powered to find differences based on results
from previous works [20]. Future studies with larger samples are recommended to con-
firm these findings. Future protocols should also evaluate the levels of other hormones
(e.g., progesterone, follicular-stimulating hormones, and luteinizing hormones) besides
estrogen over multiple cycles to assess the effects of each hormone on tDCS outcomes
after both active and sham stimulation. Furthermore, studying menstrual cycles is an
inherently challenging task, with large variability in “normal” cycle lengths and hormone
levels between women (i.e., what is considered high estrogen for one subject may not be
high for another subject). Healthy values for estrogen in eumenorrheic women can vary
from 12–400; therefore, there is a wide range of acceptable values. The current study did not
follow subjects over multiple cycles, and instead relied on self-reported menses to mark the
start of a cycle and the subsequent estrogen peak estimations. Self-reporting led to inconsis-
tencies in estrogen level and cycle phase at the time of assessment; therefore, it was deemed
that we did not hit the correct estrogen peaks for some of the subjects. Thus, phases were
ignored, and estrogen was grouped into high or low to increase the validity of comparison
between subjects. Additionally, recent evidence suggests a high prevalence of anovulatory
cycles and luteal phase deficiency in physically active females, with an occurrence of 30%
in physically active women, rising to 50% in women exercising ≥ 450 min/week [38,56].
Thus, only including moderately physically active women may have led to irregularities
within the menstrual cycles of some of our subjects. Future studies should account for these
variations and confirm ovulation via the luteinizing hormone surge (e.g., with a urine test)
concurrent with ovulation, or track individual menstrual cycles (and serum hormonal fluc-
tuations) over a longer interval. Moreover, the stimulation in this study was performed with
an intensity of 4 mA, while a majority of tDCS studies utilize intensities ≤ 2 mA [26,63–66].
It has been suggested that women might receive significantly less current at the cortex
from tDCS than men when stimulation is applied with the same parameters [21,67]. Thus,
prospective investigations should include both 2 mA and 4 mA intensities to determine
if the hypothesized estrogen-induced overexcitation is dose-dependent, or if it only oc-
curs at a higher intensity. Lastly, it is also possible that iron concentrations play a role in
fatigue [59]. Indeed, as many as 30% of female college athletes have low iron [68], which
could be a contributor to increased fatigue [69], and future fatigue studies would benefit
from measuring iron levels concurrent with hormone levels.

5. Conclusions

The results of this study suggest that estrogen concentration might play a significant
role in muscle fatigability response to tDCS. High estrogen concentrations during 4 mA
tDCS over the left M1 resulted in greater performance fatigability, while FI during low
estrogen levels was similar in both stimulation conditions. This increased fatigability
(poorer performance) might have been from cortical overexcitation which, in turn, might
have increased leg muscle fatigability. Average muscle activity of the right knee extensors
was also affected by tDCS condition, but not by estrogen levels. Thus, increased fatigability
might stem individually from sex hormone effects at the neuromuscular level, or an
increased neural drive from the combination of high estrogen and brain stimulation. Future
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studies should consider the variability of estrogen levels across menstrual cycles and use
multiple methods to confirm that a regular cycle has occurred, in addition to tracking other
serum hormones and iron levels throughout the menstrual cycle.
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