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Abstract: The Hubel–Wiesel (HW) model is a classical neurobiological model for explaining the
orientation selectivity of cortical cells. However, the HW model still has not been fully proved
physiologically, and there are few concise but efficient systems to quantify and simulate the HW
model and can be used for object orientation detection applications. To realize a straightforward
and efficient quantitive method and validate the HW model’s reasonability and practicality, we
use McCulloch-Pitts (MP) neuron model to simulate simple cells and complex cells and implement
an artificial visual system (AVS) for two-dimensional object orientation detection. First, we realize
four types of simple cells that are only responsible for detecting a specific orientation angle locally.
Complex cells are realized with the sum function. Every local orientation information of an object
is collected by simple cells and subsequently converged to the corresponding same type complex
cells for computing global activation degree. Finally, the global orientation is obtained according
to the activation degree of each type of complex cell. Based on this scheme, an AVS for global
orientation detection is constructed. We conducted computer simulations to prove the feasibility
and effectiveness of our scheme and the AVS. Computer simulations show that the mechanism-
based AVS can make accurate orientation discrimination and shows striking biological similarities
with the natural visual system, which indirectly proves the rationality of the Hubel–Wiesel model.
Furthermore, compared with traditional CNN, we find that our AVS beats CNN on orientation
detection tasks in identification accuracy, noise resistance, computation and learning cost, hardware
implementation, and reasonability.

Keywords: hubel–wiesel model; orientation selectivity; artificial visual system

1. Introduction

The human brain nervous system is a highly complex deep network constructed
by more than 1011 neurons [1]. About 80% of information received by our brain comes
from the visual system, and the neurons in the human brain are more concentrated on
visual tasks [2,3]. Accordingly, starting with research on the visual system is widely
considered a proper way to figure out how the brain works. Phenomenally, forms, colors,
and movements are fundamental and distinct attributes of visual images. Thus, we think
the essential functions in our visual system include form perception, color perception,
and motion perception [4,5]. In the visual system, we consider orientation detection a
form perception. It has an essential role in human behavioral decision making. Whereas
so far, the principle of orientation selectivity remains unclear [6,7]. Once the mechanism
of visual orientation detection is understood, it would be of significance on the studies
of the human brain [8,9]. From 1955 to 1978, Hubel and Wiesel systematically studied
the visual functional structure [10]. In 1959, they reported that some cat cortical neurons

Brain Sci. 2022, 12, 470. https://doi.org/10.3390/brainsci12040470 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci12040470
https://doi.org/10.3390/brainsci12040470
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0001-7379-1374
https://doi.org/10.3390/brainsci12040470
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci12040470?type=check_update&version=1


Brain Sci. 2022, 12, 470 2 of 21

showed orientation selectivity [11]. When they showed objects with various shapes and
locations in front of a cat’s eyes, these neurons had the optimal response to an object with a
specific orientation and specific location; otherwise, with little or no response [12]. In 1968,
they reported that some neurons also had similar characteristics in the monkey’s striate
cortex, but its optimal response to an object was no longer limited to a specific location.
Hubel and Wiesel named these two kinds of neurons: simple cells and complex cells [13].
Simple cells are a simple type of cortical cells in the visual cortex, which have the optimal
response to an object with a specific orientation at a certain fixed location in the visual field.
Furthermore, an ineffective response area for a simple cell might be effective for another
cell. Complex cells also have optimal responses to objects with a specific orientation angle
but no longer limit objects’ locations in the vision field. The objects with optimal orientation
can move in the receptive field without causing neuron inactivation [14–17]. To explain the
orientation selectivity of these cortical cells, Hubel and Wiesel put forward a scheme that a
simple cell’s receptive field can be integrated from the center-surround receptive fields of
several LGN cells, and a complex cell’s receptive field is integrated from several simple
cells’ [10,11]. Thus the neural circuit is constructed into a feedforward neural network
which we usually call it Hubel–Wiesel (HW) model (described in Section 2.1). Although
the HW model has not been fully proved, some physiological experimental results showed
that indeed there were connections between LGN cells and simple cells, which proves
some possibility of the HW model [18–20]. Simultaneously, with the increase in practical
application requirements, there are several ways to realize orientation detection: principal
component analysis method, gradient modeling method, digital filter method, and CNN
method [21–24]. Among these methods, after training with a considerable number of
data, the CNN method showed better recognizing performance [25,26]. With increasing
requirements for more complex scenes, the traditional deep learning method falls into
the generalization difficulty, and a trained model usually could be applicable for limited
tasks. Thus, scientists have started to concentrate more on the brain and try to apply the
visual information processing mechanisms to computer vision or artificial intelligence [27].
Although there are already many works focused on the simulation of the visual system,
most of them could not directly be applied in deep learning. Some methods focus on the
realization in an electronic device manner [28–30], though these electronic device-based
works are impressive, they are hard to connect with computer vision. Some related research
concentrated on the simulation of biology features [31–33], and though these systems can
simulate the cell features, they were designed complicated. Some works concentrated on
the application [34–36], and although they are applicable, without generalization, they are
task-limited. So far, we lack a concise and efficient quantitative manner for the classical
HW model.

To prove the reasonability and practicality of the HW model and explain the orienta-
tion selectivity in a qualitative manner, we propose a McCulloch-Pitts (MP) neuron-based
orientation detective scheme and implement an artificial visual system (AVS) for two-
dimensional object orientation detection. Simple cells and complex cells are realized by
the MP neuron model. For simplicity, we realize four types of simple cells for a 3 × 3
two-dimensional local receptive field, each of which corresponds to a specific orientation
angle (0◦, 45◦, 90◦, and 135◦). In the detection process, the orientation information of each
local receptive field is extracted by the simple cells separately and converged to the same
type of complex cells. The function of the complex cell is to converge the activations of
all simple cells. Finally, the global orientation is inferred by the activation degree of the
complex cell. The type of complex cell with the most activation corresponds to the global
orientation. Based on this scheme, we implement an AVS for global orientation detection,
and its performance is evaluated by computer simulation on an image dataset. The objects
in this dataset are two-dimensional and with different ideal shapes, locations, and orienta-
tion angles. The computer simulation results show that the AVS has biological similarities
with the biological visual system and offers excellent orientation recognition accuracy to
objects with different sizes, shapes, and locations, thus directly proving the reasonability
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and practicality of the HW model. To show the AVS’s superiority, we compare AVS and
CNN’s performance on orientation detection and find that AVS beats CNN in identifica-
tion accuracy, noise resistance, computation and learning cost, hardware implementation,
and reasonability.

2. Mechanism and System

This section introduces the Hubel–Wiesel (HW) model and realizes simple cells and
complex cells by artificial neuron model. Finally, we describe the implementation of an artificial
visual system based on the HW model for two-dimensional object orientation detection.

2.1. Hubel–Wiesel Model

Hubel–Wiesel (HW) model is a scheme for explaining the orientation selectivity of cor-
tical cells [10]. Orientation selectivity is a feature of cortex cells observed from Hubel and
Wiesel’s experiments. The setup and results of the experiment on a cat are roughly shown in
Figure 1 [17,37,38]. The electric signals show that some cells in the cat cortex were found to
have the optimal response to which light stimuli with a specific orientational edge and a fixed
location. These cells are named simple cells. Furthermore, another type of cells called complex
cells respond vigorously to stimuli with a specific orientational edge but are no longer limited to
a fixed local location, and the optimal orientational stimuli can make the complex cell activated
the most within every location of the global receptive field [14–17].
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Figure 1. A neuron in the primary visual cortex responds selectively to line segments. (a) An
anesthetized cat is fitted with contact lenses to focus the eyes on a screen, then project images on
screen and record neuron responses by an extracellular electrode. (b) The neuron recorded in the
primary visual cortex typically responds vigorously to a bar of light oriented at a particular orientation
angle and with little or no response to other orientations. (c) The curve of neuron spike rate with the
stimulation orientation changes.
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To explain the orientation selectivity of simple cells and complex cells, Hubel and
Wiesel proposed a feedforward model scheme. They speculated that simple cells receive the
convergent input of several LGN cells whose receptive fields are arranged with a definite
orientation. Thus the simple cell’s optimal response is tuned to stimuli with this specific
orientation. Similarly, a complex cell’s inputs converged from several simple cells with
the same orientation selectivity. Accordingly, complex cells can realize the insensitivity
of stimuli location within global receptive field [10,11]. Figure 2 shows the process of
receptive fields’ linking [17,38]. Thus, a classical HW feedforward model can be described
theoretically as Figure 3.
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of 3 LGN cells

Receptive fields

Receptive field of a complex cell

Retina

Figure 2. The convergent procession of simple cells’ and complex cells’ receptive fields. (a) A simple
cell’s receptive field is formed by LGN cells’ spatially adjacent receptive fields. (b) Complex cell’s
receptive field is an overlapping ON and OFF region which converged from simple cells’ receptive
fields that with same orientation.“+”: ON region; “−”: OFF region.

2.2. McCulloch-Pitts Neuron Model

In the 1940s, McCulloch and Pitts proposed s simple model of biological neurons [39].
McCulloch-Pitts (MP) neuron model is a simplification of the biological nerve cells, which
has only two states 1: excited (fire) and 0: not excited (inhibited). Figure 4 describes the
detailed structure of an MP neuron. The neuron accepts inputs with different weights.
When the weighted sum exceeds a certain threshold, the neuron will fire and output y = 1;
otherwise, y = 0 [40].
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Figure 3. Hubel–Wiesel feedforward model. Effective synapse connections and activated cells are
colored red.
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Figure 4. The structure of McCulloch-Pitts neuron model.

2.3. Realization of Simple Cell and Complex Cell

This section describes the realization of simple and complex cells based on the artificial
neuron model. Due to studies on biological neural networks, now we have the consensus
that a single neuron can perform a simple task. Thus, we design simple cells based on
the MP model for local orientation detection and complex cells with a sum function for
summary activation according to the feature of simple cells and complex cells.

As we introduced above, a simple cell’s receptive field may be formed by several LGN
cells’ receptive fields (see Figure 2a). In this paper, for the simplicity of the simulation
implementation and neuron computation, we design each simple cell with a 3 × 3 local
receptive field. As shown in Figure 5, several LGN cells’ receptive fields construct a simple
cell receptive field size of 3 × 3. And for a simple cell, its activation directly depends on the
light information in its spatial receptive field. Thus we decide to omit the processing of
retinal cells in this pathway and let the light information directly transmitted into simple
cells, so we do not need to consider which and how many LGN cells’ neural signals are
inputted to a simple cell. When light falls on a region, a bunch of photoreceptors accepts
the light signal and generates a corresponding electrical signal. Then the electrical signal
is transmitted to simple cells through the primary visual pathway. The simplified signal
transmission circuit is shown in Figure 6. We simplify using one photoreceptor to accept
light information in a one-pixel region. Then the light information in the nine pixels (3 × 3)
region is directly transmitted to a simple cell. The electrical signals are simplified to 0–1
signals. When a photoreceptor accepts light, it outputs 1; otherwise, 0.

This study introduces four kinds of orientation-selective simple cells based on the MP
model for detecting orientation angles of 0◦, 45◦, 90◦, and 135◦, respectively. The details
of a 45◦-selective simple cell are as illustrated in Figure 7. In Figure 7, the input signal is
expressed by xi,j, where the ‘i’ and ‘j’ represent the two-dimensional location in the local
receptive field. Furthermore, for the simplicity of the realization of AVS (introduced in
next section) and neural computation, we idealize the ‘OFF’ regions of simple cells, light
stimulation in the ’OFF’ region will not cause any inhibitory response of the corresponding
simple cell (the weights of neural connections in OFF region can be regarded as 0).
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Figure 5. The formation of a simple cell receptive field by linking several LGN cell receptive fields.
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Figure 6. Signal transmission flow from light information to a simple cell. In a 3 × 3 region, the
locations of each pixel are labeled from x1 to x9.
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Figure 7. Realization of a 45◦-selective simple cell based on MP model.

As shown in Figure 7, only the light stimulation in optimal orientation-selective
region (ON region) is received by the 45◦-selective simple cell. For a 45◦-selective simple
cell, the optimal orientation-selective locations are xi,j, xi+1,j−1 and xi−1,j+1. The spatial
light information in the local receptive field is projected on the retina and received by
corresponding photoreceptors, generated electrical input signals are transmitted into the
45◦-selective simple cell. When a photoreceptor receives light, the generated input is 1
(effective input), and its weight of neural connection to a simple cell is set to 1. Threshold
θ is set to 2.5. When the weighted sum of inputs reaches the threshold θ, the neuron is
activated. Thus, if and only if the xi,j, xi+1,j−1, and xi−1,j+1 are all effective inputs, the 45◦

simple cell is activated. The activation results can be expressed by the following equation:

y =

{
1, (xi−1,j+1 + xi,j + xi+1,j−1) ≥ 2.5;
0, (xi−1,j+1 + xi,j + xi+1,j−1) < 2.5.

(1)

The structures of the four types of orientation-selective simple cells and their optimal
stimuli orientation are shown in Figure 8. Likewise, the simple cells in the other three
orientations are realized in the similar way. In a 3 × 3 local receptive field, they also only
respond to three effective inputs. 0◦-selective simple cell only responds to stimulus in xi,j,
xi,j−1 and xi,j+1. The inputs of 90◦-selective simple cell come from xi,j, xi−1,j and xi+1,j.
135◦-selective simple cell’s effective input locations are set to xi,j, xi−1,j−1 and xi+1,j+1.

Complex cells in our proposed detective scheme are responsible for converging the
total activation of all simple cells. For simplicity, the simple cells with the same optimal
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orientation selectivity are connected to one single complex cell. Correspondingly, four
different orientation-selective complex cells are needed (0◦, 45◦, 90◦, and 135◦). The
realization of a complex cell is described in Figure 9. The following equation can express
the output result by the complex cell:

z =
n

∑
i=1

yi (2)
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45∘
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Figure 8. Four types of orientation-selective simple cells and their optimal stimuli orientation. (a) 0◦-
selective simple cell. (b) 45◦-selective simple cell. (c) 90◦-selective simple cell. (d) 135◦-selective
simple cell.

2.4. AVS for Global Orientation Detection

We implement an artificial visual system (AVS) for two-dimensional object orientation
detection based on the simple and complex cells we design. The AVS’s structure and the
process of global orientation detection on an object by AVS are described in this section.
As mentioned above, the simple cells can be activated by a 3-pixel optimal orientated line
within a 3 × 3 local receptive field. For a large image size of M × N, take each pixel as a
central point to divide this image into M × N local receptive fields. So the basic detection
scheme for a large size image by AVS uses the simple cell to detect possible orientations
of every local receptive field and uses complex cells to record the total activations of each
type of simple cell. Accordingly, to extract local orientation information of an object in a
two-dimensional M × N image, M × N × 4 simple cells and 4 corresponding complex cells
are needed.
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Figure 10 shows the entire structure of AVS for detecting the global orientation of
an object in a 5 × 5 image. For a 5 × 5 image, taking each pixel as the central location, it
can be divided into 25 local receptive fields size of 3 (regions of the local receptive field
beyond image can be regarded as no light stimulation in this region). The light stimulation
in each local receptive field will accept by 9 photoreceptors and generate corresponding
0–1 signal inputs. In each local receptive field, the photoreceptors are connected with a set
of four different simple cells. Each group of simple cells separately extracts the 25 local
orientation information. Subsequently, activation results of all simple cells are input to
corresponding same type complex cells. According to the function of complex cells we
design, the complex cell can sum up the total activation of each type of simple cell to get
final outputs representing the activation of four orientations. The object’s global orientation
is inferred from the type of complex cell that is most activated. In Figure 10, we omit the
presentation of simple cells for detecting the edge region (no simple cell be activated in the
edge region). We can find that the activation result of 135◦-selective complex cell is 5, and
45◦-selective complex cell was not activated. 0◦-selective and 90◦-selective complex cell’s
output value are 3. Thus, the final orientation of the object is determined by the complex
cell (135◦-selective) with the most activations (5).

y1
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Simple cells

Complex cells

∑ z

1

1

1

Figure 9. Realization of a complex cell.
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Figure 10. The structure of AVS used on detecting a 5 × 5 image. Effective neural connections and
active cells are colored red. Photoreceptors received light are colored yellow.
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3. Simulation and Result

This section describes the validation results of AVS on datasets and some biology-
inspired experiments. We also compared AVS and CNNs’ performance on noise data. All
simulations were implemented on the Apple M1 chips hardware environment.

To validate the mechanism’s feasibility and the mechanism-based AVS, we imple-
mented this mechanism and the AVS for global orientation detection by computer simula-
tion. This section describes the AVS’s physiological similarity with the biological visual
system and evaluates the practicality combined with dataset testing results.

We first tested the AVS’s feasibility on a binary image dataset. The images were sized
to have 1024 pixels (32 × 32) and at least 3 pixel light spots. In each image, light spots were
formed into an ideal object (central symmetry or axial symmetry) with a specific orientation
angle (0◦, 45◦, 90◦, or 135◦). We evaluated the detection system by analyzing its recognizing
accuracy on 45,788 images, and the results are summarized in Table 1. The AVS has high
detection accuracy for the orientation of ideal objects in binary images.

Table 1. Detection accuracy analysis of the AVS on binary image dataset.

Image Data 0◦ 45◦ 90◦ 135◦

No. of samples 960 900 960 900
3 pixel Correct numbers 960 900 960 900

Accuracy 100% 100% 100% 100%

No. of samples 928 841 928 841
4 pixel Correct numbers 928 841 928 841

Accuracy 100% 100% 100% 100%

No. of samples 1699 2249 1699 2249
8 pixel Correct numbers 1699 2249 1699 2249

Accuracy 100% 100% 100% 100%

No. of samples 2379 3411 2379 3411
12 pixel Correct numbers 2379 3411 2379 3411

Accuracy 100% 100% 100% 100%

No. of samples 1319 1489 1319 1489
16 pixel Correct numbers 1319 1489 1319 1489

Accuracy 100% 100% 100% 100%

No. of samples 1284 1645 1284 1645
32 pixel Correct numbers 1284 1645 1284 1645

Accuracy 100% 100% 100% 100%

No. of samples 2515 1275 2515 1275
≥48 pixel Correct numbers 2515 1275 2515 1275

Accuracy 100% 100% 100% 100%

An example of the orientation detection on an object in a binary image is provided in
Figure 11. From Figure 11a, we can observe that the object’s orientation angle in the image
was 135◦. This 32 × 32 image could be divided into 1024 local receptive fields. To get this
object’s global orientation, 4096 (32 × 32 × 4) simple cells were needed to detect each local
receptive field, and 4 complex cells were required to converge the activation of simple cells.
Referring to the biologists’ potential recording method of a single neuron [11], we also used
spike rate to record the complex cells’ activation degree. One active simple cell could let
the same type of complex cell generate a spike, so theoretically, a complex cell’s spike rate
could be up to 1024. From the activation results shown in Figure 11b,c, we can see that the
135◦-selective complex cell’s spike rate was 44, which was the most. Thus, the orientation
detection result of the object was 135◦.

An example of detecting an 0◦-object is shown in Figure 12. From Figure 12b,c, we
know that the 0◦-selective complex cell’s spike rate was 65, which was the most. The
detection result was the same as we observed by our eyes. When we rotated the object in
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Figure 12a to other orientation angles and detected the object by our AVS, we could obtain
the result shown in Figure 13. When an object was oriented at different orientations, it
would activate the corresponding complex cell the most. This result also supports that our
mechanism is feasible and reliable.
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16
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Figure 11. Computer simulation results of orientation detection on an object with a 135◦ orientation
angle. (a) Object. (b) Spike records. (c) Spike rate curve of four types of complex cells.

To further verify our mechanism, we conducted some comparative experiments. First,
let us look at the object shown in Figure 14a. It is a 5 × 5 square. From the detection results
shown in Figure 14b,c, we know that 0◦-selective complex cell and 90◦-selective complex
cell spike rate were the same and were the most. So the AVS cannot determine which angle
is the object’s orientation. It is the same for the biological visual system because we humans
cannot tell its orientation angle. We can say it is oriented toward 0◦ or 90◦ at the same time.
To further investigate the correlation between object shape and complex cell activation, we
gradually increased the length of a 3 × 3 square along the direction of 0◦ until it became
a 3 × 18 rectangle. The objects and the spike rate curves are shown in Figure 15. Then
we started to increase the length of the 3 × 18 rectangle along the direction of 90◦ until it
became a square again. The objects and the spike rate curves are shown in Figure 15. From
the spike rate curve shown in Figure 15b, we can observe that as the object’s shape became
more and more inclined to a rectangle with distinguishable length and width, the spike
rate between complex cells became markedly different. The spike rate of the 0◦-selective
complex cell far exceeded other cells, which means AVS can easily determine the object’s
orientation angle, and human beings can recognize the object’s orientation angle more
accessible. Accordingly, we can conclude that as the length of the object increases along a
certain direction, the corresponding complex cell’s spike rate increases, and vice versa. This
conclusion is consistent with the experimental phenomena observed by Hubel in rabbit
cortical cells [11].



Brain Sci. 2022, 12, 470 11 of 21

65

39

45

39

No light stimulus Received stimulus

(a)

0∘

45∘

90∘

135∘

S
p

ik
e 

ra
te

0

14

28

42

56

70

Orientation angle

0° 45° 90° 135°

(b) (c)

Figure 12. Computer simulation results of orientation detection on an object with 0◦ orientation
angle. (a) Object. (b) Spike records. (c) Spike rate curve of four types of complex cells.
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Figure 13. Spike rate of complex cells on the same size object when oriented toward different
orientations (0◦, 45◦, 90◦, and 135◦).
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Figure 14. Computer simulation results of orientation angle detection on a square. (a) Object.
(b) Spike records. (c) Spike rate curve of four types of complex cells.

Examining the objects in Figure 16a, we can also find that when the object approaches
to be a square, it is more and more difficult for human beings to identify the object’s
orientation angle. Furthermore, from Figure 16b, we can observe that the activation of the
90◦-selective complex cell tends to be equal to the 0◦-selective complex cell. It is similar
to our visual recognition mechanism. The closer the shape of an object is to a square, the
more difficult it is to identify the orientation angle. This result also supports the previous
conclusion in the last paragraph. In addition, the objects in the images were located at
different locations, but the orientation angle could be detected correctly. This result shows
the similarity with complex cells’ feature, which is responding selectively to stimuli with a
particular orientation but no limit to the exact location of the stimulus [10,11].

To compare the performance of our AVS with CNN in orientation detection tasks
and their noise resistance, we conducted a series of comparative experiments. First, we
generated an original dataset, which consisted of 13,438 images (sized as 32 × 32), and the
objects in each image had at least 32 pixel light spots. Each object had a specific orientation
angle and location. Then based on the original dataset, we added noise and generated
datasets with different types and quantities of noise. According to the arrangement of
adding noise, they can be divided into two categories of noise data. Examples of two types
of noise are shown in Figure 17. As shown in Figure 17a, the first type of noise was the
case of no noise in the object, and the noise was randomly added to the background. The
noise was randomly added to the whole image in the second type, as shown in Figure 18b.
Then, we generated seven datasets with different quantities of noise for each type of noise:
5%, 10%, 15%, 20%, 25%, and 30% (for a 32 × 32 image, a certain proportion of pixels of
the whole image were noise). The performance of AVS on these noise datasets and the
recognition results are shown in Table 2. Results in Table 2 show that AVS has better noise
resistance on background noise than whole-image noise.
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Figure 15. The detected objects and activation curves. (a) The objects to be detected. (b) Spike rate
curves of complex cells on six objects.
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Figure 16. The detected objects and activation curves. (a) The objects to be detected. (b) Spike rate
curves of complex cells on six objects.



Brain Sci. 2022, 12, 470 15 of 21

(a) (b)

Figure 17. Two types of noise. (a) Random noise only in the background. (b) Random noise in the
whole image.
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Figure 18. Computer simulation results of orientation detection on an object with 135◦ orientation angle.
(a) Object and image noise. (b) Spike records. (c) Spike rate curve of four types of complex cells.

Table 2. The recognition accuracy of AVS under two noise conditions.

Type of Noise
Proportion of Noise

0% 5% 10% 15% 20% 25% 30%

Background noise 100% 100% 100% 99.911% 98.571% 95.289% 91.851%

Whole-image noise 100% 99.970% 98.772% 95.036% 87.602% 78.382% 67.771%
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Take the two objects shown in Figures 11a and 12a as examples. We added noise
to the images and detected them. The detection results on noise images are shown in
Figures 18 and 19. In Figure 18a, the noise was only randomly added to the background.
Comparing the detection results with the non-noise one, we know that although the noise
increased the spike rate of other complex cells, the 135◦-selective complex cell was still
most activated. In Figure 19a, the noise was randomly added to the whole image. The
object’s shape had been changed. From Figure 19c, we know 0◦-selective complex cell had
the most spike rate, the same as the detection result of the object in Figure 12a. Comparing
the spike records shown in Figure 19b with the spike records in Figure 12b, it is evident that
the continuous noise in the image affected the complex cells’ spike rate. The continuous
noise in the background activated the 0◦-selective simple cell and 135◦-selective simple cell
in local receptive fields, and the continuous noise in the object inhibited the activations
of simple cells. In short, though the noise would affect the spike rates of complex cells,
the orientation angle of an object still could be recognized when the proportion of noise
was lower than a certain degree. Additionally, the noise in an object had more effect on
detection results than the noise in the background.

We also compared the generalization performance and noise immunity of AVS and
CNN on orientation detection. The structure of the CNN we used in these experiments is
shown in Figure 20. We chose Adam as the optimizer. Thirty 3 × 3 filters were used in
the convolution layer, and 2 × 2 max-pooling was used in the pooling layer. The output
size of the first affine layer was 100, and the last layer finally outputted four values. The
training set consists of 10,750 ideal object images. We trained the CNN model 50 epochs
and chose the model with the best detection accuracy as the final model. The ideal object
testing dataset consists of 2687 images. We also collected eight natural objects (binary form).
We rotated, moved the location, and changed the size of these objects within the image
to obtain a natural object dataset that consists of 1280 different images. Figure 21 shows
several examples of natural object data. Then based on the two original testing sets, we
further generated several noise datasets.

The testing results are summarized in Tables 3 and 4. From Table 3, we know that
CNN’s recognition accuracy was very high without noise but dropped quickly with the
proportion of noise increased. When the noise proportion exceeded 1%, the performance
of CNN on ideal objects and natural objects all collapsed. For the AVS, it always kept an
excellent advantage over CNN. Its recognition accuracy was still about 98% when tested on
the ideal object datasets and could reach over 90% when tested on natural object datasets.
Overall, the AVS can successfully give correct discrimination to objects’ orientation, regard-
less of the object’s shape, size, and location. Although the AVS already has an acceptable
and good performance on natural objects, we further explored AVS’s performance and the
impactors on AVS’s robustness. We recorded the classification results by AVS on 0% and
10% natural object noise datasets and plotted the corresponding confusion matrix, as shown
in Figure 22. When the objects are without noise, AVS could give correct classifications to
all objects. When objects are with noise, according to the confusion matrix, we can know
that AVS still could provide accurate classifications to all 0◦ and 90◦ orientational objects,
but had errors with some 45◦ and 135◦ orientational objects. Recalling the images with
classification errors, we found that the objects are the same objects with different positions
and sizes. These objects had activated a close number of 45◦ and 135◦ selective simple cells.
When the images are clean, AVS can give the correct detection results, but when noise is
added, the cells’ activation is affected, thus due to the classification error. Overall, AVS
performs excellently on clean images and has good noise immunity on noise data.
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Figure 19. Computer simulation results of orientation detection on an object with 0◦ orientation
angle. (a) Object and image noise (b) Spike records. (c) Spike rate curve of four types of complex cells.
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Figure 20. The structure of CNN used for orientation detection.

Table 3. The recognition accuracy of AVS and CNN on ideal object datasets.

Method
Proportion of Noise

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

AVS 100% 100% 100% 100% 99.963% 99.963% 99.926% 99.739% 99.330% 99.032% 98.772%

CNN 100% 85.225% 55.862% 43.431% 39.747% 37.514% 36.323% 34.090% 32.006% 29.996% 29.028%
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Figure 21. Natural objects.

Figure 22. Confusion matrix.

Table 4. The recognition accuracy of AVS and CNN on natural object datasets.

Method
Proportion of Noise

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

AVS 100% 99.609% 99.219% 98.906% 97.578% 97.109% 96.094% 95.547% 94.766% 92.813% 92.422%

CNN 92.813% 54.766% 48.705% 42.500% 38.281% 36.484% 34.922% 33.828% 32.734% 31.719% 31.406%

4. Discussion

This research aimed to study the feasibility and reliability of the Hubel–Wiesel (HW)
model, the concise and efficient quantitive methods of simple cells and complex cells, and
realize an artificial visual system (AVS) based on the HW model for practicality. We realized
the AVS with the following merit:

• Effectiveness; AVS could achieve 100% accuracy on ideal shape object datasets and nat-
ural objects with a particular orientation, which showed that our detection mechanism
and the mechanism-based AVS could effectively detect the orientation of an object
with distinct locations and sizes. The simulation results of biology-inspired experi-
ments also showed that AVS is effective and highly consistent with real physiological
experiments [12]

• Robustness; compared with CNN on orientation detection tasks, AVS costs fewer
computation resources than CNN but has better performance and noise resistance.
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• Interpretability; the mechanism, structure, and parameters of the AVS for global
orientation detection were all designed from HW physiological model, so AVS does
not need learning and saves many training resources. The CNN method is a black-box
operation and usually requires more training data or deeper networks to improve
noise immunity and has requirements on input data’s size. The AVS method does not
need more layers and is easier to be accepted and trust. The calculation of the AVS
is straightforward, and the image size is no need to fit the AVS so that its hardware
implementation is also more straightforward than that of CNN. Even if we want to
train AVS, we can use the perceptron algorithm instead of the MP neuron model. The
AVS training can start from a better and reasonable initial condition to accelerate the
learning process and prevent local minimums.

Overall, on the object-orientation detection tasks, AVS is much better than the CNN
method because the AVS has good generalization ability, higher recognition accuracy, and
stronger noise resistance and is explainable, feasible, reasonable, and robust. The AVS based
on the HW model is feasible, efficient, and very similar to the perception mechanism of the
biological visual system. Therefore, the implementation scheme of simple and complex
cells realized in computer simulations is expected to provide a more helpful experiment
direction in neural research.

5. Conclusions

This paper proposed a two-dimensional global orientation detective mechanism based
on the Hubel–Wiesel (HW) model. Though we still know little about the principle of visual
perception, we referred to the characteristics of the cortical cells with orientation selectivity.
We designed four types of simple cells and complex cells. Using simple cells to extract
every local orientation information, and activations of all simple cells are converged to
the corresponding type of complex cells, we can get the global orientation according to
the complex cell with the most activation. Simple cells and complex cells are realized
on the McCulloch-Pitts neuron model. Based on this scheme, we proposed an artificial
visual system (AVS) for global orientation detection and tested its performance on different
orientation detection tasks. Although the inhibitory effect from the OFF region was omitted
in simple cells, the success of AVS provided a possible scheme to explain the principles
of orientation selectivity of cortical cells and gives evidence of the reasonability of the
HW model, and also can provide a potential neural experiment implementation scheme
on orientation selectivity research. Since the present AVS version can only detect those
objects with a definite orientation and binary forms, future studies will need to extend the
application and generalization on color images and more orientations.
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