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Abstract: Although allophonic speech processing has been hypothesized to be a contributing factor
in developmental dyslexia, experimental evidence is limited and inconsistent. The current study
compared the categorization of native similar sounding vowels of typically developing (TD) children
and children at familial risk (FR) of dyslexia. EEG response was collected in a non-attentive passive
oddball paradigm from 35 TD and 35 FR Dutch 20-month-old infants who were matched on vocabu-
lary. The children were presented with two nonwords “giep” [Gip] and “gip” [GIp] that contrasted
solely with respect to the vowel. In the multiple-speaker condition, both nonwords were produced
by twelve different speakers while in the single-speaker condition, single tokens of each word were
used as stimuli. For both conditions and for both groups, infant positive mismatch response (p-MMR)
was elicited, and the p-MMR amplitude was comparable between the two groups, although the FR
children had a later p-MMR peak than the TD children in the multiple-speaker condition. These
findings indicate that FR children are able to categorize speech sounds, but that they may do so in a
more effortful way than TDs.

Keywords: phonological categorization; infants; familial risk of dyslexia; mismatch negativity

1. Introduction

Developmental dyslexia (DD) is an impairment of reading and spelling skills despite
normal intellectual abilities and educational opportunities [1]. The estimates of prevalence
of dyslexia vary from 3 to 10%, depending on measures and inclusion criteria. There
is wide agreement that dyslexia has a genetic basis [2–4], and children with a dyslexic
parent have a 29–66% risk of developing dyslexia [5]. Even though a large proportion
of children at family risk (FR) do not develop dyslexia, they still perform more poorly
than typically developing (TD) children on tasks such as spelling, non-word reading,
and reading comprehension [6–8].

There is wide consensus that phonological awareness, namely, the ability to manipu-
late, generate or judge sound units, such as syllables, onsets, rhymes or phonemes, serves as
the basis for script decoding and reading [9–11]. Phonological awareness difficulties, partic-
ularly phoneme awareness difficulties, are deeply rooted among people with dyslexia, and
they do not disappear even after reading difficulty has been largely compensated [12–14].

Atypical speech perception has been hypothesized to underlie phonological awareness
impairment among children with dyslexia [15–19]. When studying DD, speech percep-
tion has often been operationalized as categorical perception of phonemes. In categorical
perception experiments, listeners are presented with stimuli that gradually change from
one phonological category to another in a stepwise fashion, for instance, from pea to bee.
Typical listeners perceive such gradual changes as having distinct categories (i.e., identi-
fication shifts from pea to bee consistently at one specific step) and they discriminate the
between-category stimuli better than the within-category stimuli. The essence of categor-
ical perception is that listeners disregard lexically irrelevant acoustical differences while
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attending to differences of the same magnitude if they change word meaning. Categorical
perception is essential for efficient speech processing since variability abounds in human
speech. The same phoneme or word can drastically differ acoustically due to speakers’
anatomical structures, speaking rate, and phonetic context, etc. [20–22]. Nevertheless,
adults are able to recognize linguistic content in the face of variation, and we disregard
linguistically irrelevant acoustical differences while attending to the phonemic differences
that contrast (lexical) meaning. Grapheme–phoneme mapping, the backbone of reading,
is only possible if phonemes can be represented categorically [23,24].

It continues to be debated whether the whole group or only a subgroup of children
with DD (or with a high risk of DD) show atypical categorical perception of phonemes. On
the one hand, multiple studies have shown that children with DD have fussier categorical
boundaries of phonemes [25–31], and preschool speech perception has been found to be a
predictor of reading, independent of phonological awareness, and speech perception of
children with DD was found to be significantly delayed compared to TD children [32]. In
the temporal sampling framework [33], Goswami proposed that children with DD may
exhibit less efficient Theta phase locking, leading to impaired syllable-level processing, yet
their phonetic-level Gamma sampling network may remain unimpaired, resulting in over-
sensitivity to phonetic contrasts. On the other hand, other studies failed to find convincing
evidence supporting impaired categorical perception among children and adults with
DD, and quite often only a subgroup of children with DD show atypical speech sound
perception [26,34–36]. Therefore, it remains unclear whether atypical categorical perception
can be considered as a labeling feature for DD that applies to the whole group or whether
it only applies to a subgroup of people with DD.

Importantly, deviations in speech perception in dyslexic and FR children may occur
prior to formal instruction in reading and writing [37] and these might be precursory to
dyslexia. For example, using a conditioned head-turn procedure, the authors of [38] showed
that by six months the FR children took significantly longer to categorize native intervocalic
consonants than the TD children, indicating attenuated speech sound categorization among
the FRs. In the first year of life, when tested with a habituation–dehabituation procedure,
FR infants failed to exhibit improvement in the discrimination of native vowel contrast
as the TD infants did [39]. In preschool years, FR children have been found to perceive
native phonemes less categorically than TDs [40–43]. It should be noted, however, that in
the above-mentioned behavioral studies, the intra-token variability was barely controlled.
For example, the contrasts (i.e., /fa:p/, /fe:p/, /sæn/, and /sEn/) were produced by
four female speakers in [39], while in [37] one single token of ata was used to generate
the continuum from ata to atta. Without a control condition where only single tokens of
each word were used as stimuli, it is difficult to ascertain whether FRs were less able to
discriminate phonetic/acoustical differences without the presence of inter-token variation
or they were less capable of variability normalization compared to TDs.

Neural signatures of speech sound discrimination have been widely studied with
mismatch negativity (MMN) [44,45], a component of auditory event-related potentials
(ERPs). MMN can be elicited using a passive oddball paradigm, in which listeners are
presented with a stream of repeating ‘standard’ sounds conforming to a certain regularity
punctuated occasionally by ‘deviant’ sounds, dissimilar in some relevant dimension from
the standards. If the brain detects the change from standard to deviant, then on the
difference waveform obtained by subtracting the response to the standard from that to the
deviant, the MMN is visible as a negative peak between 100 and 300 ms from deviant onset
in adults [46,47]. Besides physical difference between the standard and deviant, MMN can
also be elicited by violation of abstract patterns, and listeners are able to extract similarity
from the standard and deviant and detect dissimilarity across the two types [48–51]. MMN
has been found to be sensitive to the magnitude of stimulus change, and its amplitude gets
larger and peak latency shorter as the magnitude of deviation increases [47]. In addition,
MMN has been found to correlate with behavioral discrimination accuracy [52].
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MMN has been commonly used to understand auditory change detection among
children, yet its interpretation is hampered by the fact that under certain conditions and
at certain ages, infants’ and children’s mismatch responses tend to exhibit a late positivity
(positive mismatch response, p-MMR) rather than adult negativity (MMN) [53–56]. As
infants develop, the polarity of the mismatch (MMR) shifts to negative, and gradually
approximates the adult MMN [56,57]. Yet no consistent results have been found with regard
to the age at which infant/child p-MMR shifts to MMN [54–56,58]. It has been hypothesized
that the shift from p-MMR to MMN would occur earlier for acoustically salient stimuli (i.e.,
stimuli showing greater physical difference) than for non-salient stimuli [55,59,60].

Atypical MMN has been commonly reported for people with DD [19,61], and a recent
meta-analysis has shown that, irrespective of age, speech-elicited MMN is aberrant among
people with DD [62]. DD and FR children have been reported to exhibit later MMN peak
latencies, possibly reflecting more effortful processing of speech sounds [63–65]. Although
differences in speech-elicited MMN between TDs and people with DD can be observed
before literacy education (e.g., [66]) and neonatal brain responses have been found to be
predictive of DD [67], findings on how the MMN of FR children may differ from that
of TD children are inconsistent [68]. Atypical MMN prior to literacy education, such as
reduced MMR amplitude and different MMR scalp distribution, has been reported among
German, Italian, and Chinese FR children [69–71]. MMN in FR children was extensively
studied in two longitudinal projects, the Jyvaskyla Longitudinal Study of Dyslexia (JLD)
conducted with Finnish learning infants in Finland [72] and the Dutch Dyslexia Project
(DDP) conducted with Dutch learning infants in the Netherlands [37]. In the JLD, TD
children and FR children were followed from birth through adulthood, and MMN was
elicited by consonant and vowel duration changes as well as non-speech sounds. JLD
has shown that atypical ERPs to speech sounds after a few days of birth were the first
precursors of dyslexia [72]. By six months, when the standard and the deviant differed
in terms of consonant duration, the FR group failed to exhibit the adult-like MMN that
was observed among the TD infants [73]. When presented with vowel duration difference,
p-MMR had a larger amplitude among the FR and the TD newborns [74]. In another recent
study, the MMR elicited by vowel change (i.e., /ta/–/to/) showed comparable amplitude
between FR and TD Finnish learning newborns, yet the MMR was more right-lateralized
among the TDs [75]. Taken together, whether and how MMN differs between FRs and the
TDs before literacy education remains undetermined. The between-group difference, when
present, may exhibit as latency, amplitude, or lateralization difference.

For the research with Dutch infants, it has been found that those FR infants who later
developed DD failed to show mismatch response when presented with a native consonant
change /bAk/–/dAk/ [76–78]. Hakvoort et al. (2015) [79] showed that although FR
dyslexics, FR non-dyslexics, and control children all showed MMN to changes in amplitude
rising time and frequency, FR children showed attenuated MMN to intensity change, and
they exhibited different MMN lateralization to frequency change compared to the TD
children. Van Leeuwen (2008) [77] made use of two tokens in the middle of a continuum
changing from /bAk/ to /dAk/, each belonging to a different category (i.e., either /bAk/
or /dAk/) and found that two-month-old FRs showed attenuated and less left-lateralized
MMR compared to the TD infants. In another study that tested neural discrimination of
/b@/ and /d@/, Noordenbos and colleagues [65] found that when the standard and the
deviant stimuli straddled the phonemic boundary, MMN was elicited in 6-year-old TD and
FR children, yet it was less prominent among the FRs, and the FR children showed a later
MMR peak than the TD children. However, when the standard and deviant belonged to
the same phonemic category, only the FR but not the TD children showed MMN. Taken
together, these studies with Dutch FR children indicated that MMN to some but not all
phonetic difference can be attenuated among the FR children, and their brain response may
be over-sensitive to allophonic variations [30].

In sum, although multiple studies found that auditory ERPs differed between TD and
FR children and that such differences could be predictive of later reading [72], whether
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and how discriminative auditory ERPs or MMR may differ between TD and FR children
is still unresolved. Inconsistently, mismatch response has been found to differ in terms
of amplitude or scalp distribution between the groups. The group effect seems to be
susceptible to the way that the stimuli were presented and characteristics of the speech
sound (e.g., duration, intensity, frequency, or vowel category difference). The fact that both
the Finnish and the Dutch studies made use of single standard and deviant made it difficult
to ascertain whether the FR children responded to the phonetic/acoustical or categorical
difference between the two types of stimuli.

Perhaps the only study that made use of variable standards and deviants is [80]. They
tested adults with DD on the /æ/–/i/ contrast, and in the variable condition the standards
were variable in terms of fundamental frequency (f0), while f0 remained constant in the
constant condition. They found that the adults with DD showed comparable MMN to
the TDs in the f0 constant condition but attenuated MMN in the f0 variable condition.
These findings suggest that adults with DD were less capable than the TDs in native vowel
categorization, which is consistent with the allophonic hypothesis of speech processing
of DD.

To better understand whether FR and TD children categorize native phonemes dif-
ferently at an early age, the current exploratory study investigated neural signatures of
speech sound discrimination among 20-month-old TD and FR infants with MMN. We
used native acoustically non-salient vowels, giep [GIp] and gip [Gip], as the stimuli, since
the non-salient contrasts have been found to be particularly challenging for children with
DD [81]. In particular, to understand whether the two groups differed in phonetic discrim-
ination or phonological categorization, two experimental conditions were designed. In
the single-speaker condition, one token of [GIp] and one token of [Gip], both produced by
the same speaker, were used as stimuli, while in the multiple-speaker condition, twelve
tokens of each nonword, each produced by a different speaker, were used as stimuli. Since
the stimuli were obtained by manipulating natural production, in the multiple-speaker
condition the tokens differed in terms of melodic contour (f0), voice, and phonetic imple-
mentation of the vowels. In essence, speaker normalization and classical categorization
experiments require the same skill, namely, that listeners attend to acoustical differences
that signal phonologically relevant speech contrasts while disregarding signals irrelevant to
linguistic content. Indeed, findings on speaker normalization are similar to those obtained
in classical categorical perception experiments, namely, that children with dyslexia were
less able to normalize speaker variability [82]. Therefore, if the FR children were impaired
in phonetic discrimination in general, their MMN should be less pronounced than the TDs
in both the conditions, while if they were over-sensitive to allophonic variations [83], the
between-group difference should be more evident in the multiple-speaker condition.

We focused on 20 months of age, since children’s vocabulary quickly expands at this
stage and the need to differentiate similar sounding words is a driving force for refining
phonological representation [84,85]. It has been reported that 20-month-old FR children had
significantly smaller vocabularies compared to TD children [86]. Thus, it is plausible that
at this age, deviant word learning and atypical phonological representation correlate with
each other. To identify the influence of at-risk status and remove the possible vocabulary
effect, we paired each individual FR child with a TD child closely matched for vocabulary,
using the Dutch version of the MacArthur–Bates Communicative Development Inventory:
Words and Sentences (N-CDI) [87]. A total of 702 words are listed in the N-CDI and they are
divided into 22 different semantic categories (i.e., animals, vehicles, toys, food and drink,
clothing, body parts, small household items, furniture and rooms, action words, descriptive
words, pronouns, question words, prepositions and locations, quantifiers and articles,
helping verbs, connecting words, sound effects, items outside the house, places outside
the house, people, games and routines, and words about time). For each listed word, the
parents were asked to indicate whether their child “understands” or “understands and
produces” it.
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Vowels were used as stimuli since these have been widely studied in speaker nor-
malization and categorization research. Vowels are mainly defined by their formants or
resonant frequencies as the result of a particular vocal tract configuration. First (F1) and
second (F2) formants are the primary acoustic determinants of vowels, with the former
reflecting vowel height and the latter vowel backness. The adult brain is able to separate
phonologically contrastive vowel categories in the face of speaker and within-category
variability [88–91].

2. Methods and Materials
2.1. Participants

Thirty-nine FR children participated in the research. Three were excluded due to
excessive head movement, and one was excluded for missing N-CDI. Fifty-nine 20-month-
old TD infants participated in the current study, and six were excluded from analysis due
to crying or excessive head movements. From the 53 remaining infants, for each FR child,
a TD child of the same gender, with the most similar N-CDI productive score (i.e., the
total number of words listed as “understands and produces” by the parent), and the most
similar age was matched. A total of 70 children (35 TDs and 35 FRs) were included in the
final analysis.

Table 1 lists the information about the TD and FR children included in the current
study. No impaired hearing or other cognitive delays in the children were reported by any
of the parents. When the productive scores of all the participants were compared (i.e., the
53 TDs and the 35 FRs), univariate ANOVA, with group being the independent variable,
found no significant difference between the groups, F(1, 86) = 2.52, p = 0.12, with the TDs
having a mean (SD) productive score of 133 (112) and the FRs a score of 98 (84).

Table 1. Characteristics of the typically developing (TD) andchildren at familial risk of dyslexia (FR).
CDI = Dutch version McArthur Communicative Development Inventory.

Sample Size Age (SD) in Days at
the Experiment Gender CDI Productive

Score

CDI
Comprehensive

Score

Days (SD)
between CDI

and Experiment

TD 35 601 (13) 16 girls 97 (90) 297(131) 7 (11)

FR 35 604 (20) 16 girls 98 (84) 296 (107) 6 (12)

The children were labeled as FR if at least one of the parents was reading-impaired
(phonological dyslexia), which was determined by three tests administered at either the
Utrecht or Groningen labs. Two of them were reading tests, namely, the ‘Een-Minuut-Test’
(EMT; [92]) and the ‘Klepel’ [93]. In the EMT, a parent was asked to read out loud a list of
real words as quickly and accurately as possible within one minute. The real words differed
in frequency, and for the words with very low frequency, phonological decoding was
needed for successful reading. In the Klepel test, the parents were instructed to read out
loud a list of pseudowords as fast as possible within two minutes, and the nonwords were
spelled in such a way that they obeyed the grapheme–phoneme mapping regularity. The
other test was the Analogies subtest of the comprehension subscale of the Dutch version
of the Wechsler Adult Intelligence Scale [94]. A parent was classified as reading-impaired
if he/she had a score at the lowest 10% in one of two reading tasks, or at the lowest 25%
in both, or he/she had a discrepancy greater than 60% between a high score on the WAIS
Analogies subscale and the score on one of the reading tests. The last criterion was included
to identify highly educated parents who were competent in verbal intelligence and who
had received large amounts of reading and spelling training but whose reading ability was
still low compared to their verbal intelligence [95].
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2.2. Materials

Twelve female native Dutch speakers (mean age = 21 years, SD = 2.5 years) were
recruited to produce the stimuli. They were first visually familiarized with a list of printed
CVC nonword minimal pairs, where the two nonwords in a pair were solely distinguished
by the vowel (e.g., tos [tos] and toes [tus], nief [nif] and nif [nIf]). They could spend as much
time as they needed to read and get familiar with these nonwords. The target nonwords
for the current experiment, giep [GIp] and gip [Gip], were one of these pairs. The rest of the
nonwords were for a word-learning experiment which together with the current experiment
formed parts of a larger project examining early phonology and word development. Next,
the participants were asked to produce all the nonwords in carrier sentences ik zei niet X
maar ik zei Y as well as ik zei niet Y maar ik zei X (meaning I did not say X but I said Y, and
vice versa), where X and Y were one of the minimal pairs. They were told to speak the
sentences as if they were talking to a toddler. The speakers were recorded with a Sennheiser
ME-64 microphone and a DAT recorder TASCAM DA-40 in a sound-attenuated room.

For each speaker, one well-realized token of [GIp] and one of [Gip] were cut off from the
recording for further manipulation in PRAAT [96]. All the tokens had a falling f0 contour.
The duration of the tokens was manipulated to have a mean of 344 ms (SD = 9.5 ms, range
323–361 ms) and the intensity was scaled to 70 dB. These manipulated [Gip]s and [GIp]s
were used as stimuli in the current experiment. All the twelve tokens of each nonword
were presented in the multiple-speaker condition, while the same tokens of each nonword
from one speaker were presented in the single-speaker condition for all the participants.
Duration and mean f0 were measured for the vowel part (i.e., /i/ and /I/), and F1, F2,
and F3 values were measured at the temporal midpoint of the steady part of the vowels. A
paired t-test was conducted with each of these measurements to examine the difference
between the two vowels. Table 2 lists the mean values of these measurements and the
results of the t-tests. Figure 1 plots the F1 and F2 values of each individual vowel in the
stimuli. The [GIp] and [Gip] used in the single-speaker condition had an F1 of 348 Hz and
485 Hz, an F2 of 2827 Hz and 2361 Hz, and an F3 of 3432 Hz and 3100 Hz, respectively.
As can be seen, the acoustical characteristics of the vowels in the stimuli were consistent
with those reported in previous studies [97]. Multiple native Dutch adult speakers listened
to the stimuli and reported the stimuli to be natural, and all were able to identify all the
stimuli as [GIp] or [Gip] correctly.

Table 2. Mean (SD, range) f0, F1, F2, F3 and duration of vowels /I/ in [γIp] and /i/ in [γip],
and results of the t-tests for comparison of each of these measurements.

Multiple-Speaker Condition

/i/ in giep /I/ in gip t (11)

f0 max (Hz) 269 (34, 219–321) 243 (60, 126–321) 0.89, p = 0.39

f0 min (Hz) 226 (32, 184–272) 216 (55, 120–294) 0.35, p = 0.56

F1 (Hz) 320 (29, 279–376) 502 (30, 454–556) 13.72, p < 0.001

F2 (Hz) 2651 (342, 1818, 3239) 2636 (139, 1996–2465) 3.75, p = 0.003

F3 (Hz) 3189 (231, 2724–3624) 2896 (191, 2601–3193) 3.19, p = 0.009

Vowel duration (ms) 91 (16, 66–122) 88 (11, 70–113) 0.87, p = 0.41

Initial consonant
duration (ms) 87 (2, 83–89) 88 (2, 86–91) 1.76, p = 0.12

Word duration (ms) 346 (9, 331–361) 342 (10, 323–357) 1.04, p = 0.32
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Figure 1. Scatterplot of the F1 and F2 values of the vowels in the stimuli.

We used CVC nonwords rather than isolated vowels as stimuli because /i/ can occur
as a reduced format of hij (meaning he) in colloquial Dutch, as in the sentence wat doet
ie (meaning what does he do), whereas /I/ alone can never be a word. Using nonwords
as stimuli precluded lexical status from being a confounding factor. Although the Dutch
/i/ and /I/ may be considered to contrast in duration besides F1/F2, acoustical analysis
has shown that duration does not distinguish these vowels sufficiently [97,98]. Dutch,
however, does have long and short vowels, as in maan [ma:n] (meaning moon) and man
[mA] (meaning man), and both Dutch adults and infants were found to be sensitive to
long vowels being mispronounced as short ones but not vice versa [99,100]. Therefore, to
prevent duration from being a confounding factor, the vowels in [GIp] and [Gip] were not
manipulated to contrast in duration.

In both conditions, [Gip] was the standard and [GIp] was the deviant. It should be
acknowledged that, according to previous studies on vowel perception, to detect a change
from a less to a more peripheral vowel is easier than the other way around [101,102], hence
the assignment of standard and deviant may have an influence on mismatch response. Yet
it was not our purpose to investigate asymmetry in neural detection of the vowel change.
In addition, it is practically more feasible to match the TD and FR children with a consistent
assignment of standard and deviant across the participants.

2.3. Procedure

A passive oddball paradigm was adopted. Infants’ brain responses were recorded
in two blocks: a multiple-speaker block followed by a single-speaker block. Since the
current study focused on whether the FRs differed from the TDs on speaker normalization,
the multiple-speaker block always preceded the single-speaker condition. Each block
comprised 600 stimuli, of which 480 (80%) were standards and 120 (20%) deviants. Each
block began with 10 repetitions of the standard, after which standards and deviants were
presented in a pseudo-random order with the constraint that deviants were separated by at
least two standards. The inter-stimulus interval (ISI) was randomly varied between 320 ms
and 400 ms.

The EEG was recorded in a sound-attenuated room in the Institute of Linguistics
at Utrecht University. The infant participants sat on their caregivers’ laps during the
experiment. Infant-friendly silent animated videos were played on the computer screen,
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and parents were instructed not to talk during the experiment. Toys were placed on the
table in front of the infant, with which they could play if they wanted to. The distance
between the participant’s eyes and the screen was ~1 m and the experimental stimuli were
presented at 70 dB SPL (measured from where the infant sat) through two audio speakers
on each side of the screen. EEG was recorded with a Biosemi system from a 32-channel
cap with Ag/AgCL electrodes according to the 10–20 International System of Electrode
Placement. EEG was recorded at a sampling rate of 1024 Hz.

The infants’ word knowledge was measured with N-CDI. The parents filled in the
N-CDI at home online, either before or after the experiment. For each word, they were
asked to indicate by mouse-clicking whether their child “understands but does not produce
yet” or “understands and produces”. The raw and percentile scores were automatically
generated with locally developed software.

2.4. EEG Processing

The EEG data were analysed offline using EEGLAB toolbox (version 13.1.1b in Matlab
2015b, [103]). The raw recordings were down-sampled to 250 Hz and filtered between
0.3–20 Hz. The continuous recordings were re-referenced to the average of all electrodes
and segmented into 700 ms epochs from 100 ms before the onset (baseline) to 600 ms after
the stimulus onset. Continuous bad channels were visually inspected and interpolated.
Twenty-seven participants had channels interpolated, and on average 0.96 (SD = 0.88)
channels was interpolated. Trials having an amplitude larger than ±150 microvolts were
removed. The standards immediately after a deviant were excluded from analysis. The
remaining artefact-free trials were averaged to obtain the ERPs for each infant. Infants
who had more than 50 artefact-free deviant trials were included in the final analysis, and
a further two infants were excluded. Individual waveforms of the remaining 34 TD and
34 FR children were averaged to obtain the grand averaged waveform.

2.5. Statistical Analysis

As there has been ample evidence that MMR is most evident at frontal central scalp
locations, analysis was conducted with latency and amplitude measurements obtained at
F3, Fz, F4, C3, Cz, and C4 [65]. For the TD and FR group separately, to identify the onset
and offset of the MMR (if any), for each condition, point-by-point t-tests were performed
with the standard and deviant ERPs (i.e., ERPs of individual participants) for all the
points between 200 and 600 ms after the stimulus onset. If for at least one electrode, the
standard and deviant ERPs significantly differed at a minimum of six consecutive time
points (i.e., 24 ms, with the sampling rate being 250 Hz), the difference was considered
meaningful [59], [104] and an MMR peak was subsequently identified on the grand average.
Then individual MMR peak latencies were identified in the 100 ms window (50 ms before
and after) surrounding the grand average peak, and individual MMR peak amplitudes
were calculated as the mean amplitude in the 40 ms (20 ms before and after) window
surrounding the individual peaks. To investigate how MMR differed across the groups, for
each condition, repeated measure ANOVAs, with electrode (F3, Fz, F4, C3, Cz, C4) being
the within-subject variable and group (FR and TD) being the between-subject variable,
were conducted with individual peak amplitudes.

The significance of the MMR responses was also tested using non-parametric cluster-
based mass permutation tests [105], implemented in the Fieldtrip toolbox in Matlab [106].
This analysis was completely data-driven and included all electrodes and all time points
between 0 and 600 ms. First, a series of t-tests was computed for each electrode and at
each time point. Then, clusters were formed over space by grouping electrodes (at least
two adjacent electrodes) that had significant initial t-test results (p < 0.05) at the same time
point. Clusters were formed over time by grouping adjacent time points that had significant
t-values (p < 0.05). The sum of all t-values within each cluster provides a cluster-level t-score
(mass t-score). A permutation approach was used to control for type I errors. For this the
standard and deviant waveforms were randomly swapped and the t-tests were repeated
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1000 times to generate a data-driven null hypothesis distribution. The observed t-values
from the first step were compared with the null-hypothesis distribution. The cluster was
considered significant if the mass t-score fell in the top 2.5 or bottom 2.5 percentile of the
distribution. The cluster permutation statistics approach yields a conservative measure
and there is a trade-off between sensitivity to local strong effects versus sustained smaller
effects which are diffused across scalp locations [107].

2.6. Results

Table 3 lists TD and FR mean (SD) accepted trials in the multiple-speaker and single-
speaker condition. A MANOVA, with the number of accepted trials being the dependent
variable and group being the independent variable, found no significant difference between
the two groups. Fmultiple standard (1, 66) = 0.37, p = 0.55, Fmultiple deviant (1, 66) = 0.52, p = 0.47,
Fsingle standard (1, 66) = 1.15, p = 0.29, Fsingle deviant (1, 66) = 1.65, p = 0.20. The time windows
where the standard and deviant ERPs differed significantly for each condition and each
group are listed in the Supplementary Materials, as are the mean peak amplitudes of the
standard ERP, deviant ERP, and difference wave. Figure 2 plots the standard ERPs, the
deviant ERPs, and the difference waves in the multiple- and single-speaker conditions of
the TD and FR toddlers. Figure 3 plots the individual peak amplitudes.

Table 3. TD and FR mean (SD) (percentage of total trials) accepted trials in the multiple-speaker (MS)
and single-speaker (SS) condition.

MS Standard MS Deviant SS Standard SS Deviant

TD 279 (34) (78%) 93 (12) (78%) 266 (38) (74%) 89 (13) (74%)

FR 286 (64) (79%) 96 (21) (80%) 275 (30) (76%) 93 (12) (78%)

Figure 2. Cont.
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Figure 2. Standard ERPs, deviant ERPs, and difference waves of the typically developing TD children
and children at familial risk of dyslexia (FR) in the multiple-speaker and single-speaker condition.
The bars in the difference wave graphs indicate the time windows where the mismatch responses
(MMRs) MMRs were significant, with the bars’ colors corresponding to group membership. Bars
above the ERP waves indicate positive MMR, and bars below the ERP waves indicate negative MMR.

As can be seen from Figure 2, in all the conditions, a p-MMR was observed. For
the TD children, the p-MMR had a grand average peak latency of 344 ms and 356 ms
in the multiple- and single-speaker condition respectively. The FR children had a grand
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average peak latency of 396 ms in the multiple-speaker condition and 354 ms in the
single-speaker condition.

Figure 3. MMR peak amplitude at F3 of individual participants in the multiple- and single-speaker
conditions. FR = familial risk group, TD = typically developing group, MS = multiple-speaker
condition, and SS = single-speaker condition. Each circle represents an individual participant.

For the p-MMR peak latency measurements, for the multiple-speaker condition, uni-
variate ANOVA, with group as the independent variable, showed that the effect of group
was significant, F(1, 66) = 36.50, p < 0.001, partial η2 = 0.36, with the FR group having a
higher mean p-MMR (i.e., mean of individual peak latencies) peak latency of 391.65 ms
(SD = 30.61 ms) than the TD group’s latency of 346.71 ms (SD = 39.78 ms). Therefore,
compared to the TD children, the FR children had a significantly later p-MMR latency,
suggesting, plausibly, more effortful discrimination of the two non-words. For the single-
speaker condition, group showed no significant effect, F(1, 66) = 3.64, p = 0.061. Thus, no
difference was found between the groups for the MMR peak latency in the single condition.

To examine how the TD and FR groups differed in their mismatch responses in the two
conditions, a mixed-effect ANOVA was conducted, with group being the between-subject
variable, and stimulus type (standard, deviant), conditions (single-, multiple-speaker), later-
alization (left, middle, right), and location (frontal or central) being the within-subject vari-
ables. Crucially, type (standard or deviant) showed a significant main effect, F(1, 66) = 10.24,
p = 0.002, partial η2 = 0.13. Furthermore, condition showed a significant main effect,
F(1, 66) = 4.11, p = 0.047, partial η2 = 0.06, indicating larger ERP amplitude in the multiple-
speaker condition. Location showed a significant main effect, F(1, 66) = 25.82, p < 0.001,
partial η2 = 0.28, and lateralization showed a significant main effect F(2, 132) = 24.63,
p < 0.001, partial η2 = 0.27, indicating larger ERP amplitude at frontal than at central elec-
trodes, and larger ERP amplitude at left than right electrodes. The interaction between
type and location was significant, F(1, 66) = 39.95, p < 0.001, partial η2 = 0.38, and so
was the interaction between location and lateralization, F(2, 132) = 3.79, p = 0.03, partial
η2 = 0.05. Together with Figure 2, it can be seen that the p-MMR was more evident at frontal
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than central electrodes. The interaction between type and lateralization was significant,
F(2, 132) = 11.61, p < 0.001, partial η2 = 0.15, indicating left-lateralized p-MMR. Importantly,
the interaction between type and group was not significant, F(1, 66) = 0.63, p = 0.43, nor
was the interaction between lateralization and group, F(2, 132) = 0.34, p = 0.72; the three
way interaction between condition, type, and group was also not significant, F(1, 66) = 1.25,
p = 0.27.

As can be seen in Figure 2, these results show that the ERPs to the deviant were
significantly more positive than those to the standard, indicating an overall p-MMR for
both the TDs and the FRs across the two conditions, and the p-MMR was more evident
at the frontal than the central electrodes. With regard to condition, for both the TDs and
the FRs, the overall ERPs in the multiple-speaker condition were larger than those in the
single-speaker condition. Importantly, there was no evidence that the TDs and FRs differed
in terms of p-MMR amplitude or lateralization, and the p-MMRs of both groups were
comparable in terms of amplitude across the two conditions.

When the more conservative non-parametric cluster analysis was performed, no signif-
icant cluster was found for any group. As the 32-channel cap did not allow a dense spatial
sampling, it was possible that the sparse distribution of electrodes may have rendered the
cluster analysis non-significant.

3. General Discussion

In the current study, 20-month-old typically developing children and children at
familial risk of dyslexia were tested on their neural categorization of the acoustically similar
native vowel contrast /i/ and /I/ realized in two nonwords [GIp] and [Gip]. Overall, both
the TD and FR children showed a significant p-MMR, and the effect of the condition was
not significant. There was no evidence for different scalp distributions for the MMRs among
the TDs and FRs. The significant interaction between type and location indicates a more
left-lateralized p-MMR for both conditions and for both groups. These results indicate that
both groups were able to neurally discriminate the two non-words, regardless of whether
speaker variability was introduced. Importantly, there was no evidence that p-MMR was
attenuated among the FRs as compared to the TDs. Nevertheless, the MMR peak latency of
the FR children was significantly later than that of the TD children. These findings suggest
that although FR children were able to categorically discriminate the two non-words, their
discrimination might be more effortful than the TDs.

Unlike other studies (e.g., [33,65,76]) that found less categorical phoneme perception
in FRs, the current study found comparable MMR amplitude between the FR and the
TD children in the multiple-speaker condition. Seeing that [76] and [79] made use of
synthesized monosyllables while the stimuli of the current study were natural productions
that were minimally manipulated, it might be that FR children were hampered when the
stimuli were less rather than more speech-like. The temporal sampling framework for
developmental dyslexia hypothesizes that segmental-level representations might be too
specific, while syllable-level representations are deficient in dyslexia, due to impaired
low- but not high-frequency neural modulation. The current study did not distinguish
between segmental and syllabic difference, and it would be informative for future studies
to investigate whether syllable-level variability (e.g., variability in amplitude modulation)
is more problematic than segmental-level (e.g., formant structures) variability for dyslexics.
So far, MMN studies with FR children are still limited, and different studies testing children
of different ages with different stimuli and more evidence is needed to understand when
and under what circumstances MMN differs between TD and FR children.

Nevertheless, the FR children had a significantly later p-MMR peak latency compared
to the TD children in the multiple-speaker condition. Seeing that MMN peak latency has
been found to increase with a decrease in deviation magnitude [47], it seems that when
presented with the same stimuli, the difference between the standards and the deviants
might have been perceived as smaller among the FRs than among the TDs, suggesting
more effortful neural discrimination for the FRs [63–65]. Previous research has shown that
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dyslexic children can be less capable of learning statistical contingencies between visual
and phonological cues [108,109]; whether such difficulties may relate to dyslexic children’s
characteristics of neural categorization needs further investigation.

For both groups and for both conditions, all the mismatch responses were still positive.
Therefore, although the children were able to normalize speaker variability and discriminate
the vowels categorically, at this age the mismatch response was still not adult-like, which
was consistent with previous studies testing neural discrimination of non-salient native
contrasts [60,110]. Therefore, for both the TDs and the FRs, maturation of mismatch
response (i.e., a shift to adult MMN) is expected to continue, yet when exactly such a shift
will occur should be investigated in future studies.

In the current study, vocabulary level was controlled between the FRs and TDs. The
lexical restructuring model (LRM, [84]) hypothesizes that words are represented holistically
at the initial stage of word learning, and, as infants’ vocabulary expands, to deal with
increases in neighborhood density, infants are forced to refine phonetic representations. In
parallel with vocabulary expansion, the similar-sounding phonetic categories will reorga-
nize and become represented in a more adult-like way [84,111,112]. According to LRM,
at the initial stage of word learning, phonological categorization is expected to be more
evident for children who have a large vocabulary. Given that previous studies showed
FRs to have smaller vocabularies than TDs at 20 months [86], it is plausible that FRs might
be less capable of phonological categorization than TDs as a result of small vocabularies.
The current study, however, matched the TD and FR children on vocabulary, yet we still
observed a group difference in the single-speaker condition. Therefore, it seems likely that
the FRs, even when comparable with TDs in terms of vocabulary development, still had a
different mode of neural discrimination of phonetic differences.

It should be acknowledged that the FR children tested in the current study only had
elevated risk for becoming DD and not all of them will become DD in the end [32,113].
For now, it is difficult to ascertain whether the FRs who would become DD differed in
phonetic and phonological discrimination from those who would not. Once their reading
status becomes available, it will be worth the effort to compare these two subgroups of
FRs on their MMRs to investigate whether neural signatures underlying phonetic and
phonological discrimination can be considered reliable precursors of DD.

4. Conclusions

To conclude, the FRs’ p-MMR magnitude was comparable to that of the TDs when
discriminating a native non-salient vowel contrast regardless of whether inter-speaker
variability was present, and phoneme categorization difficulty does not qualify as a labeling
feature for FRs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci12030412/s1, Table S1: Time windows (ms after stimulus
onset) where the standard and the deviant ERPs differed significantly for the multiple-speaker
(MS) and single-speaker (SS) conditions. (+) indicates that the deviant ERP was more positive than
the standard ERP, and (-) indicates that the deviant ERP was more negative than the standard ERP,
and -- indicates lack of significant difference. Table S2: Mean (SD) amplitude (µv) of the standard ERP
(STD), the deviant ERP (DEV), and the p-MMR in the multiple-speaker (MS) and single-speaker (SS)
condition at corresponding p-MMR peak latencies, separated for the typically developing children
(TD) and children at familial risk of dyslexia (FR).
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