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Abstract: Perturbations in dopamine system function may increase risk of substance use disor-
der (SUD). We recently demonstrated that neuromelanin (NM) MRI signal in the substantia ni-
gra, a non-invasive index of dopamine system function, is elevated in long term cocaine users
(Cassidy et al., 2020). However, it is unclear whether elevated NM-MRI signal is linked to risk of
SUD, or is a byproduct of long-term drug use. Our prior work failed to show relations between
NM-MRI signal and functional engagement of ventral striatum during a monetary reward task.
However, social experiences are commonly linked to drug use and relapse. Given that, NM-MRI
signal may be more closely linked to ventral striatal engagement during social, rather than monetary
reward processing. Emerging adults (n = 33, 21.88 ± 4.35 years) with varying levels of substance
abuse, but without SUD, underwent NM-MRI and fMRI during social and monetary reward pro-
cessing tasks. Voxelwise analysis within the substantia nigra (SN) demonstrated lower NM-MRI
signal was associated with more severe substance abuse. Lower right ventral striatal engagement to
social reward was also associated with more severe substance abuse. This relation was moderated
by SN NM-MRI signal such that diminished striatal response to reward was associated with greater
substance abuse among those with low NM-MRI signal, but lower substance abuse among those
with high NM-MRI signal. Unexpectedly, higher right ventral striatal engagement during monetary
reward was associated with more severe substance abuse. This relation was moderated by SN
NM-MRI signal such that greater striatal response to reward was associated with greater substance
abuse among those with low NM-MRI signal. Taken together, we provide preliminary evidence that,
in emerging adults, low rather than high dopamine system function may increase risk of substance
abuse, and strengthen the association between substance use and the brain’s sensitivity to social and
monetary outcomes in different ways.

Keywords: adolescent SUD; risk factors; fMRI; NM-MRI; peer feedback; midbrain

1. Introduction

Substance use disorders among late adolescents and emerging adults are common,
costly, and on the rise [1,2]. Since 2016, there has been a 61% increase in substance
use among 8th graders [3]. Given the fact that substance use typically peaks between
18−25 years of age [4], we are likely to see a substantial increase in substance abuse and
substance use disorders (SUDs) among late adolescents and emerging adults over the next
several years. Yet, only a minority of those who try drugs of abuse develop a SUD [5].
Hence, attempts have been made to identify risk factors for SUD. Given its role in reward
processing, perturbations in dopamine system function has been one target of investigation.
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However, most measures of dopamine system function are invasive, and require the use
of radioactive tracers. Thus, it can be difficult to directly test for perturbations in younger
populations. Less is known about how perturbations in dopamine system function may
interact with psychosocial events that influence substance abuse. For instance, among
late adolescents and emerging adults, substance use often occurs in a social context [6–8],
and social stressors commonly precipitate binging and relapse [9]. Using the relatively
novel and non-invasive technique of neuromelanin sensitive-MRI (NM-MRI), previously
shown to correlate with dopamine system function [10], we sought to test the extent to
which dopamine system function relates to substance abuse behavior in emerging adults
without SUD. Moreover, we aimed to test whether differences in dopamine system function
moderate the relation between neural response to social feedback, measured using fMRI,
and substance abuse.

Alterations of dopamine system function have been identified in individuals with
numerous SUDs [11,12]. These studies have largely relied on data acquired using positron
emission tomography (PET). As PET imaging entails exposure to radiation, it is contraindi-
cated for most research in younger at-risk populations. Therefore, much of what we know
about dopamine system function and substance abuse in humans comes from adult pop-
ulations. However, onset of substance abuse and development of SUD typically occurs
in late adolescence and early adulthood [5]. As substance abuse itself affects dopamine
system functioning, it is difficult to disentangle whether dopamine system perturbations in
most studies of SUD reflect the cause or consequence of disordered behavior. Hence, it is
critical to adopt non-invasive techniques for measuring dopamine system function in the
population at greatest risk of development SUD—emerging adults.

Non-invasive NM-MRI has recently been shown to provide a putative proxy measure
of dopamine function [10,13]. Neuromelanin is a pigment generated from the oxidation
of cytosolic dopamine. It accumulates gradually over the lifespan in dopamine neurons
of the substantia nigra (SN) [14]. As NM is bound to iron, it forms paramagnetic com-
plexes that can be imaged using MRI [13,15,16]. NM-MRI has also been directly linked to
dopamine release in the striatum [10]. NM-MRI can be used to quantify NM depletion
in Parkinson’s disease [13,14,17], but can also detect altered dopamine system function in
non-neurodegenerative disorders, such as schizophrenia [10,15]. We recently demonstrated
that long-term cocaine users (M± SD age = 47.3± 8.1 years; years of use = 21.9± 9.3 years)
showed greater NM-MRI signal compared to non-users (age = 45.1 ± 10.2 years; [16]). One
interpretation of these results is that SUD is associated with hyper-dopamine function and
excess NM accumulation. However, it is unclear whether this increased signal reflected
pre-existing risk of SUD (i.e., related to a cause of SUD), or increased accumulation due
to long-term cocaine use (i.e., related to a consequence). Although many theories suggest
that risk is related to hyperdopaminergic function [17–19], an alternative perspective is
that hypodopaminergic function is associated with compensatory reward-seeking behavior,
which promotes risk of SUD [20,21]. Thus, our results may reflect consequences (perhaps
due to cocaine-linked alterations in dopamine trafficking, see [16]) rather than causes. To
test whether NM-MRI signal relates to pre-existing risk of SUD, it is therefore critical to test
its association with substance abuse in emerging adults who have not yet developed SUD.

Peer feedback becomes increasingly salient during adolescence [22–24], just as sub-
stance abuse begins to rise [5]. Among adolescents and young adults, substance abuse most
often occurs in a social context [6,8], and peer victimization or rejection commonly precipi-
tate consumption [25]. Thus, it is possible that dopamine system function may moderate
the effect of social experiences on substance abuse. Some direct evidence for this comes
from studies in non-human primates. Specifically, the introduction of a social context (i.e.,
group housing following isolation) provokes a relatively rapid increase in D2 dopamine
receptor density, but only among monkeys who rise to the top of the social hierarchy.
This change in dopamine system function in turn buffers against the reinforcing effects
of cocaine. Conversely, monkeys who become subordinate show no change in dopamine
system function, and become more vulnerable to the reinforcing effects of cocaine [26].
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Thus, hypodopaminergic function coupled with a lack of positive social experiences may
increase risk of substance abuse.

In humans, one way to test how peer-based experiences “get under the skin” is to
measure functional brain response to peer feedback. Indeed, fMRI studies demonstrate that
activity in the ventral striatum, a major hub of the dopaminergic reward-processing system,
is more responsive to peer feedback among adolescents compared to children [27–29].
Despite the preponderance of evidence that social experiences impact substance use in
late adolescence and early adulthood, few studies have tested the link between adolescent
neural response to social feedback and substance abuse [30–32]. A more consistent pattern
emerges in the monetary domain; specifically, substance abuse is associated with reduced
striatal responding to monetary reward (e.g., [17,33–37], but see [38–40]). However, results
are mixed when it comes to risk of substance abuse (e.g., [41–44]). Some studies show
increased risk of substance abuse is associated with hyper-ventral striatal engagement to
reward, whereas others show the opposite relation or null effects.

These inconsistencies may be partially due to variability in experimental design within
and across studies. Few experiments use well-controlled methods to directly test brain
response to social and monetary rewards. Indeed, our recent work in adolescents and
emerging adults demonstrates differences in neural response across social and monetary
domains [45–48], and finds that symptoms of psychopathology specifically relate to neural
response to social, but not monetary reward [47,48]. Given the specific impact of social
experiences on substance abuse, it is therefore possible that neural response to social re-
wards may uniquely relate to risk of substance abuse. Although diminished dopamine
function may increase risk of substance abuse, it is plausible that it may also potentiate
hyper- or hypo-responsivity to social reward. For example, greater sensitivity to peer
feedback coupled with diminished dopamine function could increase sensitivity to peer
pressure, thereby promoting substance abuse via a young adult’s need to belong. Alterna-
tively, blunted sensitivity to peer feedback coupled with diminished dopamine function
could promote substance abuse motivated by the failure of social experiences to elicit
appetitive experiences.

This study had two goals. The first goal was to test the relation between substance
abuse and NM-MRI signal in emerging adults without SUD. We hypothesize that, consistent
with some theories that hypodopaminergic function promotes risk of SUD, low NM-MRI
signal will be associated with more severe substance abuse. The second goal was to test the
extent to which NM-MRI signal moderated the relation between ventral striatal response to
reward and substance abuse within social and monetary domains. Given the importance of
peers during emerging adulthood and that social experiences commonly predict substance
use, we hypothesize that NM-MRI signal will moderate the relation between (hyper- or
hypo-reactive) ventral striatal response to reward and substance abuse, specifically in the
social, but not monetary domain.

2. Materials and Methods
2.1. Participants

Participants (n = 33; females = 21) were undergraduates (M = 21.88 ± 4.35 years)
recruited from Stony Brook University who received course credit for their participation.
Participants were free of psychotropic medication and had no contraindications for fMRI.
Additional participants were excluded from analyses due to poor quality fMRI data (n = 1),
and for having high substance abuse problem scores (n = 2; outliers > 2.5 SD from mean).
Informed written consent was obtained prior to participation, and all procedures were
approved by the Institutional Review Board at Stony Brook University and follow the
principles of the Declaration of Helsinki.

2.2. Substance Use

Substance use was measured via self-report on the substance abuse subscale (α = 0.94)
of the Externalizing Spectrum Inventory-brief form (ESI-bf; [49]). The substance abuse
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subscale is a sum of responses (on a 0 = false to 3 = true scale) to 49 questions about use of,
and problems resulting from use of, marijuana, non-marijuana substances (e.g., cocaine,
opioids), and alcohol. A subscale for substance abuse problems was a sum of the subset of
27 problem-related questions (α = 0.76).

2.3. Procedure

Prior to the experimental session, participants were told they were completing a social
evaluation study and were asked to submit a digital picture of themselves that would be
sent to other purported participants their age across the country. Participants believed
that these peers would receive a text message asking them to view the photo and indicate
whether they thought they would “like” the participant. The picture would then disappear
after 5 min. At the beginning of the experimental session, participants were told that they
would be asked to predict which peers “liked” them and that they would also complete a
monetary prediction task. Participants underwent fMRI while completing the monetary
and social tasks. Structural and NM-MRIs were also acquired. At the end of the session,
participants responded to questions about their experience with the task to ensure they
were engaged and believed the credibility of the peer feedback. Participants were then
debriefed. Although a subset of participants were not deceived (n = 15), they did not
differ from deceived participants in terms of age, substance use, NM-MRI signal, or ventral
striatal response to social or monetary reward, and were therefore included in analyses to
retain statistical power.

2.4. fMRI-Based Tasks

The monetary and social reward tasks were administered using E-Prime software
(Psychology Software Tools Inc., 2016, (E-Prime 2.0). Retrieved from http://www.pstnet.
com, last accessed on 10 January 2018) and presented in a counterbalanced order. There
were four conditions (monetary win, monetary loss, social like, and social dislike) that
were presented in a counterbalanced, randomized order. Each condition included 30 trials.
Each task was completed across two 4.55 min runs. Each run included two blocks: one
block of monetary win or social like trials, and one block of monetary loss or social dislike
trials (15 trials per block). Trials were separated by a variable duration intertrial interval
(1100–11,600 ms; M = 3500 ms). For this report, we describe results from the positively
valenced blocks because they are conceptually similar to typical reward processing tasks in
which accurate choices are associated with positive outcomes. We did not have specific
hypotheses about the relation between neuromelanin and brain function during outcomes
in the negatively valenced blocks. See other reports for results related to neural responses
during negative outcomes (e.g., [46–48]).

2.4.1. Monetary Reward Task

For the monetary reward task (Figure 1), participants were instructed to choose the
door behind which there was a USD 0.25 prize. Participants were told that there were
three possible scenarios for each trial: (1) both doors contained a USD 0.25 monetary win;
(2) one door contained a USD 0.25 monetary win while the other door resulted in a break-
even outcome; or (3) both doors resulted in a break-even outcome. This ensured that the
feedback the participant received would only be informative about the door they chose and
not the door they did not choose. Each trial began with the presentation of two identical
doors (3000 ms). Participants then used a button box to choose either the left or right door.
After stimulus offset, a fixation cross was presented for 600 ms before participants received
feedback (1000 ms). Feedback was either a green arrow pointing upward (↑) meaning the
participant chose the monetary win door (rewarding feedback), or a white horizontal dash
(-), which indicated the participant chose the break-even door, resulting in no monetary
win (non-rewarding feedback).

http://www.pstnet.com
http://www.pstnet.com
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Figure 1. fMRI-based monetary and social reward tasks.

2.4.2. Social Reward Task

The social reward task was identical to the monetary task except pictures of gender-
matched pairs of peers (i.e., two female faces or two male faces) were presented instead of
doors (Figure 1). Participants were instructed to choose the peer that liked the participant,
based on the photo that the participant provided. The social reward task consisted of
60 images of age-matched peers compiled from multiple sources (National Institute of
Mental Health’s Child Emotional Faces picture set [50] and internet databases of non-
copyrighted images). The pictures of purported peers had positive facial expressions, were
cropped so that individuals were pictured from their shoulders up and were edited to have
an identical solid gray background. Images were constrained to a standard size (2.75-inch
width × 4-inch height). Participants were told that there were three possible scenarios for
each trial: (1) both people said they would like the participant; (2) one person said they
would like the participant while the other person never rated the participant; or (3) neither
person rated the participant. Each trial began with the presentation of two peers (3000 ms).
Participants then used a button box to choose either the left or right peer. After stimulus
offset, a fixation cross was presented for 600 ms before participants received feedback
(1000 ms). Feedback was either a green arrow pointing upward (↑) meaning the participant
chose the peer who liked them (rewarding feedback), or a white horizontal dash (-), which
indicated the participant chose the peer who never rated them, resulting in no positive
social feedback (non-rewarding feedback).

2.5. MRI Acquisition

All images were acquired using a 3T Siemens PRISMA MRI scanner (Siemens AG,
Muenchen, Germany) with a 20 channel coil.

2.5.1. Structural MRI

To facilitate anatomical localization and coregistration of functional and NM-MRI
data, a high-resolution structural scan was acquired (sagittal plane) with a T1-weighted
magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence (250 mm in
FOV, TR = 1900 ms, TE = 2.53 ms, voxel size of 1.0 × 1.0 × 1.0 mm3, flip angle = 9◦).

2.5.2. NM-MRI

NM sensitive MRI images were acquired using a 2D gradient response echo sequence
with magnetization transfer contrast (220 mm in FOV, 10 slices, TR = 273 ms, TE = 3.87 ms,
voxel size of 0.4× 0.4× 3.0 mm, flip angle = 40◦, interleaved slice acquisition, magnetization
transfer frequency offset = 1200 Hz; acquisition time = 11.02 min). The 10-slice-prescription
protocol consisted of orienting the image stack along the anterior-commissure–posterior-
commissure line and placing the top slice 3 mm below the floor of the third ventricle,
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viewed on a sagittal plane in the middle of the brain (see [10], for more detail). This
protocol provided coverage of SN-containing portions of the midbrain.

2.5.3. fMRI

Blood Oxygenation Level-Dependent (BOLD) sensitive functional images were ac-
quired using a gradient echo-planar imaging (EPI) sequence (224 mm in FOV, 37 slices,
TR = 2100 ms, TE = 23 ms, voxel size of 2.3 × 2.3 × 3.5 mm, flip angle = 83◦, interleaved
slice acquisition). Each run included 130 functional volumes.

3. Data Analysis
3.1. NM-MRI
3.1.1. Preprocessing

SPM12 was used to co-register NM-MRI scans to T1-weighted scans and DARTEL
routines were used to normalize data to MNI space. Unsmoothed, normalized NM-MRI
data were resampled to 1 mm isotropic. Intensity normalization and spatial smoothing were
then performed using custom Matlab scripts (see [10] for further preprocessing details).

3.1.2. Individual Level Analysis

Analyses required the use of two anatomical masks generated using average spatially
normalized NM-MRI images from previously studied participants ([10]; Figure 2A; see
below). Given its high NM content, the substantia nigra (1807 resampled voxels) served as
the region of interest (ROI), while the crus cerebri, white-matter tracts with minimal NM
content, served as a reference region. Contrast-to-noise ratio (CNR) for each participant and
voxel within the SN (v) was calculated as the relative change in NM-MRI signal intensity
(I) from the reference region (RR): CNRV = (IV − mode(IRR))/mode(IRR). The mode (IRR) was
calculated for each participant from kernel-smoothing-function fit of a histogram of all
voxels in the mask.

Figure 2. Template NM-MRI images were created by averaging the spatially normalized NM-MRI
images from all participants. Overlays reflect (A) anatomical substantia nigra (green) and crus
cerebri (blue) masks; (B) results from voxelwise analysis showing a significant negative relation
between substance abuse and NM-MRI signal in substantia nigra (red). (C) Scatter plot depicting this
negative relation.
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3.2. fMRI
3.2.1. Preprocessing

Preprocessing and fMRI analyses were conducted using AFNI (Cox, 1996). Standard
preprocessing steps were implemented with afni_proc.py; this included slice timing, coreg-
istration, smoothing to 6 mm full-width half maximum (FWHM) to a Gaussian kernel,
spatial normalizing to standard Talairach space, and resampling, which resulted in 2-mm3

voxels. To account for large movements, temporally adjacent repetition times (TRs) with a
Euclidean-norm motion derivative greater than 1 mm were omitted from the model via
censoring. No participant had more than 1% of TRs omitted for any given event type.

3.2.2. Individual Level Analysis

Task-specific events (spanning the duration of each event) were modeled using a block
function. An additional six regressors modeled motion residuals. Based on a priori hy-
potheses, we performed an ROI analysis on the ventral striatum, as defined by the Harvard
Oxford Atlas [51–53]. Anatomical masks of bilateral ventral striatum were transformed
from MNI to Talairach space using AFNI’s 3dWarp tool. Partial voxels were removed and
masks were eroded by 1 level using AFNI’s 3dmask_tool. The resulting left (97 resampled
voxels) and right (90 resampled voxels) ventral striatum masks are depicted in Supplemen-
tary Figure S1. For each ROI, signal change data for rewarding vs. non-rewarding feedback
for each domain (monetary: win–break-even; social: like–did not rate) was then extracted
for each subject.

3.3. Group Level Analyses

All statistical analyses were performed R’s ‘stats’ package (1.3.1.073 [54]). To achieve
each of our experimental goals, we conducted two sets of analyses.

3.3.1. Relation between NM-MRI Signal and Substance Abuse

First, a voxel-wise analysis within the SN mask was performed to determine whether
substance abuse was correlated with NM-MRI signal in a significant number of voxels
within the SN. These analyses were carried out in Matlab using custom scripts. Robust
linear regression analyses were performed across participants for every voxel v within the
SN mask, as (Equation (1)):

CNRv = β0 + β1·substance abuse (1)

The spatial extent threshold of an effect was defined as the number of voxels k (adjacent
or nonadjacent) exhibiting a significant relationship between substance abuse and CNR
(voxel-level height threshold for t-test of regression coefficient β1 of p < 0.05). Separate
one-sided analyses tested for positive and negative relations. Permutation testing was
performed to correct for multiple comparisons by determining whether an effect’s spatial ex-
tent k was greater than would be expected by chance (Pcorrected < 0.05; 10,000 permutations,
equivalent to a cluster-level familywise error-corrected p value). On each iteration, the
order of substance abuse variable was randomly permuted across participants prior to
performing voxelwise regression analysis. This provided a measure of spatial extent for
each of 10,000 permuted datasets, forming a null distribution against which to calculate
the probability of observing the spatial extent k of the effect in the true data by chance
(Pcorrected). In this case, the voxel extent threshold was set to 255 voxels. Significant ef-
fects were plotted for visualization purposes and corresponding statistics are reported
for completeness.

3.3.2. Moderating Effect of NM-MRI Signal on the Relation between Ventral Striatal
Function during Reward Processing and Substance Abuse

For subsequent analyses, participant NM-MRI signal reflects a signal extracted from
the anatomically defined SN. Specifically, the NM-MRI signal for each participant was
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calculated via Matlab as the average CNR across all voxels within the substantia nigra mask.
Using this measure, we used PROCESS 3.5.3 [55] to test whether NM-MRI signal moderated
the relation between ventral striatal response to social (like–did not rate) or monetary (win–
break-even) rewards and substance abuse. For each analysis, the independent variable (X)
was neural response to reward, the predictor variable (W) was average NM-MRI signal,
and the dependent variable (Y) was substance abuse. Significant effects were probed
using the Johnson–Neyman technique. Age may impact the salience of reward outcomes
differently in social and monetary domains in emerging adults [27–29], thus models with
and without age were compared. As including age did not impact overall results, age had
low predictive value, and the goodness of fit (Mean Squared Error) was better for models
without compared to with age, all results were derived from models that omitted age.

4. Results
4.1. Substance Abuse

Substance abuse scores were normally distributed (skewness = 0.77, SE = 0.41;
kurtosis = −0.38; SE = 0.80). Average substance abuse score was 19.55 (SD = 19.69;
range = 0–67), which is consistent with prior college samples (M~24) but much lower
than clinical substance use disorder populations (M~84 [56]). Moreover, the majority of
participants (64%) reported zero substance use problems, and had overall problem scores
much lower (M = 1.48, SD = 2.71; range = 0–10) than clinical populations (M~42). Thus,
this sample facilitated our goal of studying individuals at risk of, but without expression
of, substance abuse disorder.

4.2. Relation between NM-MRI Signal and Substance Abuse

Voxelwise analysis revealed substance abuse was negatively correlated with NM-MRI
signal in a significant number of voxels within the SN (Figure 2B; 416 of 1807 SN voxels,
Pcorrected < 0.007). Figure 2C depicts this negative relation, which supported our hypothesis
that individuals with lower intensity NM-MRI signal would engage in greater substance
abuse behavior (adjusted R2 = 0.439, F(1,31) = 26.032, b = −4.82, SE = 0.94, t(32) = −5.10,
p < 0.001).

4.3. Moderating Effect of NM-MRI Signal on the Relation between Ventral Striatal Function
during Reward Processing and Substance Abuse
4.3.1. Social Reward

Regarding the right ventral striatum, the overall model was significant; R2 = 0.266,
F(3, 29) = 3.493, and p = 0.0281. Consistent with our hypothesis and voxelwise analy-
ses, a main effect of NM-MRI signal emerged (b = −4.472, 95% C.I., (−7.639, −1.304),
t(32) = −2.888, and p = 0.00073), such that a lower NM-MRI signal was associated with
more severe substance abuse. A similar relation emerged for neural response to social
reward (b = −186.228, 95% C.I., (−355.012, −17.445), t(32) = −2.247, and p = 0.032), such
that weaker striatal response to social reward was associated with more severe substance
abuse. These main effects were qualified by an interaction. Consistent with our hypothesis,
NM-MRI signal moderated the relationship between neural response to social reward
and severity of substance abuse (∆R2 = 0.132, F(1,29) = 5.224; b = 22.256, 95% C.I. (3.025,
41.487), and p = 0.025; Figure 3). Johnson–Neyman analyses suggest an inverse relation
between striatal response to reward and substance abuse depending on NM-MRI signal.
Specifically, diminished striatal response to reward was associated with greater substance
abuse behavior among those with low NM-MRI signal (<4.45). Conversely, diminished
striatal response to reward was associated with lower substance abuse behavior among
those with high NM-MRI signal (>11.24). Finally, there was no relation between striatal
response to reward and substance abuse in those with moderate levels of NM-MRI signal.
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Figure 3. Depiction of moderating effect of NM-MRI signal on the relation between right ventral
striatal response to social reward (vs. non-reward) and substance abuse. SD = standard deviation.

Regarding the left ventral striatum, the overall model was not significant; R2 = 0.156
F(3, 29) = 1.780, and p = 0.173. Consistent with our hypothesis and voxelwise analy-
ses, a main effect of NM-MRI signal emerged (b = −3.76, 95% C.I., (−7.253, −0.267),
t(32) = −2.202, and p = 0.036), such that lower NM-MRI signal was associated with more
severe substance abuse. There was no main effect of neural response to social reward
(b = −69.945, 95% C.I., −312.934, 173.045), t(32) = −0.589, and p = 0.561), nor was there
social reward by NM-MRI signal interaction (∆R2 = 0.013 F(1,29) = 0.454; b = 9.903,
95% C.I., (−20.157, 39.963), and p = 0.506).

4.3.2. Monetary Reward

Regarding the right ventral striatum, the overall model was significant; R2 = 0.306,
F(3, 29) = 4.262, and p = 0.0131. There were no main effects of NM-MRI signal (b = 0.725, 95%
C.I., (−3.798, 5.248), t(32) = 0.328, and p = 0.745). However, there was a main effect of neural
response to monetary reward (b = 356.254, 95% C.I., (75.929, 636,579), t(32) = −2.599, and
p = 0.0145), such that greater striatal response to monetary reward was associated with more
severe substance abuse. This main effect was qualified by an interaction. Inconsistent with
our hypotheses, NM-MRI signal moderated the relationship between neural response to
social reward and severity of substance abuse (∆R2 = 0.145, F(1,29) = 6.049; b = −39.820, 95%
C.I. (−72.935, −6.706), and p = 0.021; Figure 4). Johnson–Neyman analyses suggest greater
striatal response to reward was associated with greater substance abuse behavior among
those with low NM-MRI signal (<7.37). There was no relation between striatal response to
reward and substance abuse in those with high or moderate levels of NM-MRI signal.

Regarding the left ventral striatum, the overall model was not significant; R2 = 0.197
F(3, 29) = 2.376, and p = 0.091. There were no main effects of NM-MRI signal (b = −2.230,
95% C.I., (−6.182, 1.722), t(32) = −1.154, and p = 0.258) or neural response to monetary
reward (b = 127.729, 95% C.I., (−72.402, 327.859), t(32) = 1.305, and p = 0.202), nor was
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there a monetary reward by NM-MRI signal interaction (∆R2 = 0.055, F(1,29) = 1.985;
b = −15.248, 95% C.I., (−37.382, 6.887), and p = 0.170).

Figure 4. Depiction of moderating effect of NM-MRI signal on the relation between right ventral
striatal response to monetary reward (vs. non-reward) and substance abuse. SD = standard deviation.

5. Discussion

In this study, we tested the relation between NM-MRI signal, substance abuse, and
ventral striatal sensitivity to social and monetary reward in emerging adults. Three sets of
encouraging preliminary results emerge. First, lower NM-MRI signal in the substantia nigra,
a proxy measure of dopamine system functioning, is associated with greater substance
abuse behaviors. Second, among those with hypo-striatal response to positive social
feedback, high NM-MRI signal may be protective against, while low NM-MRI signal may
increase the risk of, substance abuse behavior. Third, hyper-striatal response to positive
monetary feedback coupled with low NM-MRI signal may increase risk of substance abuse
behaviors. Although results require replication with a larger sample, taken together, these
data: (1) provide initial support for the hypothesis that hypodopamineric function increases
risk of SUD; (2) suggest prior work demonstrating positive relations between NM-MRI
signal and SUD may reflect long-term consequences of sustained use rather than risk; and
(3) help shed light on mechanisms by which sensitivity to social and non-social rewards
may contribute to substance abuse and relapse.

This is the first report we are aware of to test the relation between NM-MRI signal
and substance abuse in individuals without a long-term SUD. Unlike our prior results,
which demonstrated that long-term cocaine users in their 40s had greater NM-MRI signal
compared to non-users [16], we demonstrate that substance abuse in emerging adults
is associated with lower NM-MRI signal. This is consistent with hypotheses that hy-
podopaminergic function increases risk of SUD [20,21]. The fact that the same pattern of
results emerged across both voxelwise and ROI-based analyses bolsters confidence for the
present results and suggests our prior findings of increased NM accumulation may be the
consequence of long-term cocaine use. Individual differences in NM-MRI signal is not
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likely the consequence of substance use in the present sample, given that NM accumulation
is a slow and gradual process [13,57], and that our sample has been using substances for
a relatively short time, with few substance-related problems. Despite this, longitudinal
research that measures NM-MRI signal prior to the onset of substance use is needed to
definitively confirm that lower NM-MRI signal predicts subsequent use and development
of SUD. Nevertheless, the present cross-sectional results provide compelling preliminary
data that demonstrate the utility of using NM-MRI signal to test dopamine system pertur-
bations in younger populations and support the promise of NM-MRI to measure substance
abuse risk.

There is a strong drive for peer acceptance during adolescence and early adulthood,
and social experiences often prompt substance use in this population. Yet, few studies
have tested the relation between neural response to social rewards and substance abuse in
emerging adults. Here, we found that diminished right ventral striatal response to social
reward is associated greater substance abuse behavior. While initially this effect may seem
contradictory, it is possible that the failure to benefit from positive peer experiences may
motivate substance abuse. For example, non-human primate studies show that failure to
upregulate dopamine system function in response to social experiences increases cocaine
use [26]. Moreover, hyperstriatal responding to positive social feedback is normative
during adolescence and emerging adulthood [58]. Individuals who fail to adequately
engage such systems during positive social encounters may therefore seek appetitive
experiences through other avenues, such as substance abuse.

We also found that NM-MRI signal moderates the relation between right ventral
striatal response to social reward and substance abuse behaviors. Specifically, low NM-MRI
may potentiate the relation between diminished striatal response and substance abuse.
This supports the idea that hypodopaminergic tone, in conjunction with a failure to trigger
appetitive responses to positive peer experiences, may lead to more risky reward-seeking
behavior. However, high NM-MRI signal seems to buffer young adults who are hypo-
responsive to positive social feedback. One reason for this may be that higher dopaminergic
tone is protective against the failure to experience positive social outcomes as appetitive.
Likewise, greater response to positive social feedback seems to eliminate the differential
effects of NM-MRI signal on substance abuse. Thus, if normative neural responses to peer
feedback are engaged, more moderate levels of substance abuse occur. This suggests a
socio-emotional mechanism that protects against substance abuse.

The majority of studies to test the link between neural response to reward and sub-
stance abuse have focused on the monetary domain. Here, we found that greater right
ventral striatal response to winning money is associated with greater substance abuse
behavior. This is consistent with hypotheses suggesting that risk of SUD is associated
with heightened, rather than diminished reward circuit function [17–19]. Yet, inconsistent
with these theories, low rather than high NM-MRI signal potentiates the relation between
brain function and substance abuse behaviors. This provides some support for the idea
that hypodopaminergic tone in conjunction with an exaggerated appetitive response to
positive non-social experiences may lead to more risky reward-seeking behavior. Thus,
hypo- rather than hyper-dopaminergic function seems to potentiate risk of substance abuse
depending on right ventral striatal response to social and monetary reward outcomes. The
fact that potentiating effects are related to hypostriatal responding for social reward and
hyperstriatal responding in the monetary reward requires further inquiry, and suggests
that outcome domain is a critical feature that should be considered in future work on risk
of SUD.

Despite its strengths, this study is not without its limitations. The biggest limitation
is the relatively small sample size. This is particularly important in light of recent work
that suggests fMRI studies assessing individual differences with relatively small samples
should be interpreted with caution [59]. Likewise, while our prior work using a variant
of this task indicates that it has strong reliability/dependability (based on measures of
split-half-reliability, Cronbach’s alpha, and G theory dependability measures) [45], its
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modest number of trials may compound this issue. Likewise, the limited sample size
precluded our capacity to test for potential sex differences. This is critical given the link
between sex differences in risk of SUD and corresponding development of neural circuits
implicated in affective processing [60]. Relatedly, the composition of the sample had some
drawbacks. Namely, the majority of participants in this sample were female—a limitation,
given these sex differences. Moreover, while a subset of participants did not believe they
received feedback from actual peers during the fMRI task, deceived and non-deceived
participants did not differ on any characteristics measured in the study, including striatal
response to feedback. This is not entirely surprising given that numerous studies that ask
participants to imagine that feedback is real (i.e., do not use deception), still elicit robust
neural response to that feedback (e.g., [61–64]). Additional studies with larger samples
that use more robust deception techniques are clearly needed to replicate and extend
the current findings. Second, while we demonstrate a relation between blunted striatal
response to positive social feedback and substance abuse, and greater striatal response
to positive monetary feedback and substance abuse, we cannot claim that brain response
reflects diminished or enhanced affective experiences. Future work that relates brain
function to affective responses are needed to confirm this relation. Furthermore, additional
work is generally needed to quantify, and thus equalize, the value ascribed to reward
outcomes across domains. For instance, given the salience of peers during adolescence,
a larger monetary win may be required to yield an equivalent value reward as positive
peer feedback. Only when methods are devised for determining subjective equivalence for
monetary and social value can domain-specific effects truly be isolated. Third, this study
used cross-sectional methods. Although we have provided preliminary evidence for the
relation between striatal response to social and monetary reward, NM-MRI signal, and
risk of SUD, longitudinal research is the only way to determine if these relations predict
increased substance abuse or conversion to SUD. Finally, the sample was not selected based
on individual differences in reward sensitivity. We have addressed this issue in ongoing
research with similar measures in which we specifically study emerging adults with a range
of reward sensitivity who are at risk of, but do not meet criteria for SUD [65].

While more work is clearly warranted, the present results are an important first step
in demonstrating the link between dopamine system function and substance abuse in
emerging adults. Moreover, we provide insight into a potential mechanism that could
help explain the common association between social experiences and substance abuse in
late adolescents and emerging adults, while drawing attention to the need for a nuanced
approach to considering reward domain in future research. Taken together, these results
make an important initial contribution to our understanding of the causes and consequences
of substance abuse and may guide the development of clinical interventions that focus
on responses to social and non-social feedback in an efforts to curb substance abuse in
young adults.
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//www.mdpi.com/article/10.3390/brainsci12030352/s1, Figure S1: Anatomical masks of left and
right ventral striatum.
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