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Abstract: To test the ability of different entropy measures to classify patients with different condi-
tions of chronic disorder of consciousness, we applied the Lempel–Ziv complexity, the amplitude
coalition entropy (ACE), and the synchrony coalition entropy (SCE) to the EEG signals recorded
in 32 patients, clinically evaluated using the coma recovery scale revised (CRS-R). All the entropy
measures indicated that differences found in the theta and alpha bands can distinguish patients
in a minimal consciousness state (MCS) with respect to those in a vegetative state/unresponsive
wakefulness state (VS/UWS). These differences were significant comparing the entropy measure
performed on the anterior region of the left hemisphere and midline region. The values of theta-alpha
entropy positively correlated with those of the CRS-R scores. Among the entropy measures, ACE
most often highlighted significant differences. The higher values found in MCS were for the less
impaired patients, according to their CRS-R, suggest that the preservation of signal entropy on the
anterior region of the dominant hemisphere correlates with better preservation of consciousness,
even in chronic conditions.

Keywords: disorders of consciousness; EEG; entropy

1. Introduction

The evaluation of EEG activity in resting conditions is an important and widely
applied tool in evaluating patients with disorders of consciousness (DoCs) in acute or
chronic conditions (see [1] for a review). Several quantitative approaches, with uneven
complexity, of EEG signal post-processing and elaboration, have been applied, including the
analysis of power spectrum, complexity, entropy, or functional/effective connectivity. All
these measures have the aim of suitably defining the degree of the dysfunction associated
with the impaired consciousness or predicting the outcome (see recent reviews of [2–6]).

Several entropy estimators have been tested to quantify the “complexity” of EEG
signals, mostly to assess changes associated with general anesthesia, leading to the concept
that higher values could be a fingerprint of “awareness” while lowest values can be found in
deeper unconsciousness. Moreover, it has been found that entropy values correlate with the
Coma Recovery Scale-revised (CRS-R) [7] being lower in the Vegetative State/Unresponsive
Wakefulness Syndrome (VS/UWS) than in the minimal consciousness state (MCS) and in
healthy controls [8,9].
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In a previous study, we evaluated the contribution of different neurophysiological tests
in assessing the degree of impairment in a large case series of chronic DoC patients [10]. In
this study, we aimed to validate the significance of different entropy indexes, including the
Lempel–Ziv complexity, Amplitude Coalition Entropy (ACE), and Synchrony Coalition En-
tropy (SCE) [11] in a group of chronic DoC patients, to understand if these measures can be
considered as a useful tool for obtaining information in this complex pathological condition.

2. Materials and Methods
2.1. Study Population

We consecutively included 32 adult chronic DoC patients (13 females, mean age:
50.7 ± 16.4 years; observed 32.5 ± 29.5 months after the occurrence of the acute brain
damage), classified as UWS/VS (n = 19) or MCS (n = 13). Patients were observed during a
week of hospitalization at the Coma Research Centre of the Fondazione IRCCS Istituto Neu-
rologico “Carlo Besta”, Milan. Two experienced raters tested each patient independently
with CRS-R (four evaluations in a week) according to the standard procedure [7,12]. Each
test section was administered taking into account arousal fluctuations; every evaluation
was conducted while patients were in bed (sitting position), with open eyes, far from the
post-prandial time point, and without environmental interference or factors affecting and
modulating brain state or patient’s activation. The median total score CRS-R value was 7.0
(range 5–16).

Patients with isoelectric or near-isoelectric EEG signals and patients with suppression
burst patterns were not included. In 22 subjects, the brain damage was due to a traumatic
or hemorrhagic event, while in the remaining 10 it was due to anoxic damage.

The Ethics Committee of the Institute approved the study which was performed in
accordance with the Declaration of Helsinki. Legal representatives of the patients gave
written informed consent for the investigation procedures.

2.2. EEG Recordings and Analysis

Each patient underwent a polygraph recording including EEG, EOG, ECG, spirogram,
and submental EMG, which started at 2.00 p.m. on the second day after admission and
lasted until 9.00 a.m. on the following day. An EEG was acquired using 19 Ag/AgCl
(impedance <5 kΩ) surface electrodes, placed according to the 10–20 International System,
at a sampling rate of 256 Hz (Micromed SpA, Mogliano Veneto, Italy) using a montage with
a common reference electrode that allowed off-line mathematical data to be reformatted.
A spline surface Laplacian estimate was applied to ensure reference-free and spatially
sharpened data [13].

An artifact-free epoch lasting two minutes was selected for the analysis. To avoid pos-
sible contamination of residual EMG artifacts, mainly affecting frontopolar and temporal
regions, we selected for the analyses F3, C3, P3, O1, F4, C4, P4, O1, Fz, and Cz channels,
grouped in five Regions of Interest (ROIs): Left and Right FC (F3-C3 and F4-C4), Left and
Right PO (P4-O2 and P3-O1) and midline (Fz-Cz). Moreover, we performed our analy-
ses by grouping electrodes by hemisphere. We applied three distinct entropy measures:
Lempel-Ziv complexity (LZc), amplitude coalition entropy (ACE), and synchrony coalition
entropy (SCE), using the implementation made available by [8].

2.3. Statistical Analysis

We analyzed the entropy values on a wide band (1–30 Hz) and in the canonical delta
(1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) bands, separately. For each
band, we performed statistical analysis using repeated measure ANOVA (RMANOVA,
SPSS software, version 16, SPSS Inc. Chicago, IL, USA) at a significance level of 5%
using groups (MCS and VS/UWS) as between factor and ROIs or hemispheres as within-
subject factors. The sphericity assumption was evaluated using Mauchley’s test, and
the Greenhouse–Geisser degree of freedom correction was applied when appropriate;
where the RMANOVA indicated a significant factor or interaction, post-hoc analyses by
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means of t-tests for independent or paired samples were applied, with FDR correction for
multiple comparisons.

To evaluate the relationship between entropy values and CRS-R we applied linear
regression analysis.

All the statistical analyses were carried out using IBM SPSS, version 20 (SPSS Inc.,
Chicago, IL, USA).

3. Results

The evaluated measures mostly gave higher values on MCS patients with respect to
VS/UWS patients, in all ROIs and bands. The different entropy measures had a similar
trend but SCE and LZc gave less significant statistical differences than ACE, therefore
we used ACE values to prepare graphics comparing MCS and VS/UWS patients and to
evaluate the relationship between the obtained results and the CRS-R values.

3.1. Interhemispheric Differences

RMANOVA on the hemispheres showed a significant main effect of DoC condition for
ACE and LZc in theta band (F(1,30) = 4.19, p = 0.049, η2 = 0.12 and F(1,30) = 7.26, p = 0.011,
η2 = 0.19, respectively), but not for SCE. We found no main effects of the etiology of the
injury, whether classified as anoxic vs hemorrhagic or traumatic.

The post-hoc comparisons indicated that the MCS patients, when compared with
VS/UWS patients, had significantly higher values on the left hemisphere for all fre-
quency bands including wide band (Table 1, Figure 1A). We found no difference for any
of the entropy measurements on the right hemisphere between the MCS and VS/UWS
patients (Figure 1B).
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Figure 1. ACE values on left (L) (A); and right (R) (B) hemispheres. Significant differences between
MCS and VS/UWS were observed on the left hemisphere only and are marked with asterisks. In
each diamond box, the line represents the mean value, the diamond height represents the SD and the
whiskers represent the 10–90% range of the values. Panels C and D show, with the same colors as in
A and B, the linear relationships between ACE measures and CRS-R score, which were significant on
the left hemisphere only (the lines are shown only for significant relationships, with the same color of
the symbols). The theta values are in light blue (circles in (C,D)), the alpha values in orange (triangles
in (C,D)), and the beta values are in dark green (diamonds in (C,D)).
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Table 1. Post hoc comparison of entropy measures assessed in MCS vs. VS/UWS patients in different
regions (*) indicates value not surviving FDR correction).

Region Frequency Band VS/UWS vs MCS
ACE

VS/UWS vs MCS
SCE

VS/UWS vs MCS
LZc

t(df), p t(df), p t(df), p

Left Hemisphere 1–30 Hz t(26.9) = −3.8, p = 0.001 t(22.8) = −3.0, p = 0.006 t(30) = −2.1, p = 0.047 *

1–4 Hz t(26.6) = −2.7, p = 0.012 t(23.6) = −2.3, p = 0.029 * t(29.3) = −2.8, p = 0.009

4–8 Hz t(25.4) = −3.3, p = 0.003 t(23.9) = −2.8, p = 0.010 t(25.8) = −3.2, p = 0.003

8–13 Hz t(30) = −2.8, p = 0.010 t(30) = −2.0, p = 0.051 t(30) = −1.8, p = 0.084

13–30 Hz t(30) = −2.3, p = 0.026 * t(30) = −1.8, p = 0.075 t(30) = −1.1, p = 0.275

Right Hemisphere 1–30 Hz t(30) = −0.7, p = 0.504 t(30) = −0.5, p = 0.621 t(30) = −1.6, p = 0.114

1–4 Hz t(30) = −0.4, p = 0.676 t(30) = −0.8, p = 0.408 t(30) = 0.1, p = 0.958

4–8 Hz t(30) = −1.0, p = 0.334 t(30) = −0.8, p = 0.399 t(30) = −0.9, p = 0.374

8–13 Hz t(17.1) = −0.3, p = 0.371 t(18.2) = 0.4, p = 0.697 t(17.2) = −1.2, p = 0.159

13–30 Hz t(30) = −0.1, p = 0.909 t(30) = −0.9, p = 0.379 t(30) = −0.7, p = 0.458

Midline 1–30 Hz t(30) = −2.0, p = 0.051 t(30) = −1.4, p = 0.179 t(30) = −2.1, p = 0.041 *

1–4 Hz t(30) = −1.4, p = 0.161 t(30) = −1.0, p = 0.307 t(30) = −1.1, p = 0.287

4–8 Hz t(28.4) = −2.7, p = 0.011 t(30) = −1.9, p = 0.063 t(27.6) = −3.60, p = 0.001

8–13 Hz t(30) = −1.4, p = 0.166 t(30) = −1.3, p = 0.188 t(30) = −2.4, p = 0.022

13–30 Hz t(30) = −0.4, p = 0.665 t(30) = −0.5, p = 0.632 t(30) = −0.5, p = 0.631

Left fronto-central 1–30 Hz t(30) = −2.4, p = 0.025 * t(30) = −1.6, p = 0.115 t(30) = −1.9, p = 0.069

1–4 Hz t(30) = −1.2, p = 0.259 t(28.1) = −0.8, p = 0.424 t(30) = 0.1, p = 0.876

4–8 Hz t(30) = −2.9, p = 0.007 t(30) = −2.4, p = 0.021 * t(27.8) = −2.1, p = 0.045 *

8–13 Hz t(30) = −3.0, p = 0.005 t(30) = −2.2, p = 0.039 * t(30) = −2.1, p = 0.042 *

13–30 Hz t(30) = −2.6, p = 0.014 * t(30) = −1.5, p = 0.131 t(30) = −0.5, p = 0.598

Right fronto-central 1–30 Hz t(30) = −0.5, p = 0.597 t(30) = −0.3, p = 0.802 t(30) = −1.9, p = 0.069

1–4 Hz t(30) = −0.3, p = 0.744 t(30) = −0.6, p = 0.536 t(30) = 0.8, p = 0.453

4–8 Hz t(30) = −1.3, p = 0.208 t(30) = −0.8, p = 0.426 t(30) = −1.3, p = 0.214

8–13 Hz t(30) = −0.2, p = 0.827 t(30) = −0.1, p = 0.960 t(30) = −1.8, p = 0.073

13–30 Hz t(30) = 0.7, p = 0.468 t(30) = 1.0, p = 0.298 t(30) = −0.4, p = 0.715

Left parieto-occipital 1–30 Hz t(29.6) = −1.9, p = 0.071 t(30) = −1.5, p = 0.139 t(30) = −1.7, p = 0.105

1–4 Hz t(30) = −1.9, p = 0.064 t(30) = −1.7, p = 0.101 t(30) = −1.4, p = 0.157

4–8 Hz t(30) = −1.4, p = 0.182 t(30) = −1.2, p = 0.236 t(30) = −1.5, p = 0.188

8–13 Hz t(30) = −0.5, p = 0.619 t(30) = −0.2, p = 0.842 t(30) = −0.7, p = 0.470

13–30 Hz t(30) = −1.8, p = 0.089 t(30) = −0.9, p = 0.374 t(30) = −0.3, p = 0.723

Right parieto-occipital 1–30 Hz t(30) = −0.7, p = 0.487 t(30) = −0.7, p = 0.504 t(30) = −1.5, p = 0.145

1–4 Hz t(30) = −0.4, p = 0.702 t(30) = −0.9, p = 0.366 t(30) = 0.9, p = 0.376

4–8 Hz t(30) = −0.8, p = 0.448 t(30) = −0.6, p = 0.536 t(30) = −1.3, p = 0.215

8–13 Hz t(30) = −0.7, p = 0.501 t(30) = 0.5, p = 0.597 t(30) = −1.7, p = 0.098

13–30 Hz t(30) = −0.9, p = 0.368 t(30) = 0.1, p = 0.960 t(30) = −0.8, p = 0.430

Paired t-test for interhemispheric difference showed for MCS patients, but not for
VS/UWS patients, significant differences with higher values on the left hemisphere in theta
(MCS: t(12) = −2.6, p = 0.021; VS/UWS: t(18) = 0.6, p = 0.572, alpha (MCS: t(18) = −2.7
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p = 0.019; VS/UWS: t(18) = 1.4, p = 0.163) and beta (t(12) = −2.6, p = 0.024; VS/UWS:
t(18) = 0.9, p = 0.384) bands.

Linear regression analysis applied to different bands between ACE values and CRS-R
scores showed on the left hemisphere a significant direct relationship in theta (F(1,30) = 5.89.
p = 0.022. R2 = 0.164), alpha (F(1,30) = 5.13. p = 0.031. R2 = 0.146) and beta (F(1,30) = 9.78.
p = 0.004. R2 = 0.246) bands (Figure 1C). No significant relationships were found for the
right hemisphere (Figure 1D).

3.2. Selected ROIs

RMANOVA indicated a significant main effect of the DoC condition for ACE in the
theta and alpha bands (F(1,30) = 5.97, p = 0.021, η2 = 0.17 and F(1,30) = 4.47, p = 0.043,
η2 = 0.13, respectively) and for the LZc values for the alpha band (F(1,30) = 6.72, p = 0.015,
η2 = 0.18), but not for SCE values in any band. We found no main effects of the etiology of
the injury, whether classified as anoxic vs hemorrhagic or traumatic.

Post-hoc comparisons with FDR correction for multiple comparisons were reported
in Table 1.

The ACE values were significantly higher in MCS patients on the left FC ROI in theta
(t(30) = −2.9, p = 0.007) and in alpha bands (t(30) = −3.0, p = 0.005) and at the significance
limits for beta bands (t(30) = −2.6, p = 0.014) (Table 1, Figure 2A).
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Figure 2. ACE values on left (L) and right (R) fronto-central (A); and midline (D) regions. Panels
(C) shows the ratio between measures on left and right fronto-central regions; Panel (B) shows the
linear relationships between ACE values obtained on the left fronto-central region and CRS-R values;
Panel (E) shows the linear relationship between ACE values on the midline region and CRS-R values.
Values and lines that did not give significant relationships are not shown. Colors and symbols as in
Figure 1. Significant differences are marked with asterisks.

Paired t-test between left FC and right FC ROIs indicated a significant difference
in MCS patients (theta: t(12) = −2.9, p = 0.014; alpha: t(12) = −3.6, p = 0.004 and beta:
t(12) = −3.6, p = 0.003), but not in VS/UWS patients (theta: t(18) = −1.5, p = 0.159; alpha:
t(18) = 0.9, p = 0.344 and beta: t(18) = −0.0, p = 0.981). Figure 2C shows the ratio measured
between left and right FC ROIs in VS/UWS and MCS patients.

Linear regression analysis performed on ACE and CRS-R values revealed a significant
direct relationship only for the left FC region (Figure 2B) in theta (F(1,30) = 8.00, p = 0.008,
R2 = 0.211), alpha (F(1,30) = 6.33, p = 0.017, R2 = 0.174) and beta band (F(1,30) = 10.93,
p = 0.002, R2 = 0.267). We did not find significant relationships in the 1–30 Hz band or the
delta band. Linear regression showed no significant relationships in any frequency band
for both the right FC region and the right and left PO regions.
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On the midline region, the ACE values were significantly higher in MCS patients
than in VS/UWS patients on the theta band only (t(28.7) = −2.58, p = 0.015) (Figure 2D).
Regression analysis showed a significant relationship between ACE values and CRS-R
values in the theta band (F(1.30) = 6.60, p = 0.015 R2 = 0.180) (Figure 2E).

4. Discussion

We designed the present study to evaluate whether different entropy measures may
be useful in providing information on the degree of severity in patients with chronic DoCs.
Therefore, we did not compare DoC patients with a control population, keeping also in
mind that the general severity of brain damage in the evaluated subjects raises doubt about
the value of the comparison with a normal EEG.

Several previous studies investigated the EEG of DoC patients in resting-state con-
ditions with entropic measures to study signal complexity and its significance [3,14–18]
assuming brain activity can manifest under resting conditions, without needing specific
types of stimuli protocols [19]. Specifically, the entropy ACE or SCE measures, which we
applied, were previously validated in determining the “consciousness” changes in case of
anesthesia [11], drug-induced psychedelic state [20], or sleep [21,22] but not, to our knowl-
edge, to patients with chronic DoCs. We found that all the three applied entropy measures
had a similar trend, but ACE values more often returned significant differences. The same
occurred when evaluating the relationship between the entropy values and CRS-R ones
using linear regression analysis.

In the delta band, we observed higher ACE values in MCS patients than in VS/UWS
patients only when comparing the values measured on the entire left hemisphere, but, in
no case, for the single ROIs. The limited relationship between delta entropy values and the
severity of DoC is in agreement with the observation of a lack of relationship between the
ACE values in the delta band with the depth of Propofol anesthesia [11].

Our main finding indicates that MCS patients compared with VS/UWS patients had
significantly higher ACE values in theta, alpha, and, to a lesser extent, beta bands, and
this prominently involved the frontocentral region of the left hemisphere. Moreover, MCS
patients had higher ACE values in the theta band, also on the midline region. This evidence
may suggest that a “regional” complexity of alpha/theta activity plays a pivotal role in
distinguishing between higher (MCS) and lower (VS/UWS) residual cortical functioning.
Various previous evidence conversely supports the main role of the posterior cortical
regions, which includes sensory areas, in consciousness’ preservation [23]. Our evidence
did not necessarily contrast this possibility when comparing DoC patients with healthy
subjects. We compared only patients in different DoC conditions, thus our data simply
suggest that in a population of DoC patients the anterior (fronto-central) region of the
dominant hemisphere may play a main role in consciousness’ preservation.

The prominent ACE values on the left front-central region may perhaps reflect bet-
ter functional preservation of the dominant hemisphere in MCS patients compared with
VS/UWS patients. In patients with DoCs, the role of the dominant hemisphere has been
little explored through EEG analysis techniques, therefore the higher ACE values that we
found on the left FC region may be considered as a novel finding. The role in consciousness
preservation of the dominant hemisphere has been highlighted in other pathological con-
ditions. Detyniecki et al. [24] found that loss of consciousness due to epileptic seizures is
more common and worse in patients when the ictal discharge begins on the left hemisphere;
moreover, some reports suggested that loss of consciousness occurs more commonly in
patients with left hemispheric stroke [25].

Higher ACE alpha values on the left anterior region that we found in less severely
affected patients may meet the value of frontal alpha rhythm asymmetry observer in several
conditions and be considered as a psychological and neural index of different pathological
neuropsychological conditions (for a review, see [26]). Hence, we can hypothesize that
high EEG entropy in the alpha band on the fronto-central region of the left (dominant)
hemisphere may support higher residual cognitive functions.
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In this study, which we consider a pilot exploration of new entropy indices in patients
with DoC, we applied the most widely used method in assessing impaired consciousness,
based on CRS-R values. Certainly, we did not specifically explore specific residual functions
that possibly derive from better functional preservation of the dominant hemisphere. We
consider that we can extend the entropy measures, in particular the ACE measure, in a
more extensive series by evaluating specific functions and recently proposed measures to
assess the level of consciousness’ impairment [27].

Higher ACE theta values were found in MCS patients not only on the left FC region
but also on the midline region, with a significant linear relationship with CRS-R scores. This
can be in line with previous evidence obtained in MCS patients compared with VS/UWS
during long-lasting recordings by [28], proposing that some patients have higher spectral
entropy in the theta-alpha band on the midline region, but a substantial time variability
reflects on the inconsistency of cognitively mediated behaviors.

Some limitations of this study must be accounted for, including the restricted number
of EEG channels in our recordings, which limits precise topological considerations, the
relatively limited number of evaluated patients, and the application of clinical scales,
limited to the CRS-R, with no exploration of specific residual brain functions. To improve
our results in the future we will apply other scores such as the Modified Score or the CRS-R
index in association with our entropy analysis in a larger population.

5. Conclusions

Our results may offer a new concern about the functional re-organization occurring
after a brain lesion using entropic indices, even if the data presented certainly require
verification in a more extensive case series and further evaluation by means of other indices
of consciousness or specific brain functions impairment. However, the applied entropy
measures do not require complicated post-processing and can be expected to help in the
evaluation of DoC patients, thus potentially becoming promising for bedside observation
in chronic conditions.
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